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Abstract

Sequence generators based on Linear Feedback Shift Registers (LFSRs) are very common
procedures to generate pseudorandom sequences for multiple applications: computer simula-
tion, circuit testing, error-correcting codes or cryptography (stream ciphers).

The encryption procedure in stream ciphers tries to imitate the mythic one-time pad cipher
[1] that remains as the only known perfectly secure cipher. This encryption procedure is
designed to generate from a short key a long sequence (keystream sequence) of seemingly
random bits. Some of the most recent designs in stream ciphers can be found in [2]. Typically,
a stream cipher consists of a keystream generator whose output sequence is bit-wise XORed
with the plaintext (in emission) in order to obtain the ciphertext or with the ciphertext
(in reception) in order to recover the original plaintext. References [3, 4] provide a solid
introduction to the study of stream ciphers.

Most keystream generators are based on maximal-length LFSRs [6] whose output sequences
or m-sequences are combined by means of nonlinear filters, nonlinear combinators, irregularly
decimated generators, typical elements from block ciphers, etc to produce sequences of cryp-
tographic application.

Desirable properties for such sequences can be enumerated as follows:

1. Long Period

2. Good statistical properties

3. Large Linear Complexity (LC ).

One general technique for building a keystream generator is to use a nonlinear filter, i.e. a
nonlinear function applied to the stages of a single maximal-length LFSR. That is the output
sequence is generated as the image of a nonlinear Boolean function F in the LFSR stages.
Period and statistical properties of the filtered sequences are characteristics deeply studied in
the literature, see [7] and the references above mentioned. In addition, such sequences have
to pass all 19 DIEHARD tests [8] to be accepted as cryptographic sequences.

Regarding the third requirement, linear complexity of a sequence is defined as the amount
of known sequence necessary to reconstruct the entire sequence. In cryptographic terms, LC
must be as large as possible in order to prevent the application of the Berlekamp-Massey
algorithm [9]. A recommended value for LC is about half the sequence period. Although
several contributions to the linear complexity of nonlinearly filtered sequences can be found
in the literature [5], [10] or [11], the problem of determining the exact value of the linear
complexity attained by any nonlinear filter is still open.

Now some basic notation is introduced:
Nonlinear filter. It is a Boolean function F (x0, x1, . . . , xL−1) in L variables of degree

k. For a subset A = {a0, a1, . . . , ar−1} of {0, 1, . . . , L − 1} with r ≤ k, the notation xA =
xa0 xa1 . . . xar−1 is used. The Boolean function can be written as:

F (x0, x1, . . . , xL−1) =
∑
A

cA xA, (1)

where cA ∈ {0, 1} and the summation is taken over all subsets A of {0, 1, . . . , L− 1}.
Filtered sequence. The sequence {zn} is the keystream or output sequence of the nonlinear

filter F applied to the L stages of the LFSR. The keystream bit zn is computed by selecting
bits from the m-sequence {sn} such that

zn = F (sn, sn+1, . . . , sn+L−1). (2)

Equation (1) describes the Algebraic Normal Form (ANF) of a nonlinear filter F . That is the
filter is represented as the sum of distinct products in the variables (sn, sn+1, . . . , sn+L−1).



The ANF representation of a nonlinear filter is unique. At the same time, a nonlinear filter
F (sn, sn+1, . . . , sn+L−1) can be represented in terms of aN -tuple of coefficients (C1, C2, . . . , CN )
with Ci ∈ GF (2L) where each coefficient determines the starting point of its corresponding
characteristic sequence and N denotes the number of cosets of weight ≤ k, see [5].

In this work, a method of computing all the nonlinear filters of order k applied to a
LFSR with linear complexity LC ≥

(
L
k

)
(where L is the LFSR length) has been developed.

The procedure is based on the concept of equivalence classes of nonlinear filters and on the
handling of such filters from different classes.

Let G be the set of the kth-order nonlinear filters applied to a LFSR of length L. We are
going to group the elements of G producing the filtered sequence {zn} or a shifted version of
such a sequence. Therefore, two different nonlinear filters F0, F1 in the same equivalence class
will produce shifted versions of the same filtered sequence.

After distinct operations on the nonlinear filters from different equivalence classes, the final
result of this computing method is:

1. A set of N basic filters of the form (0, 0, . . . , di, . . . , 0, 0) (1 ≤ i ≤ N) with di ∈
GF (2L), di ̸= 0.

2. Their corresponding ANF representations.

The combination of all these basic filters with di (1 ≤ i ≤ N) ranging in GF (2L) (with their
corresponding ANF representations) gives rise to all the possible terms of order k that preserve
the cosets of weight k. From such terms, all the nonlinear filters of order k with a guaranteed
linear complexity LC ≥

(
L
k

)
can be constructed. Recall that the construction method involves

very simple operations:

• Sum operation: that is reduced to a sum of filters for the ANF representation or to a
sum of elements of the extended field GF (2L) that expressed in binary representation is
just the XOR logic operation.

• Shifting operation through an equivalence class: that means an increment by 1 in all the
indexes in the ANF representation.

Consequently, the efficiency of the computation method is quite evident. In brief, we
provide one with the complete class of nonlinear filters with LC ≥

(
L
k

)
at the price of minimal

computational operations.
No restriction is imposed on the parameters of the nonlinear filtering function. The method

completes the families of nonlinear filters with guaranteed large LC given in [5].
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