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Abstract

The paper is dedicated to ideas of homomorphic encryption and multivariate key dependent
cryptography. We observe recent theoretical results on the above-mentioned topics together
with their applications to cloud security. Post Quantum Cryptography could not use many
security tools based on Number Theory, because of the factorization algorithm developed by
Peter Shor. This fact and fast development of Computer Algebra make multivariate cryp-
tography an important direction of research. The idea of key dependent cryptography looks
promising for applications in Clouds, because the size of the key allows to control the speed
of execution and security level. Finally, special classes of finite rings turned out to be very
useful in homomorphic encryption and for the development of multivariate key.

Cloud computing provides clients with a virtual computing infrastructure on top of which
they can store data and run applications. While the benefits of cloud computing are clear,
it introduces new security challenges since cloud operators are expected to manipulate client
data without necessarily being fully trusted. We are designing cryptographic primitives and
protocols tailored to the setting of cloud computing, attempting to strike a balance between
security, efficiency and functionality. The current generation of cloud storage services do not
provide any security against untrusted cloud operators making them unsuitable for storing
sensitive information such as medical records, financial records or high impact business data.
To address this we are pursuing various research projects that range from theory to practice.

Homomorphic encryption. The most common use of encryption is to provide confi-
dentiality by hiding all useful information about the plaintext. Encryption, however, renders
data useless in the sense that one loses the ability to operate on it. To address this we are
designing cryptosystems that support a variety of computations on encrypted data, ranging
from general-purpose computations (i.e., fully-homomorphic encryption) to special-purpose
computations (e.g., voting and search).

Searchable structured encryption. A searchable encryption scheme encrypts data in
such a way that a token can be generated to allow a third party to search over the encrypted
data. Using a searchable encryption scheme, a client can safely store its data with an untrusted
cloud provider without losing the ability to search over it. There is a need of structured
encryption which allows a client to encrypt various types of data (e.g., social networks or
web graphs) in such a way that complex queries can be performed over the encrypted data.
Structured encryption and various constructions for graph data is known.

Some security issues raised by cloud computing are motivated by virtualization. Dynamic
scalability or elasticity will help generalize high-performance computing and very large data
sets in applications. But the real gains in performance depend heavily on the predictability
of physical and virtualized resources. It means that the balancing of performance against
security and the adaptation of HPC or VLDB techniques to cloud computing are important
issues and will have long-lasting scientific content. The direction of Key Dependent Message
(KDM) secure encryption in Cryptography can bring an appropriate security tools for Cloud
Computing.

The goal of the presented paper is discussion of new KDM cryptosystems, which have some
potential to be used in the era of Postquantum Cryptography. The Quantum Computer is a
special random computational machine. Recall that computation in Turing machine can be
formalised with the concept of finite automaton as a walk in the graph with arrows labelled
by special symbols. ”Random computation” can be defined as a random walk in the random
graph. So we are looking for the deterministic approximation of random graphs by extremal
algebraic graphs. It is known that the explicit solutions for an optimization graphs have
properties similar to random graphs. The probability of having rather short cycle in the
walking process on random graph is zero. So the special direction of Extremal Graph Theory



of studies of graphs of order v (the variable) without short cycles of maximal size (number of
edges) can lead to the discovery of good approximation for random graphs.
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1 Introduction

The plainspace of the algorithm is Kn, where K is the chosen commutative ring. Graph theoretical
encryption corresponds to walk on the bipartite graph with partition sets which are isomorphic to
Kn. We conjugate chosen graph based encryption map, which is a composition of several elemen-
tary polynomial automorphisms of a free module Kn with special invertible affine transformation
of Kn. Finally we compute symbolically the corresponding polynomial map g of Kn onto Kn.
We say that the sequence gn, n ≥ 3, n → ∞ of polynomial transformation bijective maps of free
module Kn over commutative ring K is a sequence of stable degree if the order of gn is growing
with n and the degree of each nonidentical polynomial map of kind gn

k is an independent constant
c. A transformation b = τgn

kτ−1, where τ is affine bijection, n is large and k is relatively small,
can be used as a base of group theoretical Diffie-Hellman key exchange algorithm for the Cremona
group C(Kn) of all regular automorphisms of Kn. The specific feature of this method is that the
order of the base may be unknown for the adversary because of the complexity of its computation.
The exchange can be implemented by tools of Computer Algebra (symbolic computations). The
adversary can not use the degree of righthandside in bx = d to evaluate unknown x in this form
for the discrete logarithm problem.

In the paper we introduce the explicit constructions of sequences of elements of stable degree c
for each commutative ring K containing at least 3 elements and each c ≥ 2. Special cases of c = 3
and c = 2 were obtained in [11] and [10]. We discuss the implementation of related key exchange
and public key algorithms. It is interesting that in the case of c ≥ 4 use of special affine bijections
lead to sparse polynomial transformation with O(n3) monomial expressions. Those results are
based on the construction of the family D(n, q) of graphs with large girth and the description of
their connected components CD(n, q). The existence of infinite families of graphs of large girth had
been proven by Paul Erdös’ (see [1]). Together with famous Ramanujan graphs introduced by G.
Margulis [4] and investigated in [3] graphs CD(n, q) is one of the first explicit constructions of such
a families with unbounded degree. Graphs D(n, q) had been used for the construction of LDPS
codes and turbocodes which were used in real satellite communications ([2]), for the development
of private key encryption algorithms ([9], [5]), the option to use them for public key cryptography
was considered in [8], [7] and in [6], where the related dynamical system had been introduced.

2 Preliminaries

Let K denote commutative ring.
Set Q of the ring K is the multiplicative set of ring K, if it is closed under operation of

multiplication (x, y ∈ Q⇒ x · y ∈ Q) and does not contain 0.
Elements t1, t2, . . . , tl, l ≥ 1 z K are called multiplicative generators, if there is a multi-

plicative set Q containing all ti, i = 1, 2, . . . , l.

2.1 Graphs and incidence system

The missing definitions of graph-theoretical concepts which appear in this paper can be found in
[1]. All graphs we consider are simple, i.e. undirected without loops and multiple edges. Let
V (G) and E(G) denote the set of vertices and the set of edges of G, respectively. Then |V (G)|
is called the order of G, and |E(G)| is called the size of G. A path in G is called simple if all
its vertices are distinct. When it is convenient, we shall identify G with the corresponding anti-
reflexive binary relation on V (G), i.e. E(G) is a subset of V (G) × V (G) and write vGu for the
adjacent vertices u and v (or neighbors). The sequence of distinct vertices v1, . . . , vt, such that
viGvi+1 for i = 1, . . . , t− 1 is the pass in the graph. The length of a pass is a number of its edges.
The distance dist(u, v) between two vertices is the length of the shortest pass between them. The
diameter of the graph is the maximal distance between two vertices u and v of the graph. Let Cm
denote the cycle of length m i.e. the sequence of distinct vertices v1, . . . , vm such that viGvi+1,



i = 1, . . . ,m − 1 and vmGv1. The girth of a graph G, denoted by g = g(G), is the length of the
shortest cycle in G. The degree of vertex v is the number of its neighbors (see [15] or [1]).

The incidence structure is the set V with partition sets P (points) and L (lines) and symmetric
binary relation I such that the incidence of two elements implies that one of them is a point and
another is a line. We shall identify I with the simple graph of this incidence relation (bipartite
graph). If number of neighbours of each element is finite and depends only on its type (point or
line), then the incidence structure is a tactical configuration in the sense of Moore (see [12]). The
graph is k-regular if each of its vertex has degree k, where k is a constant. In this section we
reformulate results of [13], [14] where the q-regular tree was described in terms of equations over
finite field Fq.

Let q be a prime power, and let P and L be two countably infinite dimensional vector spaces
over Fq. Elements of P will be called points and those of L lines. To distinguish points from lines
we use parentheses and brackets: If x ∈ V , then (x) ∈ P and [x] ∈ L. It will also be advantageous
to adopt the notation for coordinates of points and lines introduced in [4]:

(p) = (p1, p11, p12, p21, p22, p
′
22, p23, . . . , pii, p

′
ii, pi,i+1, pi+1,i, . . .),

[l] = [l1, l11, l12, l21, l22, l
′
22, l23, . . . , lii, l

′
ii, li,i+1, li+1,i, . . .).

We now define an incidence structure (P,L, I) as follows. We say the point (p) is incident with
the line [l], and we write (p)I[l], if the following relations between their coordinates hold:

l11 − p11 = l1p1

l12 − p12 = l11p1

l21 − p21 = l1p11

lii − pii = l1pi−1,i (1)

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

(The last four relations in (1) are defined for i ≥ 2.) This incidence structure (P,L, I) we denote
as D(q). We speak now of the incidence graph of (P,L, I), which has the vertex set P ∪ L and
edge set consisting of all pairs {(p), [l]} for which (p)I[l].

2.2 Connected components

Let us consider the description of connected components of the graphs.
Let n ≥ 6, t = b(n+ 2)/4c, and let u = (u1, u11, · · · , utt, u′tt, ut,t+1, ut+1,t, · · · ) be a vertex of

D(n,K). (It does not matter whether u is a point or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =

r∑
i=0

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1) (2)

,
and a = a(u) = (a2, a3, · · · , at). (Here we define
p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p00 = l00 = −1, p0,1 = p1, l1,0 = l1, p′00 = l′00 = 1 l′11 = l11,

p′1,1 = p1,1).
In [13] the following statement was proved.

Proposition 1 Let u and v be vertices from the same component of D(k, q). Then a(u) = a(v).
Moreover, for any t−1 field elements xi ∈ Fq, 2 ≤ t ≤ [(k+2)/4], there exists a vertex v of D(k, q)
for which

a(v) = (x2, . . . , xt) = (x).

Corollary 1 Let us consider a general vertex

x = (x1, x1,1, x2,1, x1,2 · · · , xi,i, x
′

i,i, xi+1,i, xi,i+1, · · · ),

i = 2, 3, · · · of the connected component CD(n,K), which contains a chosen vertex v. Then,
coordinates xi,i, xi,i+1, xi+1,i can be chosen independently as “free parameters” from K and x′i,i
could be computed successively as the unique solution of the equations ai(x) = ai(v), i = 2, 3, . . . .



3 Operators LD,n,βk and PD,n,αk

Let LD,n,βk
be the operator of taking the neighbour of point:

(p)2k−2 = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

of a kind
[l]2k−1 = [βk, l1,1, l1,2, l2,1, l2,2, l

′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .],

where parameters l1,1, l1,2, l1,2, l2,2, . . . , li,i, li,i+1, li+1,i, . . . are computed consequently from the
equations (1) in definition of D(n,K) and all l′i,i for i = 2, 3, . . . are computed using equation
describing connected component (2).

Similarly, PD,n,αk
is the operator of taking the neighbour of line

[l]2k−1 = [l1,0, l1,1, l1,2, l2,1, l2,2, . . . , li,i, li,i+1, l
′
i,i, li+1,i, . . .],

of a kind
(p)2k = (p2k−20,1 + αk, p1,1, p1,2, p2,1, p2,2, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

where parameters p1,1, p1,2, p2,1, p2,2,. . ., pi,i, pi,i+1, pi+1,i, . . . are computed consequently from
the equations (1) in definition of D(n,K) and all p′i,i for i = 2, 3, . . . are computed using equation
describing connected component (2).

Given the vector (p)0 = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .), (of

length n) let us take elements α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βk) from Qk and compo-
sition Fn,α,β = LD,n,β1PD,n,α1LD,n,β2PD,n,α2 . . . LD,n,βk

PD,n,αk
.

Theorem 1 (A. Wroblewska) Independently from the choice of α = (α1, α2, . . . , αk) ∈ Qk and

β = (β1, β2, . . . , βk) ∈ Qk, the map Fn,α,β of free module Kn−b
n+2
4 c is bijective map with degree⌊

n+2
4

⌋
.

Theorem 2 (V. Ustimenko) The order Fn,α,β is going to ∞ when n→∞

4 Application

4.1 Public key algorithm

Let τ be linear transformation τ : x → Ax, where A is sparse matrix with condition detA 6= 0
Map τFn,α,βτ

−1 written as a multivariate public rule:

x1 → h1(x1, x2, . . . , xn)

x2 → h2(x1, x2, . . . , xn)

. . .

xn → hn(x1, x2, . . . , xn),

can be used in public key cryptography. Alice - the holder of the key - keeps linear transformation
and (β1, α1, β2, α2, . . . , βk, αk) secret. Bob (public user) has the above map.

Combining the transformation Fn,α,β with two linear transformation, Bob get a formula:

y = (h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)),

where hi(x1, . . . , xn) are polynomials of n variables of degree
⌊
n+2
4

⌋
. Hence the process of straight-

forward encryption can be done in polynomial time O(n6). But the cryptanalyst Catherine, having
a only a formula for y, has very hard task to solve the system of n equations in n variables of degree⌊
n+2
4

⌋
. So the general algorithm for finding the solution of system of polynomials equations has

exponential time (λn)O(n).



4.2 Diffie-Hellman key exchange protocol

We consider Diffie-Hellman algorithm for C(Kn) for the key exchange in the case of group.
Let AGLn(Fq) be the group of affine transformation of the vector space Fnq , i.e. maps τA,b :
x̃ → x̃A + b, where x̃ = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn) and A is invertible sparse matrix
with detA 6= 0. Let hkn be the new public rule obtained via k iterations of hn = Fn,α,β =
LD,n,β1

PD,n,α1
LD,n,β2

PD,n,α2
. . . LD,n,βk

PD,n,αk
. Correspondents Alice and Bob have different in-

formation for making computation. Alice chooses dimension n, element hn as above, affine trans-
formation τ ∈ AGLn(K). So she obtains the base b = τhknτ

−1 and sends it in the form of standard
polynomial map to Bob.

So Alice chooses rather large number nA computes cA = bnA and sends it to Bob. On his turn
Bob chooses his own key nB and computes cB = bnB . He and Alice get the collision map c as cA

nB

and cB
nA respectively.

Notice that the position of adversary is similar to Bob’s position. He (or she) need to solve one
of the equations bx = cB or bx = cA. The algorithm is implemented in the cases of finite fields and
rings Zm for family of groups C(Kn).
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