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Abstract
A binary nonlinear code can be represented as the union of cosets of a binary linear subcode.

Using this representation, new algorithms methods to compute the minimum Hamming weight
and distance are presented. The performance of these algorithms is also studied.

1 Introduction

Let Z2 be the ring of integers modulo 2 and let Zn
2 be the set of all binary vectors of length n. The

Hamming distance d(u, v) between two vectors u, v ∈ Zn
2 is the number of coordinates in which u and

v differ. The Hamming weight w(u) of u ∈ Zn
2 is w(u) = d(u,0), where 0 is the all-zero vector of

length n. A (n,M, d) binary code C is a subset of Zn
2 with M codewords and minimum Hamming

distance d. The vectors of a code are called codewords and the minimum Hamming distance is the
minimum value of d(u, v) for all u, v ∈ C and u ̸= v.

Two binary codes C1 and C2 of length n are said to be permutation equivalent if there exists a
coordinate permutation π such that C2 = {π(c) | c ∈ C1}. They are said to be equivalent if there
exists a vector a ∈ Zn

2 and a coordinate permutation π such that C2 = {a+ π(c) | c ∈ C1}. Note that
two equivalent codes have the same minimum distance.

Given a binary code C, the problem of storing C in memory is a well-known problem. If C is
linear, that is, it is a subgroup of Zn

2 , then it can be compactly represented using a binary generator
matrix. On the other hand, if C is nonlinear, then a solution would be to know whether it has
another structure or not. For example, there are binary codes which have a Z4-linear or Z2Z4-linear
structure and, therefore, they can also be compactly represented using a quaternary generator matrix
[2], [5]. In general, binary codes without any of these structures can be represented as the union of
cosets of a binary linear subcode of C [1]. This will allow us to represent a binary code as a set
of representative codewords instead of as a set with all codewords. Moreover, this representative
codewords can be organized as a matrix, called parity-check system [6], which is a generalization of
the binary parity-check matrix for binary linear codes [7].

The problems of computing the minimum weight of a binary code C, denoted by w(C), and
minimum distance, denoted by d(C), are important, and also necessary in order to establish its error-
correcting capability. If C is linear, the minimum weight coincides with the minimum distance, and
the Brouwer-Zimmerman minimum weight algorithm for linear codes over finite fields [10], [11] can
be used. This algorithm has been implemented in the computational algebra system Magma [3], [4],
[9]. On the other hand, if C is nonlinear, the minimum weight and minimum distance does not always
coincide, and as far as we know there is not any efficient algorithm to compute them.

In this paper, we will propose a new algorithm to compute the minimum weight and minimum
distance of a binary nonlinear code C, based on the coset structure and the known algorithms for
linear codes. From now on, we will assume that 0 ∈ C. Note that if C is linear, then 0 ∈ C; but if C
is nonlinear, then 0 does not need to belong to C. In this case, we can always consider a new binary
code C ′ = C + c for any c ∈ C, which is equivalent to C, such that 0 ∈ C ′.

2 Binary nonlinear codes

Two structural properties of binary codes are the rank and dimension of the kernel. The rank of a
binary code C, r, is simply the dimension of the linear span, ⟨C⟩, of C. The kernel of a binary code
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C is defined as K(C) = {x ∈ Zn
2 | x + C = C}. Since 0 ∈ C, K(C) is a binary linear subcode of

C. We will denote by k the dimension of the kernel of C. In general, C can be written as the union
of cosets of K(C), and K(C) is the largest such linear code for which this is true [1]. Therefore,
C = ∪ti=0(K(C) + ci), where c0 = 0, t + 1 = M/2k and M = |C|. The parameters r and k can be
used to distinguish between nonequivalent binary codes, since equivalent ones have the same r and k.

Let C be a binary code of length n with kernel K(C) of dimension k and t coset leaders given by
the set S = {c1, . . . , ct}. Note that we can represent C as the kernel K(C) plus the coset leaders S.
Since K(C) is linear, it can be compactly represented by its binary generator matrix G of size k × n.
Therefore, considering S as the matrix where in the t rows there are the coset leaders, the binary
code C can be also represented by the matrix

(
G
S

)
. Since the kernel takes up a memory space of order

O(nk), the kernel plus the t coset leaders take up a memory space of order O(n(k + t)).
For the case t = 0, that is, when the binary code C is linear, we have that C = K(C) and the

code can be represented by its binary generator matrix, so the memory space is of order O(nk). On
the other hand, for the case t+ 1 = M , this solution is as bad as representing the code as a set of all
its codewords, so it takes up a memory space of order O(nM), where M ≫ k.

3 Minimum weight and minimum distance

Using the representation given in the previous section, we can define new algorithms to compute the
minimum weight and minimum distance of a binary nonlinear code.

Given a binary code C and a vector v ∈ Zn
2 , let Kv = K(C) ∪ (K(C) + v). Since K(C) is linear,

then Kv is also linear. Let wv be the minimum weight of the binary linear code Kv.

Proposition 1 Let C =
∪t

i=0

(
K(C) + ci

)
with t ≥ 2. The minimum weight of C can be computed

as min({wci | i = 1, . . . , t}).

Proposition 2 Let C =
∪t

i=0

(
K(C) + ci

)
with t ≥ 2. The minimum distance of C can be computed

as min({wci | i = 1, . . . , t} ∪ {wci+cj | i, j = 1, . . . , t and i < j}).

Using Propositions 1, 2 and applying the known algorithms to compute the minimum weight of a
linear code, we can define Algorithms 1 and 2 to compute the minimum weight and minimum distance
of a binary nonlinear code, respectively. Note that the complexity of these two algorithms depends
strongly on the number of coset leaders t. For the minimum weight, we compute t times the minimum
weight of a linear code Kv, and for the minimum distance,

(
t+1
2

)
times.

Algorithm 1: MinimumWeight

Data: A binary code C.
Result: The minimum weight w(C).
begin

w(C)← Length(C)
for i ∈ [1, . . . , t] do

Kci ← K(C) ∪ (K(C) + ci)
w(C)← min(w(Kci), w(C))

return w(C)

In order to know the efficiency of these two algorithms, we compare them with brute force method.
Note that a nonlinear binary code with a kernel of dimension k and t coset leaders has M = 2k(t+1)
codewords. Computing minimum weight: By using brute force, we need to exam the weight of every
codeword to decide the minimum weight, so it will take M = 2k(t + 1) times the computation of a
codeword weight. By using Algorithm 1, we need to compute t times the minimum weight of a linear
code of dimension k + 1. Computing minimum distance: By using brute force, we need to exam the

distance between every pair of codewords, so it will take
(
M
2

)
=

(
2k(t+1)

2

)
times the computation of a

vector distance to get the minimum distance. On contrary, by using Algorithm 2, we need to compute(
t+1
2

)
times the minimum weight of a linear code of dimension k + 1. Note that when k is large,

Algorithms 1 and 2 will save a lot of time.

Example 1 Let K be the binary linear code of length n = 31, dimension 5, and minimum distance 16,
constructed as the dual of the binary Hamming code of length n = 31. Let C31 =

∪3
i=0

(
K(C31) + ci

)
,
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Algorithm 2: MinimumDistance

Data: A binary code C.
Result: The minimum distance d(C).
begin

d(C)← Length(C)
for i ∈ [0, . . . , t− 1] do

for j ∈ [i+ 1, . . . , t] do
Kci+cj ← K(C) ∪ (K(C) + ci + cj)
d(C)← min(w(Kci), d(C))

return d(C)

Figure 1: Time of computing w(C) using Algorithm 1 compared with brute force, for binary codes of
length n = 100, size M = 219 · 31, and kernel of dimension k ∈ {7, . . . , 15}.
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where the kernel K(C31) = K, c0 = 0, and the coset leaders are:

c1 = (0010001110011010011110001011110)

c2 = (0101101010111100101110100111101)

c3 = (0000011100011101101000111101011)

It is easy to check that the minimum weight of C31 is w(C31) = 10 and its minimum distance
d(C31) = 8. The time of computing w(C31) using brute force and Algorithm 1 are 0.00018 and
0.00060 seconds, respectively. Note that sometimes a brute force calculation can be a faster way to
get the minimum weight. However, to compute d(C31) it is much faster to use Algorithm 2, since the
time of computing it using brute force and Algorithm 2 are 0.00840 and 0.00126 seconds, respectively.

In order to show the difference of time between computing the minimum weight with Algorithms
1, 2 and brute force, we have chosen random binary codes of length n = 100. In Figures 1 and 2, the
dark beam represents the time of using Algorithm 1 and 2, respectively. The light beam represents
the time of using brute force. All the tests have been done in Magma version V2.18-3, running on a
server with Intel Xeon (clock speed 2.40GHz) and 32GB memory. As we can see, keeping the same
length and number of codewords, the time of Algorithms 1 and 2 decreases sharply while the kernel
dimension k increases (or equivalently, while the number of cosets t decreases).

4 Conclusions

In this paper, we have presented algorithms to compute the minimum weight and minimum distance
of binary nonlinear codes. These algorithms are especially suitable for codes with a big kernel while
brute force works better for codes with a small kernel.

In a near future study, we will establish the relationship between the performance of these algo-
rithms and the parameters of the code: length n, dimension of the kernel k, and number of coset
leaders t. In this way, we will be able to decide which algorithm to use for given parameters. In order
to get this relationship, we will include both work factor and practical experiments. We will also focus
on improving these algorithms, and generalizing them to q-ary nonlinear codes.
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Figure 2: Time of computing d(C) using Algorithm 2 compared with brute force, for binary codes of
length n = 100, size M = 210 · 31, and kernel of dimension k ∈ {4, . . . , 9}.
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