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Arithmetic of large integers is used in many branches of mathematics. There are
different algorithms, which work with large integers and many of them are implemented in
heavy software packages (Mathematica, Maple, etc.). Some of these packages are not free and
it is difficult to use even their separate functions. For our purposes, it is necessary to create an
effective package which can be sufficiently adapted to the specific conditions of the objects we
use. We have to calculate formulas, associated with verifying the number of all self-dual codes
of given parameters. Let C be a binary linear code and C⊥ = {x ∈ Fn

2 |(x, c) = 0,∀c ∈ C} be
its dual code where (x, c) is the Euclidean inner product. The code C is self-dual if C = C⊥.
Self-dual codes are intensively studied, and one of the main tasks is their classification.
Two binary codes are equivalent if one can be obtained from the other by a permutation of
coordinates. The permutation σ is an automorphism of the code C, if C = σ(C) and the set
of all automorphisms of C forms a group called the automorphism group of C and denoted by
Aut(C). The number of codes equivalent to C is n!/|Aut(C)|. To classify self-dual codes of
length n, it is necessary to find inequivalent self-dual codes C1, . . . , Cr so that the following
mass formula holds:

r∑
i=1

n!

|Aut(Ci)|
=

n/2−1∏
i=1

(2i + 1). (1)

There is one more mass formula for self-dual codes which uses also weights of vectors.
The weight of a given codeword (denoted by wt(x)) is the number of its nonzero components.
The minimum weight d of a code is the smallest weight among all nonzero codewords.

Theorem 1 [4] The family U is a complete set of representatives for equivalence classes of
self-dual codes of length n and minimum weight at most d if and only if

∑
C∈U

n!

|Aut(C)|
|{x ∈ C|wt(x) = d}| =

(
n

d

) n/2−2∏
i=1

(2i + 1). (2)

A big progress has been realized recently in the classification of binary self-dual codes
with different parameters. An efficient algorithm was described and then applied to length
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38 in [1]. The self-dual [40, 20, 8] codes were also classified [2]. Now our efforts are focused
on the classification of all self-dual codes of length 40, so we need to find all codes with
d = 4 and d = 6. We develop (completely) separate algorithms for d = 4 and d = 6 of the
same type. One possible approach is to find codes [40, 20, d ≤ 4], then codes with d = 6,
verify the calculations with mass formula and check for self-dual codes with d = 8. The
mass formulas can be used for a verification of the obtained classification results. Algorithms
for the calculation of |Aut(C)| and the number of codewords with given weights are already
developed [3], but the numbers that occur in the formulas overflow the machine word data
types. Therefore, an additional arithmetic with large numbers is required.

The realization by C language is the most appropriate way, because we have an addi-
tional goal to use a supercomputer. Many software packages use class implementation, but
in the most cases this leads to slower program execution. Therefore, simple realization by
functions is preferred. We use a symbol array to store a large number. Since the sign of
the result of an arithmetic operation depends of the arguments, the sign can be estimated
in advance and can be stored in another variable. For convenience, one large number can
be represented by structure large that contains an array with the digits of the number, a
variable for the length and a variable for the sign.

We realized the basic arithmetic operations: addition, subtraction, multiplication and
division with remainder and also a function for conversion from string to large number (and
back). Addition and subtraction are based on standart arithmetic. Multiplication and divi-
sion are implemented by Knuth’s methods [5]. The classical methods are more efficient when
the precision is less than a few thousand digits. Basing on these operations, we can easily im-
plement the operations like squaring, modular multiplication, left and right shift with given
number of positions, etc. This realization is sufficiently effective and easy for embedding in
other programs. Moreover, it gets good results compared to other similar systems.
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