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Abstract. Generalized Paley graphs GP (q, S), where q is an odd prime
power are a generalization of the well known Paley graphs P (q). Codes
derived from the row span of adjacency and incidence matrices from Pa-
ley graphs have been studied in [1] and [2]. We examine binary codes as-
sociated with the incidence design of the generalized Paley graph G(q, S).
The binary codes have the parameters [ qs

2
, q − 1, s], when s is even and

[qs, q − 1, 2s], when n is odd. By finding explicit PD-sets we show that
these codes can be used for permutation decoding.
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1 Extended Abstract

1.1 Generalized Paley graphs

The Paley graph of order q with q a prime power is a graph on q vertices with two
vertices adjacent if their difference is a square in the finite field Fq. This graph is
undirected when q ≡ 1 mod 4. The Paley graphs P (q) were first defined by Paley
in [3]. Let ω be a primitive element in Fq and let S = {ω2, ω4, . . . , ωq−1 = 1}
be the set of non zero squares in Fq. If q ≡ 1 mod 4 then S = −S.

The generalized Paley graphs were defined by Praeger and Lim in [4].

Definition 1. Let Fq be a finite field of order q. Let k be a divisor of q− 1 such
that k ≥ 2 and if q is odd, then q−1

k is even. For any multiplicative subgroup S

of F×q of order q−1
k , the generalized Paley graph of Fq denoted GP (q, S), is the

graph with vertex set Fq and edges all pairs [x, y] such that x− y ∈ S.

Note 2. From the above definition we have:

1. If q ≡ 1 mod 4 and k = 2, then GP (q, S) is the Paley graph P (q).
2. When |S| = q−1

k is even we have S = −S. Hence GP (q, S) is undirected and
connected.

3. When |S| is odd we define [x, y] an edge if and only if x− y ∈ S ∪ −S.
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1.2 Codes

An incidence matrix of a graph Γ = (V,E) is a |V | × |E| matrix B = [bij ] such
that bij = 1 if the vertex labelled by i is on the edge labelled by j and bij = 0
otherwise. If Γ is regular with valency k, then the 1 − (|E|, k, 2) design with
incidence matrix B is called the incidence design of the graph Γ .

For any incidence matrix B of a graph Γ , the code of Γ over a finite field Fq,
denoted by Cp(B), is the row span of B over Fp. When the graph is regular we
can consider Cp(B) as the code of the design with blocks, the rows of B.

Proposition 3. Let Γ = GP (q, S) be the generalized Paley graph, where q is a
prime power. Let Gq be the incidence design of GP (q, S). Then

C2(Gq) =

{
[ qs2 , q − 1, s], if s is even

[qs, q − 1, 2s], if s is odd

where s = |S|, and

C2(Gq)⊥ =

{
[ qs2 ,

q(s−2)
2 + 1, d], if s is even

[qs, q(s− 1) + 1, 2s, d], if s is odd

where d = 3, if GP (q, S) admits a 3-cycle, or d = 4, if GP (q, S) admits a
4-cycle.

Lemma 4. C2(Gq) has a basis of minimum weight vectors.

Lemma 5. If (x1, x2, . . . , xq) is a closed path of length q for xi 6= xj for the
generalized Paley graph GP (q, S), then I = {[x1, x2], [x2, x3], . . . , [xq−2, xq−1]}
is an information set for C2(Gq).

1.3 Automorphisms and PD-sets

Let ω be a primitive element of Fq. Then S =< ωk >. Let σ ∈ Aut(Fq) be the
Frobenius automorphism of Fq, a ∈ S and b ∈ Fq. We define the map tb on Fq

by tb : x 7→ x+ b, for x ∈ Fq. Then define

T = {tb | b ∈ Fq} (1)

T is called the translation group AΓL(1, q). Next we define the map fa on Fq

by fa : x 7→ aσ(x), for x ∈ Fq. Then

W = {fa | a ∈ S} (2)

When q is prime, we have σ = 1, then W = {fa : x 7→ ax | a ∈ S}. Now W fix 0
and fix S setwise, and hence T oW is a subgroup of the automorphsim group
of GP (q, S). When k = 2 and q ≡ 1(mod 4), T oW is the automorphism group
of the Paley graph P (q).

Next we show that when q is prime we can find full error correcting PD-sets
for the codes C2(Gq).
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Proposition 6. Let q ≥ 5 be a prime, GP (q, S) be the generalized Paley graph
on Fq and let Gq its incidence design. Let

I = {[0, 1], [1, 2], . . . , [q − 2, q − 1]}

be the information set for C2(Gq). Then the set of automorphisms W = {fa :
x 7→ ax | a ∈ S} is a full-error correcting PD-set for C2(Gq) of size q−1

k .
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