Permutation decoding for codes from generalized Paley graphs

Padmapani Seneviratne ${ }^{1}$ and Jirapha Limbupasiriporn ${ }^{2}$
1 Department of Mathematics \& Statistics American University of Sharjah, UAE.
${ }^{2}$ Department of Mathematics
Silpakorn University, Thailand.

Abstract

Generalized Paley graphs $G P(q, S)$, where q is an odd prime power are a generalization of the well known Paley graphs $P(q)$. Codes derived from the row span of adjacency and incidence matrices from Pa ley graphs have been studied in [1] and [2]. We examine binary codes associated with the incidence design of the generalized Paley graph $G(q, S)$. The binary codes have the parameters $\left[\frac{q s}{2}, q-1, s\right]$, when s is even and [$q s, q-1,2 s$], when n is odd. By finding explicit PD-sets we show that these codes can be used for permutation decoding.

Keywords: Codes, Paley graphs, Permutation decoding.

1 Extended Abstract

1.1 Generalized Paley graphs

The Paley graph of order q with q a prime power is a graph on q vertices with two vertices adjacent if their difference is a square in the finite field \mathbb{F}_{q}. This graph is undirected when $q \equiv 1 \bmod 4$. The Paley graphs $P(q)$ were first defined by Paley in [3]. Let ω be a primitive element in \mathbb{F}_{q} and let $S=\left\{\omega^{2}, \omega^{4}, \ldots, \omega^{q-1}=1\right\}$ be the set of non zero squares in \mathbb{F}_{q}. If $q \equiv 1 \bmod 4$ then $S=-S$.

The generalized Paley graphs were defined by Praeger and Lim in [4].
Definition 1. Let \mathbb{F}_{q} be a finite field of order q. Let k be a divisor of $q-1$ such that $k \geq 2$ and if q is odd, then $\frac{q-1}{k}$ is even. For any multiplicative subgroup S of \mathbb{F}_{q}^{\times}of order $\frac{q-1}{k}$, the generalized Paley graph of \mathbb{F}_{q} denoted $G P(q, S)$, is the graph with vertex set \mathbb{F}_{q} and edges all pairs $[x, y]$ such that $x-y \in S$.

Note 2. From the above definition we have:

1. If $q \equiv 1 \bmod 4$ and $k=2$, then $G P(q, S)$ is the Paley graph $P(q)$.
2. When $|S|=\frac{q-1}{k}$ is even we have $S=-S$. Hence $G P(q, S)$ is undirected and connected.
3. When $|S|$ is odd we define $[x, y]$ an edge if and only if $x-y \in S \cup-S$.

1.2 Codes

An incidence matrix of a graph $\Gamma=(V, E)$ is a $|V| \times|E|$ matrix $B=\left[b_{i j}\right]$ such that $b_{i j}=1$ if the vertex labelled by i is on the edge labelled by j and $b_{i j}=0$ otherwise. If Γ is regular with valency k, then the $1-(|E|, k, 2)$ design with incidence matrix B is called the incidence design of the graph Γ.

For any incidence matrix B of a graph Γ, the code of Γ over a finite field \mathbb{F}_{q}, denoted by $C_{p}(B)$, is the row span of B over \mathbb{F}_{p}. When the graph is regular we can consider $C_{p}(B)$ as the code of the design with blocks, the rows of B.

Proposition 3. Let $\Gamma=G P(q, S)$ be the generalized Paley graph, where q is a prime power. Let \mathcal{G}_{q} be the incidence design of $\operatorname{GP}(q, S)$. Then

$$
C_{2}\left(\mathcal{G}_{q}\right)= \begin{cases}{\left[\frac{q s}{2}, q-1, s\right],} & \text { if } s \text { is even } \\ {[q s, q-1,2 s],} & \text { if } s \text { is odd }\end{cases}
$$

where $s=|S|$, and

$$
C_{2}\left(\mathcal{G}_{q}\right)^{\perp}= \begin{cases}{\left[\frac{q s}{2}, \frac{q(s-2)}{2}+1, d\right],} & \text { if } s \text { is even } \\ {[q s, q(s-1)+1,2 s, d],} & \text { if } s \text { is odd }\end{cases}
$$

where $d=3$, if $G P(q, S)$ admits a 3 -cycle, or $d=4$, if $G P(q, S)$ admits a 4-cycle.

Lemma 4. $C_{2}\left(\mathcal{G}_{q}\right)$ has a basis of minimum weight vectors.
Lemma 5. If $\left(x_{1}, x_{2}, \ldots, x_{q}\right)$ is a closed path of length q for $x_{i} \neq x_{j}$ for the generalized Paley graph $G P(q, S)$, then $\mathcal{I}=\left\{\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots,\left[x_{q-2}, x_{q-1}\right]\right\}$ is an information set for $C_{2}\left(\mathcal{G}_{q}\right)$.

1.3 Automorphisms and PD-sets

Let ω be a primitive element of \mathbb{F}_{q}. Then $S=<\omega^{k}>$. Let $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ be the Frobenius automorphism of $\mathbb{F}_{q}, a \in S$ and $b \in \mathbb{F}_{q}$. We define the map t_{b} on \mathbb{F}_{q} by $t_{b}: x \mapsto x+b$, for $x \in \mathbb{F}_{q}$. Then define

$$
\begin{equation*}
T=\left\{t_{b} \mid b \in \mathbb{F}_{q}\right\} \tag{1}
\end{equation*}
$$

T is called the translation group $A \Gamma L(1, q)$. Next we define the map f_{a} on \mathbb{F}_{q} by $f_{a}: x \mapsto a \sigma(x)$, for $x \in \mathbb{F}_{q}$. Then

$$
\begin{equation*}
W=\left\{f_{a} \mid a \in S\right\} \tag{2}
\end{equation*}
$$

When q is prime, we have $\sigma=1$, then $W=\left\{f_{a}: x \mapsto a x \mid a \in S\right\}$. Now W fix 0 and fix S setwise, and hence $T \rtimes W$ is a subgroup of the automorphsim group of $G P(q, S)$. When $k=2$ and $q \equiv 1(\bmod 4), T \rtimes W$ is the automorphism group of the Paley graph $P(q)$.

Next we show that when q is prime we can find full error correcting PD-sets for the codes $C_{2}\left(\mathcal{G}_{q}\right)$.

Proposition 6. Let $q \geq 5$ be a prime, $G P(q, S)$ be the generalized Paley graph on \mathbb{F}_{q} and let \mathcal{G}_{q} its incidence design. Let

$$
\mathcal{I}=\{[0,1],[1,2], \ldots,[q-2, q-1]\}
$$

be the information set for $C_{2}\left(\mathcal{G}_{q}\right)$. Then the set of automorphisms $W=\left\{f_{a}\right.$: $x \mapsto a x \mid a \in S\}$ is a full-error correcting PD-set for $C_{2}\left(\mathcal{G}_{q}\right)$ of size $\frac{q-1}{k}$.

References

1. D. Ghinellie and J. D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in mathematics of communications, 5(2011), no.1, 93-108.
2. J. D. Key and J. Limbupasiriporn Partial permutation decoding for codes from Paley graphs. Congr. Numer. 170 (2004), 143-155.
3. R. E. A. C. Paley On orthogonal matrices. J. Math. Phys. Mass. Inst. Tech, 12 (1933), 311-320.
4. Cheryl E. Praeger and Tian K. Lim. On Generalised Paley Graphs and their automorphism groups. Michigan Math. Journal, 58, 294-308.
