Permutation decoding for codes from generalized Paley graphs

Padmapani Seneviratne¹ and Jirapha Limbupasiriporn²

¹ Department of Mathematics & Statistics American University of Sharjah, UAE. ² Department of Mathematics Silpakorn University, Thailand.

Abstract. Generalized Paley graphs GP(q, S), where q is an odd prime power are a generalization of the well known Paley graphs P(q). Codes derived from the row span of adjacency and incidence matrices from Paley graphs have been studied in [1] and [2]. We examine binary codes associated with the incidence design of the generalized Paley graph G(q, S). The binary codes have the parameters $\left[\frac{qs}{2}, q-1, s\right]$, when s is even and [qs, q-1, 2s], when n is odd. By finding explicit PD-sets we show that these codes can be used for permutation decoding.

Keywords: Codes, Paley graphs, Permutation decoding.

1 **Extended Abstract**

Generalized Paley graphs 1.1

The Paley graph of order q with q a prime power is a graph on q vertices with two vertices adjacent if their difference is a square in the finite field \mathbb{F}_q . This graph is undirected when $q \equiv 1 \mod 4$. The Paley graphs P(q) were first defined by Paley in [3]. Let ω be a primitive element in \mathbb{F}_q and let $S = \{\omega^2, \omega^4, \dots, \omega^{q-1} = 1\}$ be the set of non zero squares in \mathbb{F}_q . If $q \equiv 1 \mod 4$ then S = -S.

The generalized Paley graphs were defined by Praeger and Lim in [4].

Definition 1. Let \mathbb{F}_q be a finite field of order q. Let k be a divisor of q-1 such that $k \geq 2$ and if q is odd, then $\frac{q-1}{k}$ is even. For any multiplicative subgroup Sof \mathbb{F}_q^{\times} of order $\frac{q-1}{k}$, the generalized Paley graph of \mathbb{F}_q denoted GP(q,S), is the graph with vertex set \mathbb{F}_q and edges all pairs [x, y] such that $x - y \in S$.

Note 2. From the above definition we have:

- 1. If $q \equiv 1 \mod 4$ and k = 2, then GP(q, S) is the Paley graph P(q). 2. When $|S| = \frac{q-1}{k}$ is even we have S = -S. Hence GP(q, S) is undirected and connected.
- 3. When |S| is odd we define [x, y] an edge if and only if $x y \in S \cup -S$.

2 Padmapani Seneviratne and Jirapha Limbupasiriporn

1.2 Codes

An incidence matrix of a graph $\Gamma = (V, E)$ is a $|V| \times |E|$ matrix $B = [b_{ij}]$ such that $b_{ij} = 1$ if the vertex labelled by i is on the edge labelled by j and $b_{ij} = 0$ otherwise. If Γ is regular with valency k, then the 1 - (|E|, k, 2) design with incidence matrix B is called the incidence design of the graph Γ .

For any incidence matrix B of a graph Γ , the code of Γ over a finite field \mathbb{F}_q , denoted by $C_p(B)$, is the row span of B over \mathbb{F}_p . When the graph is regular we can consider $C_p(B)$ as the code of the design with blocks, the rows of B.

Proposition 3. Let $\Gamma = GP(q, S)$ be the generalized Paley graph, where q is a prime power. Let \mathcal{G}_q be the incidence design of GP(q, S). Then

$$C_2(\mathcal{G}_q) = \begin{cases} [\frac{qs}{2}, q-1, s], & \text{if } s \text{ is even} \\ [qs, q-1, 2s], & \text{if } s \text{ is odd} \end{cases}$$

where s = |S|, and

$$C_2(\mathcal{G}_q)^{\perp} = \begin{cases} [\frac{qs}{2}, \frac{q(s-2)}{2} + 1, d], & \text{if s is even} \\ [qs, q(s-1) + 1, 2s, d], & \text{if s is odd} \end{cases}$$

where d = 3, if GP(q, S) admits a 3-cycle, or d = 4, if GP(q, S) admits a 4-cycle.

Lemma 4. $C_2(\mathcal{G}_q)$ has a basis of minimum weight vectors.

Lemma 5. If (x_1, x_2, \ldots, x_q) is a closed path of length q for $x_i \neq x_j$ for the generalized Paley graph GP(q, S), then $\mathcal{I} = \{[x_1, x_2], [x_2, x_3], \ldots, [x_{q-2}, x_{q-1}]\}$ is an information set for $C_2(\mathcal{G}_q)$.

1.3 Automorphisms and PD-sets

Let ω be a primitive element of \mathbb{F}_q . Then $S = \langle \omega^k \rangle$. Let $\sigma \in Aut(\mathbb{F}_q)$ be the Frobenius automorphism of \mathbb{F}_q , $a \in S$ and $b \in \mathbb{F}_q$. We define the map t_b on \mathbb{F}_q by $t_b : x \mapsto x + b$, for $x \in \mathbb{F}_q$. Then define

$$T = \{t_b \mid b \in \mathbb{F}_q\} \tag{1}$$

T is called the translation group $A\Gamma L(1,q)$. Next we define the map f_a on \mathbb{F}_q by $f_a: x \mapsto a\sigma(x)$, for $x \in \mathbb{F}_q$. Then

$$W = \{ f_a \mid a \in S \}$$

$$\tag{2}$$

When q is prime, we have $\sigma = 1$, then $W = \{f_a : x \mapsto ax \mid a \in S\}$. Now W fix 0 and fix S setwise, and hence $T \rtimes W$ is a subgroup of the automorphism group of GP(q, S). When k = 2 and $q \equiv 1 \pmod{4}$, $T \rtimes W$ is the automorphism group of the Paley graph P(q).

Next we show that when q is prime we can find full error correcting PD-sets for the codes $C_2(\mathcal{G}_q)$.

Proposition 6. Let $q \ge 5$ be a prime, GP(q, S) be the generalized Paley graph on \mathbb{F}_q and let \mathcal{G}_q its incidence design. Let

$$\mathcal{I} = \{[0,1], [1,2], \dots, [q-2,q-1]\}$$

be the information set for $C_2(\mathcal{G}_q)$. Then the set of automorphisms $W = \{f_a : x \mapsto ax \mid a \in S\}$ is a full-error correcting PD-set for $C_2(\mathcal{G}_q)$ of size $\frac{q-1}{k}$.

References

- D. Ghinellie and J. D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in mathematics of communications, 5(2011), no.1, 93-108.
- J. D. Key and J. Limbupasiriporn Partial permutation decoding for codes from Paley graphs. Congr. Numer. 170 (2004), 143–155.
- R. E. A. C. Paley On orthogonal matrices. J. Math. Phys. Mass. Inst. Tech, 12 (1933), 311-320.
- 4. Cheryl E. Praeger and Tian K. Lim. On Generalised Paley Graphs and their automorphism groups. *Michigan Math. Journal*, 58, 294-308.