ON MATROID CHAINS !
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1. INTRODUCTION

What might be coined combinatorial coding theory aims to describe properties of linear
codes over fields in combinatorial terms and, conversely, to extract and refine results from
coding theory to set-combinatorial settings. The roots of this theory reach back to the
seminal 1935 paper by Whitney [12] who explictly defined matroids. However, the theory
did not blossom until Crapo and Rota [5] presented their Critical Theorem which describes
how vector supports of a linear code over a field are determined by the associated vector
matroid. The theory gained further attention when Greene [7] in 1976 showed how the
weight enumerator of a linear code is determined by the Tutte polynomial of the associated
vector matroid. Since then, these results have been generalised in many ways, and the
main objectives of the theory have largely been met, namely to characterise the properties
of linear codes that are determinable by the associated vector matroid - and those that
are not; see [4, 1, 2, 6, 8|, for instance. It is therefore time to consider new directions
for research in combinatorial coding theory. Two new and promising directions are to
investigate the combinatorial properties of linear codes over more general rings than fields
(see [11] for instance), and to consider more general combinatorial objects than matroids,
such as demi-matroids [3].

2. MATROID CHAINS

The present research follows a third and potentially interesting direction, namely to consider
chains of linear vectors, over a common field F and with a common ground set F,

C;C---CCy CFF

and the associated sequence of vector matroids Mc,, ..., Mc,. (For more information on
matroids, see [9].) In the present paper, we will simply consider such two-matroid chains;
many of our results however extend naturally to the general case:

Definition 1. A pair of matroids (M, Ms) is a (matroid) chain over F if they share a
common ground set E and M; = M(C;) for some chain of linear codes C1 C Cy over F.

The purpose of this paper is to determine basic properties of the matroid chain and to
partially characterise when a sequence of matroids (M, M2) may arise from a given type
of linear code chain.
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3. GENERAL PROPERTIES OF MATROID CHAINS
We begin by presenting general properties of matroid chains.

Proposition 2. The relation < defined by My, < My exactly when (My, Ms) is a chain
over F is a partial order on the family of uniquely F-representable matroids.

Proposition 3. If (M1, M) is a chain over F, then
(1) (M3, M7) is a chain over F;
(2) if r(My) = r(Ms), then My = Mo;
(3) if (M2, My) is also a chain, then M; = Ms;
(4) (M1\A, M>\A) is a chain over F for each A C E;
(5) (M1/A, M3/A) is a chain over F for each A C E;
(6) each cocircuit of My is a union of cocircuits of Ma; and
each circuit of Ms is a union of circuits of Mj.

Lemma 4. If (M, M) and (M7, M}) are chains over F on disjoint sets E and E’, respec-
tively, then (My & Mj, My & M)) is a chain over F on EU E'.

If (M1, My) are a pair of matroids on a common set F, then each pair of minors of the form
(MI\X/Y,Mx\X/Y) for X, Y C E are a minor pair of (M, Ms). By Lemma 3, each minor
pair of a chain over F is also a chain over F. A quotient is a map of the form N'— A — N\ A
for some matroid N on some set B’ and some subset A C E’.

Lemma 5. If My — M is a quotient, then M} — M is a quotient for each minor pair
(M{7Mé) Of (M11M2)'

Quotients provide a necessary condition for matroid pairs to form chains:
Proposition 6. If (M1, Ms) is a chain over some field, then My — My is a quotient.

The following result provides a general (but weak) necessary and sufficient condition for a
matroid pair to be a chain over a given field.

Proposition 7. The pair (M1, Ms) is a chain over F if and only if there is a set E' disjoint
from E and an F-representable matroid N on EUE' such that My = N\E' and My = N/E'.

4. SOME CLASSES OF MATROID CHAINS

In this section, we will consider the matroids over a ground set E belonging to some common
class of matroids, namely the uniform, the binary, the graphic, and the transversal matroids,
respectively. We show that any two uniform matroids over the same set will always form
a chain over certain fields F. Furthermore, various necessary and sufficient conditions are
given for two binary matroids to form a chain over Zs, thus providing chain analogues of
classical descriptions of uniform and binary matroids. For graphic and transversal matroids,
we present natural sufficient conditions.

Uniform matroid chains.
This results in this subsection characterises the pairs of uniform matroids (U r,, Uy ) that
are chains over given fields F.

Theorem 8. Let n > k > k' > 0 be given. If a field F contains at least k + n elements,
then (Ui y, Uk p) is a chain over F.

Proposition 9. The non-trivial uniform two-matroid chains over Zs are all the pairs
(Uin, Un—1r), where n > 2 is even.
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Proposition 10. For all n > 2, the pair (U1 pn,Un—1,) s a chain over all fields F # Zs.
The dual pairs (Uypn, Uspn) and (Up—2.pn, Un—1,n) form chains over any field F with |F| > n.
The non-trivial uniform chains over Zgz all assume one of the forms above. Apart from
these and from trivial chains, the uniform chains over Fy are of the following forms:

(U15,Us5), (Uas,Uss), (Uie,Usg), (Use,Usg), (Ure,Usg) -

Binary matroid chains.
The following result characterises the binary matroid pairs (M7, M2) that are chains over Zs.

Theorem 11. If My and My are binary matroids on a common set E, then (M, Ms) is a
chain over Zso if and only if each cocircuit of My is a disjoint union of cocircuits of Ms.

Indeed, if (My, Ms) is a chain over Zg, then cocircuit of M; is the symmetric difference
of cocircuits of Mpy; this extends Whitney’s characterisation of binary matroids [12]. The
next result is the two-matroid chain analogue of the forbidden Us 4-minor characterisation
of binary matroids due to Tutte [10].

Theorem 12. If My and My are binary matroids on a common set E, then (M, Ms) is a
chain over Zsy if and only if My — My is a quotient and (Uy 3,Us3) is not a minor pair of
(M, My).

Graphic matroid chains.

The following proposition provides a sufficient condition for a pair of graphic matroids to
form a chain over any field.

Proposition 13. Let G2 be a graph with edge set F, and suppose that G1 may be obtained
from Gy by identifying vertices. Then (M(G1), M(G2)) is a chain over all fields.
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FIGURE 1. Graphic chains
Example 14. Consider the graphs G1 and Go in Figure 1. The graph Gy is 2-isomorphic

to the graph obtained from Gg by identifying the vertices v and v'. By Proposition 13, the
matroids M(G1) and M(G3) then form a chain over any field. Indeed,

10000010

10000010 01000010

01000010 00100100

M(G1)= 00100100 and M(Gg): 00010100
00010100 00001100

00001100 00000001

00000001 00000110

Problem 15. Is the converse of Proposition 13 true? That is, is G1 2-isomorphic to a
graph that is obtained from Go by identifying vertices, whenever (M(G1), M (G2)) is a chain
over all fields? Is this indeed true whenever (M(G1), M(G2)) is a binary chain?

Example 16. Consider the graphs G1 and Go in Figure 2. The matroids M (G1) and M (G2)
are represented over Zy by matrices row equivalent to the matrices [111] and [§91], re-
spectively, and do therefore not form a chain over Zo. However, (M (G1), M(G2)) is a chain
over all other fields.
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FIGURE 2. A graphic chain over all fields except Zy

Problem 17. Are all binary graphic chains also chains over all other fields? In general,
is it true that binary chains of matroids representable over all fields are chains over all
fields? Are binary chains of matroids representable over some other field also chains over
that other field? Certainly, the converse is not true, as Example 18 demonstrates.

Example 18. Suppose that a chain (M1, Ma) is represented over Zs as follows:

My=M][1101] MQ:M[(Hng}
001 1

Over Zo, the matroids are represented as follows.
My=M][1101] M2:M|:(1)%8(1]j|
0011
The pair (My, M) does therefore not form a pair over Zs.
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