
Representing Equivalence Problems for Combinatorial

Objects

Iliya Bouyukliev, Mariya Dzhumalieva-Stoeva, Wolfgang Willems

Isomorphism computations take place in every classification algorithm and also in algo-
rithms for generating objects of a certain type. In general the combinatorial classification
is concerned with a given finite set of combinatorial objects A and an equivalence relation
(A,∼=) in it. The classification problem is to find exactly one element a ∈ A in any equiva-
lence class Ai ⊆ A, defined by the relation ∼=. In terms of algebra the equivalence relation is
defined as an action of a finite group G on the set of objects and the equivalence classes of
the set are defined as orbits of the group on it. In particular two given objects are equivalent
if they belong to one and the same equivalence class or one and the same orbit of G on A.

There are two general types of isomorphism problem algorithms. Let X,Y are objects
in the finite set A. The first approach to check whether X ∼= Y is to use a specific for
the certain objects algorithm, where X and Y are compared via invariants. If the values
of a given invariant for both objects differ, these objects are not equivalent. Otherwise,
additional computations are required to determine whether X and Y belongs to the same
equivalence class. The performance of the algorithms depends at most on the order of the
group G acting on the set A. In many cases G is too large and the process of equivalence
search becomes very hard task. Such algorithms are developed for linear codes [4, 9, 12],
combinatorial designs [10], Hadamard matrices. The second type of algorithms consists of
obtaining canonical forms for both X and Y using canonical representative map. In this
terms to test whether X ∼= Y is to test their canonical forms for equality. This approach
is implemented also for linear codes [2], designs and graphs [7, 11]. In the most cases such
algorithms are more effective than the specific algorithms of the first type.

In our work, we make an investigation on another type of algorithms, operating on a
structure in which most types of objects can be represented. In other words, we represent
the isomorphism problem of given combinatorial objects as the isomorphism problem of
two basic objects - graphs and {0, 1}-matrices (binary matrices). Historically, most of the
combinatorial objects are presented in terms of graph theory. Examples for representing of
combinatorial objects as graphs are given by Kaski and Österg̊ard [5] (Ch. 3) and it is proven
that for many combinatorial objects, the isomorphism problem is at least as difficult as the
graph isomorphism problem. Algorithms for graph isomorphism problem already exist [3].
The best known algorithm is the McKay’s nauty [11]. On the other hand, some of the
objects have more natural computer representation as binary matrices (designs, projective
planes, etc). An algorithm for binary matrices isomorphism is included in the package Q-

Extension [1], developed by one of the authors.
It is not difficult to switch from graph isomorphism problem to binary matrix isomor-

phism problem as these two objects have natural representation into one another. Each
combinatorial object, represented as graph, could be represented as a binary matrix too.
We make representation of directed graphs, incidence structures, linear and nonlinear codes,

1



Hadamard matrices and integer matrices directly as binary matrices and colored binary
matrices, which is completely different and more efficient at least for the machine memory
usage. To store an n × m binary matrix A in the computer memory, nm memory units are
necessary. As each entry of A is either 0 or 1, these memory units could be bits. Moreover,
the bitwise implemented algorithms have practically faster performance.

References

[1] I. Bouyukliev, What is Q-Extension?, Serdica J. Computing 1 (2007), 115–130.
http://www.moi.math.bas.bg/˜ iliya/Q ext.htm

[2] I. Bouyukliev, About the code equivalence, in Advances in Coding Theory and Cryptol-

ogy, T. Shaska, W.C. Huffman, D. Joyner, V. Ustimenko, Series on Coding Theory and
Cryptology, World Scientific Publishing, Hackensack, NJ, 2007.

[3] P. Foggia, C.Sansone, M. Vento, A Performance Comparison of Five Algorithms for
Graph Isomorphism, Proceedings of the 3rd IAPR TC-15 Workshop on Graph-based
Representations in Pattern Recognition, Ischia, May 23-25, 2001.

[4] T. Fuelner, The automorphism grops of linear codes and canonical representatives of
their semilinear isometry classes, AMC, vol.3, No.4, 2009, 363-383.

[5] P. Kaski, P. R.J. Österg̊ard, Classification algorithms for codes and designs, Springer-
Verlag, Berlin Heidelberg, 2006.

[6] P. Kaski, Algorithms for classification of combinatorial objects, Doctoral dissertation,
Research report A94, Helsnki University of TEchnology, Laboratory for Tehoretical
Computer Science, Espoo, Finland, June 2005.

[7] W. Kocay, On writing isomorphism programs, Computational and Constructive Design
Theory (ed. W. D. Wallis), Kluwer, 1996, 135-175.

[8] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms: Generation, Enumeration
and Search, CRC Press, 1999.

[9] J. Leon, Computing automorphism groups of error-correcting codes, IEEE Trans. In-

form. Theory, vol. 28, 1982, 496-511.

[10] Z. Mateva, Constructing a canonical form of a matrix in several problems about com-
binatorial designs, Serdica Journal of Computing, vol.2, Num 4, 2008, 349-368.

[11] B. McKay, Practical graph isomorphism, Congressus Numerantium, vol. 30, 1981, 45-87.

[12] N. Sendrier, The Support Splitting Algorithm, IEEE Trans, Info. Theory, vol. 46, 2000,
1193-1203.

2


