
Speeding up Discrete Logarithm and Elliptic
Curve Based Cryptography over GF (2m) on

General Purpose Processors using Lookup Table
Based Finite Field Arithmetic Techniques

Athar Mahboob

DHA Suffa University, Karachi, Pakistan
Email: atharmahboob@yahoo.com

Keywords: binary finite field arithmetic, abstract algebra computations, el-
liptic curve cryptography

A number of public key cryptographic technques depending on the intractabil-
ity of the discrete logarithm problem in certain finite algebraic groups, such as
the Diffie-Hellman Key Agreeement Protocol, El-Gamal Encryption and Signa-
ture schemes and their Elliptic Curves based analogs, utilize the binary finite
field GF (2m) as the under-lying mathemtical structure in which to perform the
group operations. In general, to ensure adequate security level the paramater
sizes used in these schemes are large, ranging from a few hundred to a few thou-
sand bits, when represented on computers. General purpose processors coupled
with high-level programming languages are the pre-dominant computing plat-
form used today from high-performance servers to personal digital assistants.
As such these platforms are targets for software implementation of these cryp-
tographic algorithms. Abstraction, modularisation, portability and modifiability
offered by software development in standard programming languages are some of
the most important benefits of a cryptographic software implementation. How-
ever, the restriction of processing in word-sized chunks at the lowest level of
machine hardware combined with the unavailability of a machine level GF (2m)
multiply instruction on general purpose processors are the most important lim-
itations. Efficient finite field arithmetic is essential for fast implementation of
these cryptographic algorithms in software environments. Software implemen-
tations thus present unique opportunities and challenges to the implementor.
Whereas GF (p) software implementations on general purpose processors are
able to benefit from the machine level integer multiply instruction that takes
one or, at most, just a few clock cycles to compute a word-sized multiplication,
which may be then used as a building block for the GF (p) multiplication for any
parameter size. For GF (2m) multiplication, unfortunately, one has to fall back
on the awkward bit by bit processing, resulting in much slower performance of
the critical GF (2m) arithmetic operations in software implementations. Same is
true for the squaring and inversion arithmetic operations in GF (2m).



In this paper we present methods for performing binary finite field arithmetic
in Polynomial Basis using lookup tables (LUT) which are highly applicable to
software environments. The Lookup Table based GF (2m) arithmetic techniques
we have developed are applicable to multiplication, squaring and inversion, the
three fundamental arithmetic operations. Finite field multiplication, squaring
and inversion are the most important arithmetic operations in the binary fi-
nite field GF (2m). They form the fundamental operations is required for many
cryptographic techniques based on the discrete logarithm problem (DLP) in the
multiplicative group of a finite field or additive group of points on an elliptic
curve defined over a finite field. The lookup table based arithmetic techniques
we present utilize the polynomial basis finite field representation which is concep-
tually simpler when compared with other representations. Furthermore, unlike
some older LUT techniques, the LUTs in our techniques are calculated only once,
and for all. The LUTs are of a constant size, independent of the field extension
m. Our LUT based techniques are valid for any m, whereas many older LUT
techniques worked only for composite m. We show by performing complexity
analysis that the our techniques result in the lowest number of word-level op-
erations in software environments on contemporary computing platforms. For
performing fast inversion we use the Fermat’s Little Theorem (FLT) and our
fast LUT based GF (2m) multipliers and squarers. According to Fermats Little
Theorem in a finite field with q elements aq = a. This can be rewritten by divid-
ing both sides by a2 as aq−2 = a−1. For the binary finite field GF (2m), q = 2m,
therefore we can write a−1 = a2

m−2. Due to the addition chain first proposed
by the Itoh-Tsujii this particular exponentiation can be carried out in at most
2 · log2(m−1) multiplications and m−1 squarings. As we show this yields a very
competitve GF (2m) inversion scheme when compared with Extended Euclidean
Algorithm based inversion schemes.

Our GF (2m) arithmetic methods result in significant performance gains for
discrete logarithm based cryptosystems in software environments, particularly
elliptic curve cryptosystems. Our method results in performance gains over meth-
ods reported earlier in the literature on platforms where fast memory lookups
can be done. We present also demonstrate significant performance gains for ECC
using our proposed arithmetic methods.


	Speeding up Discrete Logarithm and Elliptic Curve Based Cryptography over GF(2m) on General Purpose Processors using Lookup Table Based Finite Field Arithmetic Techniques

