A new q-polynomial approach to cyclic and quasi-cyclic codes

Funda Özdemir

İstinye University

funda.ozdemir@istinye.edu.tr

Abstract. A *q*-polynomial approach to cyclic codes was introduced by Ding and Ling [D-L]. In this work, we present an alternative *q*-polynomial approach to cyclic and quasi-cyclic codes.

Let \mathbb{F}_q be the finite field with q elements, and \mathbb{F}_{q^n} be the extension field of degree n > 1 over \mathbb{F}_q . Let $\mathcal{B} = \{\alpha, \alpha^q, \ldots, \alpha^{q^{n-1}}\}$ be a normal basis of \mathbb{F}_{q^n} over \mathbb{F}_q for a normal element $\alpha \in \mathbb{F}_{q^n}^*$. The following map is an \mathbb{F}_q -linear isomorphism.

 $\phi_{\mathcal{B}}: \mathbb{F}_{q^n} \longrightarrow \mathbb{F}_q^n$ $v_0 \alpha + v_1 \alpha^q + \dots + v_{n-1} \alpha^{q^{n-1}} \mapsto (v_0, v_1, \dots, v_{n-1}).$

We call $V \subseteq \mathbb{F}_{q^n}$ q-invariant if $V = V^q$, i.e. V is mapped onto itself by the Frobenius automorphism. Taking q-th power of $v \in \mathbb{F}_{q^n}$ corresponds to a cyclic shift of $\vec{v} \in \phi_{\mathcal{B}}(V)$. Hence, V is a q-invariant \mathbb{F}_q -linear subspace of \mathbb{F}_{q^n} if and only if $\phi_{\mathcal{B}}(V)$ is a linear cyclic code of length n over \mathbb{F}_q .

The following theorem shows our correspondence between q-polynomials and cyclic codes. This is different from Theorem 4.10 in [D-L].

Theorem 0.1.

(i) Let $L(x) \in \mathbb{F}_q[x]$ be a q-polynomial of degree q^k which splits in \mathbb{F}_{q^n} and let $V \subseteq \mathbb{F}_{q^n}$ be the set of roots of L(x). Then $\phi_{\mathcal{B}}(V)$ is a q-ary [n, k]-cyclic code.

(ii) For every q-ary [n, k]-cyclic code, there exists a q-polynomial of degree q^k over \mathbb{F}_q splitting in \mathbb{F}_{q^n} .

Using the relation in the Theorem, we can construct optimal cyclic codes. We also obtain a characterization of linear complementary dual (LCD) cyclic codes in terms of q-polynomials. Let us recall that an LCD code is a linear code which intersects its dual trivially.

Theorem 0.2. Let $A(x) \in \mathbb{F}_q[x]$ be the q-polynomial, splitting in \mathbb{F}_{q^n} , of a q-ary [n,k]-cyclic code C and $B(x) \in \mathbb{F}_q[x]$ be the q-polynomial, splitting in \mathbb{F}_{q^n} , of C^{\perp} . Assume that (n,q) = 1. Then C is LCD if and only if $A(x) \circ B(x) = x^{q^n} - x$.

We also generalize our results to quasi-cyclic codes.

[D-L] C. Ding and S. Ling, "A q-polynomial approach to cyclic codes", *Finite Fields Appl.*, vol. 20, 1-14, 2013.

Joint work with Cem Güneri (Sabancı University) and Ferruh Özbudak (Middle East Technical University).