Construction of self-dual matrix codes

JON-LARK KIM

Sogang University

jlkim@sogang.ac.kr

Abstract. Matrix codes over a finite field \mathbb{F}_q are linear codes defined as subspaces of the vector space of $m \times n$ matrices over \mathbb{F}_q . They are closely related to rank metric linear codes. In this paper, we show how to obtain self-dual matrix codes from a selfdual matrix code of smaller size using a method we call the building-up construction. We show that every self-dual matrix code can be constructed using this building-up construction. Using this, we classify, that is, we find a complete set of representatives for the equivalence classes of self-dual matrix codes of small sizes. In particular we have classifications for self-dual matrix codes of sizes 2×4 , 2×5 over \mathbb{F}_2 , of size 2×3 , 2×4 over \mathbb{F}_4 , of size 2×2 , 2×3 over \mathbb{F}_8 , and of size 2×2 , 2×3 over \mathbb{F}_{13} , all of which have been left open from K. Morrison's classification.

We can define a generator matrix for matrix codes using the correspondence with linear block codes. Using this definition, we introduce the *building-up construction of self-dual matrix codes* and show that every self-dual matrix code is obtained this way. Thus, using this construction and the notion of equivalence for matrix codes given in [2], we have a new technique to classify self-dual matrix codes, different from what was done in [2] and add new results, as well. The classification is summarized on the table below.

Table 1: The number of inequivalent self-dual matrix codes of small sizes over the finite field \mathbb{F}_q where q = 2, 3, 4, 5, 8, 9, 13. Values marked with * and ** are the same values given in [2] and [1], respectively. Values in bold are new classifications which were previously unknown.

Size	\mathbb{F}_2	\mathbb{F}_3	\mathbb{F}_4	\mathbb{F}_5	\mathbb{F}_8	\mathbb{F}_9	\mathbb{F}_{13}
2×2	2^{*}	1^{*}	3^{*}	2^{*}	5	2^{**}	2
2×3	5^*		5	7^*	5	7^{**}	7
2×4	20	13^{*}	36	24^{*}			
2×5	22						
4×3	442						

References

- [1] K. Morrison. Equivalence and duality for rank-metric and matrix codes. The University of Nebraska-Lincoln, 2012.
- [2] K. Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 9(4):415 - 436, May 2015.

Joint work with Lucky Galvez (Sogang University)

J.-L. Kim was supported by Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2016R1D1A1B03933259)