Isometry-Dual Flags of AG Codes

Maria Bras-Amorós
Universitat Rovira i Virgili, Tarragona, Spain
maria.bras@urv.cat

Abstract

Consider a complete flag $\{0\}=C_{0}<C_{1}<\cdots<C_{n}=\mathbb{F}^{n}$ of one-point AG codes of length n over the field \mathbb{F}. A flag has the isometry-dual property if the given flag and the corresponding flag of dual codes are the same up to an invertible diagonal transformation. In [2] it is shown, for a curve of genus g, that a complete flag of one-point AG codes defined with a set of $n>2 g+2$ rational points is isometrydual if and only if the code C_{n} in the flag has Goppa divisor of degree $n+2 g-1$. Using a different proof, we extend this characterization to all sets of size $n \geq 2 g+2$. Moreover we show that this is best possible by giving examples of isometry-dual flags with $n=2 g+1$ such that C_{n} has Goppa divisor of degree $n+2 g-2$. We also prove a necessary condition, formulated in terms of maximum sparse ideals of a Weierstrass semigroup, under which a flag of punctured AG one-point codes inherits the isometrydual property from the original unpunctured flag.

Let \mathcal{X} be a smooth absolutely irreducible projective curve of genus g defined over the finite field \mathbb{F}. Let P_{1}, \ldots, P_{n} and Q be distinct rational points on \mathcal{X}. For $D=P_{1}+\cdots+P_{n}$, let $C_{0}=C_{L}(D,-Q)=\{0\}$, and define a complete flag $\{0\}=C_{0}<C_{1}<\cdots<C_{n}=\mathbb{F}^{n}$ of one-point AG codes by choosing m_{1}, \ldots, m_{n} minimal such that $C_{i}=C_{L}\left(D, m_{i} Q\right) \neq C_{i-1}$.
(Main Theorem) Let $m=m_{n}$. If the complete flag is isometry-dual then the following holds.
(a) If $m \geq 4 g$, then $n=m-2 g+1 \geq 2 g+1$.
(b) If $m=4 g-1$, then either $n=2 g$ or $n=2 g+1$.
(c) If $m \leq 4 g-2$, then $n \leq 2 g$.

References

[1] Maria Bras-Amorós, Kwankyu Lee, and Albert Vico-Oton. New lower bounds on the generalized Hamming weights of AG codes. IEEE Trans. Inform. Theory, 60(10):5930-5937, 2014.
[2] Olav Geil, Carlos Munuera, Diego Ruano, and Fernando Torres. On the order bounds for one-point AG codes. Adv. Math. Commun., 5(3):489-504, 2011.
[3] Carlos Munuera, and Ruud Pellikaan. Equality of geometric Goppa codes and equivalence of divisors. Journal of Pure and Applied Algebra, 90(3), 229-252, 1993.

Joint work with Euijin Hong (University of Illinois at Urbana-Champaign, USA) and Iwan Duursma (University of Illinois at Urbana-Champaign, USA)
Partially funded by 2017 SGR 00705, TIN2016-80250-R, NSF CCF-1618189
March 7-8, 2019 @TUe, Eindhoven

