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Overview

p-adic dynamics attract remarkable interest to their applications in a
number of various domains as:

1. Pure mathematics

2. Physics

3. Biology, Genetics

4. Cognitive science, Neurophysiology

5. Computer science, Cryptology



Non-Archimedean fields

Let K be a field. An absolute value on K is a function | · | : K → R
such that

I |x | ≥ 0 for all x ∈ K ,

I |x | = 0 if and only if x = 0,

I |xy | = |x ||y |, for all x , y ∈ K ,

I |x + y | ≤ |x |+ |y |, for all x , y ∈ K .

If |.| in addition satisfies the strong triangle inequality

|x + y | ≤ max(|x |, |y |)

for all x , y ∈ K then we say that |.| is non-Archimedean.



p-adic absolute value
Let p be a fixed prime number. Each non-zero integer n can be written
uniquely as

n = pordp nn̂,

where n̂ is a non-zero integer, p - n̂, and ordp n is a unique non-negative
integer.
The function ordp : Z \ {0} → N0 is called the p-adic valuation.
If a, b ∈ Z then the p-adic valuation of x = a/b is

ordp x = ordp a− ordp b.

Definition
The p-adic absolute value of x ∈ Q \ {0} is given by

|x |p = p− ordp x

and |0|p = 0.

The p-adic absolute value is non-Archimedean. It induces a metrics

ρ(x , y) = |x − y |p.



Definitions and notions from p-adic dynamics

Dynamical system theory study trajectories

x0, x1 = f (x0), . . . , xi+1 = f (xi ) = f i+1(x0), . . .

Consider 〈Zp, µp, f 〉, where

I Zp is a space of p-adic integers,

I the normalized Haar measure µp(Bp−k (a)) = p−k ,
Bp−k (a) = a + pkZp are elementary measurable subsets (balls) in Zp

of radius p−k centered at the point a ∈ Zp,

I f : Zp → Zp is a µp-measurable function that is continuous with
respect to p-adic metric.



Definitions and notions from p-adic dynamics

Recall that a sphere Sp−k (a) of radius p−k centered at a ∈ Zp is a
disjoint union of p − 1 balls of radius 1

pk+1 each:

Sp−r (a) =

p−1⋃
s=1

(
a + pk + pk+1Zp

)
, a ∈ Zp, r = 1/pk , k = 1, 2, . . .



Definitions and notions from p-adic dynamics

A function f : Zp → Zp is called compatible iff the congruence a ≡ b
(mod pk) implies the congruence f (a) ≡ f (b) (mod pk), for all
a, b ∈ Zp.
In other words, the function f is compatible if and only if f satisfies
Lipschitz condition with a constant 1:

|f (a)− f (b)|p ≤ |a− b|p ,

for all a, b ∈ Zp.
Here | · |p stands for p-adic absolute value.



Definitions and notions from p-adic dynamics

The mapping f : S→ S of a measure space S that is endowed with a
probability measure µ is said to preserve the measure µ iff
µ(f −1(S)) = µ(S) for every measurable subset S ⊂ S.
A µ-preserving mapping f is said to be ergodic iff µ(S) = 1 or µ(S) = 0
for every measurable S ⊂ S such that f −1(S) = S .



Definitions and notions from p-adic dynamics

A compatible mapping f : Zp → Zp is said to be bijective (resp.,
transitive) modulo pk iff the induced mapping
f mod pk : x 7→ f (x) mod pk is a permutation (resp., a permutation with
a single cycle) on the ring Z/pkZ of residues modulo pk .
The following theorem holds:

Theorem (V. Anashin)
A compatible function f : Zp → Zp is measure-preserving (or,
accordingly, ergodic) if and only if it is bijective (accordingly, transitive)
modulo pk for all k = 1, 2, 3, . . .



Practical importance of p-adic dynamics

In 1992 by V.Anashin and co-authors was constructed a computer
program that produces random-looking sequence of numbers
(pseudorandom generator).
A pseudorandom number generator is an algorithm that takes a short
random string and stretches it to a much longer string that looks like
random.
PRNG as an autonomous dynamical system 〈Zp, µ, f 〉 :

I f is a state update, G is output function, x0 is initial state (key);

I sequence of states = orbits:

x0, x1 = f (x0), . . . , xi+1 = f (xi ) = f i+1(x0), . . .

I output sequence = observables:

G (x0),G (x1), . . . ,G (xi + 1), . . .



Practical importance of p-adic dynamics

A PRNG must meet the following conditions to be considered as good:

I The output sequence must be pseudorandom, i.e. f is transitive
modulo pn

I The output function G must not spoil pseudorandomness, i.e. be
bijective modulo pk

So by theorem (V. Anashin) we should take as G measure-preserving
function and as f ergodic compatible function.
Therefore a problem arises to describe such functions.



Practical importance of p-adic dynamics

Another interesting problem is to study ergodic behavior of p-adic
monomial dynamical systems that is described by iterations of

f (x) = xn, n ∈ N, n ≥ 2. (1)

In paper of [M. Gundlach, A. Khrennikov, K.-O. Lindahl] was stated the
need to study ergodic stability for pertubations of monomial systems

x 7→ xn + q(x),

where q(x) is a ’small’ polynom, on p-adic spheres f : Sr (a)→ Sr (a),
where

Sr (a) = {x ∈ Qp : |x − a|p = r}, a ∈ Zp, r = 1/2k , k = 1, 2, ...



van der Put series

Given a continuous function g : Zp → Zp, there exists a unique sequence
B0,B1,B2, . . . of p-adic integers such that

g(x) =
∞∑

m=0

Bmχ(m, x)

for all x ∈ Zp, where

χ(m, x) =

{
1, if |x −m|p ≤ p−n

0, otherwise

and n = 1 if m = 0; n is uniquely defined by the inequality
pn−1 ≤ m ≤ pn − 1 otherwise. This series is called the van der Put
series of the function g .



van der Put series

The number n in the definition of χ(m, x) is just the number of digits in
a base-p expansion of m ∈ N0:
Given m ∈ N0 denote via

⌊
logp m

⌋
the largest rational integer that is

either less than, or equal to, logp m; then⌊
logp m

⌋
= (the number of digits in a base-p expansion for m)− 1;

henceforth n =
⌊
logp m

⌋
+ 1 for all m ∈ N0 (we put

⌊
logp 0

⌋
= 0).



Coefficients Bm

Let m = m0 + . . .+ mn−2pn−2 + mn−1pn−1 be a base-p expansion for m,
i.e., mj ∈ {0, . . . , p − 1}, j = 0, 1, . . . , n − 1 and mn−1 6= 0, then

Bm =

{
g(m)− g(m −mn−1pn−1), if m ≥ p;

g(m), otherwise.

It worth notice also that χ(m, x) is merely a characteristic function of the

ball of radius p−blogp mc−1 centered at m ∈ N0.



Simple example of the van der Put series

Canonical expansion m g(m) g(m − q(m)) Bm

0 0
1 1

01 = 0 · 20 + 1 · 21 2 4 0 4
11 = 1 · 20 + 1 · 21 3 9 1 8
001 = 0 · 20 + 0 · 21 + 1 · 22 4 16 0 16
101 = 1 · 20 + 0 · 21 + 1 · 22 5 25 1 24
011 = 0 · 20 + 1 · 21 + 1 · 22 6 36 4 32
111 = 1 · 20 + 1 · 21 + 1 · 22 7 49 9 40
...

...
...

...
...

Table: For p = 2 and g(x) = x2.



Simple example of the van der Put series

The van der Put series:

g(x) = 0 · χ(x , 0) + 1 · χ(x , 1) + 4 · χ(x , 2)+

+ 8 · χ(x , 3) + 16 · χ(x , 4) + +24 · χ(x , 5)+

+ 32 · χ(x , 6) + 40 · χ(x , 7) + . . .

Let x = 5 = 1 · 20 + 0 · 21 + 1 · 22. The characteristic function χ(x ,m) is
equal 1 for m = 1 and m = 5.
Therefore,

g(5) = 1 · χ(5, 1) + 24 · χ(5, 5) = 25.



Comment about different basises

To calculate value of the function we should know:

I ∞ coefficients for the power series f (x) =
∑∞

k=0 akxk

I m coefficients for the Mahler series f (x) =
∑∞

i=0 ai
(
x
i

)
, where

ai ∈ Zp (respectively, ai ∈ Z), i = 0, 1, 2, . . ., and(
x

i

)
=

x(x − 1) · · · (x − i + 1)

i !

for i = 1, 2, . . .; (
x

0

)
= 1,

I logp m coefficients for the van der Put series
g(x) =

∑∞
m=0 Bmχ(m, x)



Results, compatibility

Given a function f : Zp → Zp, represent f via van der Put series:

f (x) =
∞∑

m=0

Bmχ(m, x).

Theorem
The function f : Zp → Zp is compatible if and only if it can be
represented as

f (x) =
∞∑

m=0

pblogp mcbmχ(m, x),

where bm ∈ Zp for m = 0, 1, 2, . . ..

Note: Schikhof obtained theorem, which describe compatible functions
via the van der Put series in [Ultrametric calculus, Sch, 1984]. But we
get such theorem represented in more suitable for further results form.



Results, measure-preservation

Let now p = 2; then the following criteria are true:

Theorem
The function f : Z2 → Z2 is compatible and preserves the measure
µp if and only if it can be represented as

f (x) = b0χ(0, x) + b1χ(1, x) +
∞∑

m=2

2blog2 mcbmχ(m, x),

where bm ∈ Z2 for m = 0, 1, 2, . . ., and

1. b0 + b1 ≡ 1 (mod 2),

2. |bm|2 = 1, if m ≥ 2.



Results, ergodicity

Theorem
The function f : Z2 → Z2 is compatible and ergodic (w.r.t. the
measure µp) if and only if it can be represented as

f (x) = b0χ(0, x) + b1χ(1, x) +
∞∑

m=2

2blog2 mcbmχ(m, x)

where bm ∈ Z2 for m = 0, 1, 2, . . ., and the following conditions hold
simultaneously:

1. b0 ≡ 1 (mod 2), b0 + b1 ≡ 3 (mod 4), b2 + b3 ≡ 2 (mod 4);

2. |bm|2 = 1 for m ≥ 2;

3.
∑2n−1

m=2n−1 bm ≡ 0 (mod 4) for n ≥ 3.



Results, ergodicity

It worth notice that the core of the proof of previous theorem is the
following lemma:

Lemma
Let f : Z2 → Z2 be a function represented by van der Put series
f (x) =

∑∞
m=0 Bmχ(m, x). The function f is compatible and ergodic

(w.r.t. the measure µp) if and only if the following conditions hold
simultaneously:

1. B0 ≡ 1 (mod 2),B0 + B1 ≡ 3 (mod 4),

2. |Bm|2 = 2−blog2 mc, if m ≥ 2;

3.
∣∣∣∑2n−1

m=2n−1(Bm − 2n−1)
∣∣∣
2
≤ 2−(n+1), if n ≥ 2.

Comment. Criteria for measure-preserving and ergodic functions, using
Mahler’s expansion of the function, was obtained by V. Anashin.
However use of the van der Put basis allow us to check properties above
faster and easier.



Example of the ergodic function represented via the van
der Put series

Given a 2-adic integer a ∈ Z2, consider its 2-adic canonical representation
a =

∑∞
i=0 αi2

i ; that is, αi ∈ {0, 1} for all i = 0, 1, 2, . . .. Put δi (a) = αi ;
so δi : Z2 → Z/2Z = {0, 1}.

Example
The following function is ergodic on Z2 :

f (x) = 1 + δ0(x) + 6δ1(x) +
∞∑
k=2

2k(1 + 2(x mod 2k))δk(x).

Here x mod 2k is the least non-negative residue modulo 2k of the 2-adic
integer x .



Ergodicity on 2-adic spheres

New technique to use the van der Put coefficients to study dynamical
systems on the 2-adic spheres, where f : Sp−r (a)→ Sp−r (a),

Sp−r (a) =
⋃p−1

s=1

(
a + pk + pk+1Zp

)
, a ∈ Zp, r = 1/pk , k = 1, 2, . . .

I Let p = 2, f : Z2 → Z2 is a compatible function and S2−r (a) is the
sphere of radius 2−r with a center at the point a ∈ {0, . . . , 2r − 1} .

I The function f is invariant on the sphere S2−r (a), i.e.
f : S2−r (a)→ S2−r (a).

I For p = 2, the sphere S2−r (a) coincide with a ball U2−r (a + 2r ) with
center at the point a + 2r , i.e.

S2−r (a) =
{

a + 2r + 2r+1x |x ∈ Z2

}
= U2−r (a + 2r ).

I Then f (a + 2r + 2r+1x) = f (a + 2r ) mod 2r+1 + 2r+1g(x), where
the function g : Z2 → Z2 is compatible because f (x) is compatible
by the initial condition.



Ergodicity on 2-adic spheres

Note that f (a + 2r + 2r+1x) = f (a + 2r ) mod 2r+1 + 2r+1g(x), where the
function g : Z2 → Z2 is compatible because f (x) is compatible by the
initial condition.

Theorem
Let f : Z2 → Z2 and

f (a + 2r + 2r+1x) = f (a + 2r ) mod 2r+1 + 2r+1g(x),

where g : Z2 → Z2 is compatible function. The function f is ergodic on
the sphere S2−r (a) iff g(x) is ergodic function.

Theorem
Let a compatible function f : Z2 → Z2, represented via the van der Put
series

f (x) =
∞∑

m=0

Bf (m)χ(m, x) =
∞∑

m=0

2blog2mcbmχ(m, x),



Ergodicity on 2-adic spheres

Theorem
Then f (x) is ergodic on the sphere S2−r (a) if and only if the following
conditions holds simultaneously:

1.
f (a + 2r + 2r+1x) = a + 2r mod 2r+1;

2. ∣∣bf (a + 2r + m · 2r+1)
∣∣
2

= 2−r−1,m ≥ 0;

3.
bf (a + 2r )

2r+1
+

bf (a + 2r + 2r+1)

2r+1
≡ 3 mod 4;

4.
bf (a + 2r + 2r+2)

2r+1
+

bf (a + 2r + 3 · 2r+1)

2r+1
≡ 2 mod 4;

5.
2n−1∑

m=2n−1

bf (a + 2r + m · 2r+1)

2r+1
≡ 0 mod 4, n ≥ 3.



Ergodicity on 2-adic spheres

Example
Let a ∈ {0, 1, . . . , 2r − 1} . The function

f (a + 2r + 2r+1x) = a + 2r + 2r+1(1 + δ0(x) + 6δ1(x)+

+
∞∑
k=2

2k(1 + 2(x mod 2k))δk(x)),

where δk(x) is the value of k-th binary digit of the number x , is ergodic
on the sphere S2−r (a).



Ergodicity on 2-adic spheres

Now we state results for the functions, which are ergodic on the sphere
with pertubations of the monomial system.

Theorem
The function f (x) = x s + 2r+1u(x), where u(x) is compatible function on
Z2, is ergodic on the sphere S2−r (1) =

{
1 + 2r + 2r+1x |x ∈ Z2

}
of

sufficiently small radius (r ≥ 3) if and only if s ≡ 1 mod 4 and
u(1) ≡ 1 mod 2.

Theorem
The function f (x) = x s + 2r+1u(x), where
u(1 + 2r + 2r+1x) = c + 4d(x), is ergodic on the sphere
S2−r (1) =

{
1 + 2r + 2r+1x |x ∈ Z2

}
, r ≥ 3 if and only if s ≡ 1 mod 4

and c ≡ 1 mod 2 for any arbitrary function d(x) on Z2.



Ergodicity on 2-adic spheres

Example

1. The function f (x) = (1 + 23 + 24x)5 + 24 is ergodic on the sphere
S3(1).

2. The function

f (1 + 2r + 2r+1x) = (1 + 2r + 2r+1x)9+

+2r+1

(
1 +

∞∑
k=2

2k
(
1 + 2(x mod 2k)

)
δk(x)

)
is ergodic on the sphere Sr (1). It is easy to see that

9 ≡ 1 mod 4

u(1) ≡ 1 mod 2 1 +
∞∑
k=2

2k
(
1 + 2(x mod 2k)

)
δk(x) ≡ 1 mod 2.



Ergodicity on 2-adic spheres

Note that

I Here the function u(x) could be any compatible function, i.e. not
only differentiable.

I To compare, for the case p 6= 2 the ergodicity of the function does
not depend on polynom u(x).

I Meanwhile for the case p = 2 we have restrictions on the function
u(x), namely u(1) ≡ 1 mod 2.

I And in the case of the monomial function without perturbations, i.e.
u(x) ≡ 0 mod 2, the function f : x → xn is not ergodic.

I The transition to the case p 6= 2 is still open problem.
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