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Introduction to Model Theory

Basic Concepts

Languages, Structures and Theories

First order languages

A first order language L is given by

I constant symbols {ci}i∈I ;

I relation symbols {Rj}j∈J (Rj of some fixed arity nj);

I function symbols {fk}k∈K (fk of some fixed arity nk);

I a distinguished binary relation "=" for equality;

I an infinite set of variables {vi | i ∈ N} (we also use x , y etc.);

I the connectives ¬, ∧, ∨, →, ↔, and

I the quantifiers ∀,∃.
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Basic Concepts

Languages, Structures and Theories

First order languages (continued)

L-formulas are built inductively (in the obvious manner).

Let ϕ be an L-formula.
I A variable x is free in ϕ if it is not bound by a quantifier.

I ϕ is called a sentence if it contains no free variables.

I We write ϕ = ϕ(x1, . . . , xn) to indicate that the free variables
of ϕ are among {x1, . . . , xn}.

In what follows, we will only consider countable languages.
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Basic Concepts

Languages, Structures and Theories

First order structures

Definition
An L-structureM is a tupleM = (M; cMi ,RMj , fMk ), where

I M is a non-empty set, the domain ofM;
I cMi ∈ M , RMj ⊆ Mnj , and fMk : Mnk → M

are interpretations of the symbols in L.

To interpret an L-formula ϕ inM, note that the quantified
variables run over M.

Let ϕ(x1, . . . , xn) and a ∈ Mn be given.
We setM |= ϕ(a) if and only if ϕ holds for a inM.
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Basic Concepts

Languages, Structures and Theories

Examples of languages and structures

I Lrings = {0, 1,+,−, ·} (language of rings).
Any (unitary) ring is naturally an Lrings -structure, e.g.
C = (C; 0, 1,+,−, ·) and R = (R; 0, 1,+,−, ·).
ϕ ≡ ∀x∃y y · y = x is an Lrings -formula (even a sentence),
with C |= ϕ and R |= ¬ϕ.

I Loag = {0,+, <} (language of ordered abelian groups)
Let Z = (Z; 0,+, <) and Q = (Q; 0,+, <).
Let ψ(x , y) ≡ ∃z(x < z ∧ z < y).
Then Q |= ψ(1, 2) , Z 6|= ψ(1, 2) and Z |= ψ(0, 2).

We will often write M instead ofM, if the structure we mean is
clear from the context.
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Basic Concepts

Languages, Structures and Theories

First order theories
An L-theory T is a set of L-sentences.

I An L-structureM is a model of T ifM |= ϕ for every
ϕ ∈ T . We denote this byM |= T .

I T is called consistent if it has a model.

Examples

1. The usual field axioms, in Lrings , give rise a theory Tfields , with
M |= Tfields if and only ifM = (M; 0, 1,+,−, ·) is a field.

2. Let ϕn ≡ ∀z0 · · · ∀zn−1∃x xn + zn−1xn−1 + . . .+ z0 = 0.
ACF=Tfields ∪ {ϕn | n ≥ 2}. (Models are alg. closed fields.)

3. There is an Loag-theory DOAG whose models are preciseley
the non-trivial divisible ordered abelian groups.

4. IfM is an L-structure, Th(M) = {ϕ L-sentence | M |= ϕ}.
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The expressive power of first order logic

Theorem (Compactness Theorem)
Let T be a theory. Suppose that any finite subtheory T0 of T has
a model. Then T has a model.

Corollary

1. If T has arbitrarily large finite models, it has an infinite model.
Thus, there is e.g. no theory whose models are the finite fields.

2. If T has an infinite model, it has models of arbitrarily large
cardinality. In particular, an infinite L-structure is not
determined (up to L-isomorphism) by its theory.

To prove (1), consider ψn ≡ ∃x1, . . . , xn
∧

i<j xi 6= xj , and apply
compactness to T ′ = T ∪ {ψn | n ∈ N}.
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Languages, Structures and Theories

Complete theories

Let T be a theory. A sentence ψ is a consequence of T , denoted
T |= ψ, if every model of T is also a model of ψ.

M and N are called elementarily equivalent if Th(M) = Th(N ).
We writeM≡ N .

A consistent theory T is complete if all its models are elementarily
equivalent. Alternatively, for every ϕ, either T |= ϕ or T |= ¬ϕ.

Examples

1. Th(M) is complete, for any structureM.
2. ACFp is a complete Lrings -theory, for p = 0 or a prime.
3. DOAG is a complete Loag-theory.



Introduction to Model Theory

Basic Concepts

Languages, Structures and Theories

Complete theories

Let T be a theory. A sentence ψ is a consequence of T , denoted
T |= ψ, if every model of T is also a model of ψ.

M and N are called elementarily equivalent if Th(M) = Th(N ).
We writeM≡ N .

A consistent theory T is complete if all its models are elementarily
equivalent. Alternatively, for every ϕ, either T |= ϕ or T |= ¬ϕ.

Examples

1. Th(M) is complete, for any structureM.
2. ACFp is a complete Lrings -theory, for p = 0 or a prime.
3. DOAG is a complete Loag-theory.



Introduction to Model Theory

Basic Concepts

Languages, Structures and Theories

Complete theories

Let T be a theory. A sentence ψ is a consequence of T , denoted
T |= ψ, if every model of T is also a model of ψ.

M and N are called elementarily equivalent if Th(M) = Th(N ).
We writeM≡ N .

A consistent theory T is complete if all its models are elementarily
equivalent. Alternatively, for every ϕ, either T |= ϕ or T |= ¬ϕ.

Examples

1. Th(M) is complete, for any structureM.
2. ACFp is a complete Lrings -theory, for p = 0 or a prime.
3. DOAG is a complete Loag-theory.



Introduction to Model Theory

Basic Concepts

Languages, Structures and Theories

Complete theories

Let T be a theory. A sentence ψ is a consequence of T , denoted
T |= ψ, if every model of T is also a model of ψ.

M and N are called elementarily equivalent if Th(M) = Th(N ).
We writeM≡ N .

A consistent theory T is complete if all its models are elementarily
equivalent. Alternatively, for every ϕ, either T |= ϕ or T |= ¬ϕ.

Examples

1. Th(M) is complete, for any structureM.
2. ACFp is a complete Lrings -theory, for p = 0 or a prime.
3. DOAG is a complete Loag-theory.



Introduction to Model Theory

Basic Concepts

Languages, Structures and Theories

Complete theories

Let T be a theory. A sentence ψ is a consequence of T , denoted
T |= ψ, if every model of T is also a model of ψ.

M and N are called elementarily equivalent if Th(M) = Th(N ).
We writeM≡ N .

A consistent theory T is complete if all its models are elementarily
equivalent. Alternatively, for every ϕ, either T |= ϕ or T |= ¬ϕ.

Examples

1. Th(M) is complete, for any structureM.
2. ACFp is a complete Lrings -theory, for p = 0 or a prime.
3. DOAG is a complete Loag-theory.



Introduction to Model Theory

Basic Concepts

Languages, Structures and Theories

Complete theories

Let T be a theory. A sentence ψ is a consequence of T , denoted
T |= ψ, if every model of T is also a model of ψ.

M and N are called elementarily equivalent if Th(M) = Th(N ).
We writeM≡ N .

A consistent theory T is complete if all its models are elementarily
equivalent. Alternatively, for every ϕ, either T |= ϕ or T |= ¬ϕ.

Examples

1. Th(M) is complete, for any structureM.
2. ACFp is a complete Lrings -theory, for p = 0 or a prime.
3. DOAG is a complete Loag-theory.



Introduction to Model Theory

Basic Concepts

Definable Sets and Quantifier Elimination

Definable sets
LetM be an L-structure. A set D ⊆ Mn is said to be definable if
there is a formula ϕ(x , y) and parameters b from M such that

D = ϕ(M, b) :=
{
a ∈ Mn | M |= ϕ(a, b)

}
.

If b may be taken from B ⊆ M, we say D is B-definable.

Convenient to add parameters, passing to LB = L ∪ {cb | b ∈ B}.
ThenM expands naturally to an LB -structureMB .

Examples

1. In R, the set R≥0 is Lrings -definable, as the set of squares.
2. Let K |= ACF, and let V = V (K ) ⊆ Kn be an affine variety.

Then V is definable in Lrings by a quantifier free formula. More
generally, this is the case for every constructible subset of Kn.
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Elementary substructures

I M⊆ N is a substructure if

cM = cN , f N �Mn= fM and RN ∩Mn = RM.

I We sayM is an elementary substructure of N ,M 4 N if
for every L-formula ϕ(x) and every tuple a ∈ Mn one has

M |= ϕ(a) iff N |= ϕ(a).

In other words, the embedding respects all definable sets.

Note: M 4 N ⇒M ≡ N .



Introduction to Model Theory

Basic Concepts

Definable Sets and Quantifier Elimination

Elementary substructures

I M⊆ N is a substructure if

cM = cN , f N �Mn= fM and RN ∩Mn = RM.

I We sayM is an elementary substructure of N ,M 4 N if
for every L-formula ϕ(x) and every tuple a ∈ Mn one has

M |= ϕ(a) iff N |= ϕ(a).

In other words, the embedding respects all definable sets.

Note: M 4 N ⇒M ≡ N .



Introduction to Model Theory

Basic Concepts

Definable Sets and Quantifier Elimination

Elementary substructures

I M⊆ N is a substructure if

cM = cN , f N �Mn= fM and RN ∩Mn = RM.

I We sayM is an elementary substructure of N ,M 4 N if
for every L-formula ϕ(x) and every tuple a ∈ Mn one has

M |= ϕ(a) iff N |= ϕ(a).

In other words, the embedding respects all definable sets.

Note: M 4 N ⇒M ≡ N .



Introduction to Model Theory

Basic Concepts

Definable Sets and Quantifier Elimination

Quantifier elimination
Definition
A theory T has quantifier elimination (QE) if for every formula
ϕ(x) there is a quantifier free (q.f.) formula ψ(x) such that

T |= ∀x (ϕ(x)↔ ψ(x)) .

Proposition
Let T be a (consistent) theory with QE.

I InM |= T, every definable set is q.f. definable. Equivalently,
projections of q.f. definable sets are q.f. definable.

I LetM and N be models of T . ThenM⊆ N ⇒M 4 N .
(T is model complete).

I If any two models of T contain a common substructure, then
T is complete.
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Examples of theories with QE
Theorem (Chevalley-Tarski Theorem)
ACF has quantifier elimination.

Corollary
In algebraically closed fields, a set is definable iff it is constructible.

Corollary
ACFp is complete and strongly minimal: in every model
M |= ACFp, every definable subset of M is finite or cofinite.

Remark
Model-completeness of ACF =̂ Hilbert’s Nullstellensatz.

Example
The theory of the real field R = (R; 0, 1,+,−, ·) does not have
QE. (The set of squares is not q.f. definable.)
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Tarski’s theorem

Let Lo.rings = Lrings ∪ {<}, and let RCF (the theory of real
closed fields) be the Lo.rings -theory whose models are

I ordered fields F such that
I every positive element in F is a square in F and
I every polynomial of odd degree over F has a zero in F .

Theorem (Tarski 1951)
RCF is complete (so equal to Th(R)) and has QE.

Corollary
The definable sets in RCF are precisely the semi-algebraic sets
(sets defined by boolean combinations of polynomial inequalities).
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0-minimal theories
Definition
Let L = {<, . . .}. An L-theory T is o-minimal if in any M |= T ,
any definable subset of M is a finite union of intervals and points.

Corollary
RCF is an o-minimal theory.

Proof.
Clearly, p(X ) ≥ 0 defines a set of the right form, for p a
polynomial. We are done by Tarski’s QE result.

Proposition

1. DOAG is complete and has QE (in Loag).
2. Definable sets in DOAG are piecewise linear (given by bool.

comb. of linear inequalities). In particular, DOAG is o-minimal.
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The notion of a complete type

Definition
LetM be a structure and B ⊆ M. A set p(x) of LB -formulas
ϕ(x1, . . . , xn) is a (complete) n-type over B if

I p(x) is finitely satisfiable, i.e. for any ϕ1, . . . , ϕk ∈ p there is
a ∈ Mn such thatM |= ϕi (a) for all i ;

I p(x) is maximal with this property.

Example
Let N <M. For a ∈ Nn, tp(a/B) := {ϕ(x) ∈ LB | N |= ϕ(a)} is
a complete n-type over B , the type of a over B .

Lemma
Every complete type p is of the form p(x) = tp(a/B).
Such a tuple a is called a realisation of p.
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Type Spaces

I For B ⊆ M, let SMn (B) be the set of complete n-types over B .
I M 4 N ⇒ SMn (B) = SNn (B) canonically, so we write Sn(B).
I For ϕ = ϕ(x1, . . . , xn) ∈ LB , put Uϕ = {p ∈ Sn(B) | ϕ ∈ p}.

The sets Uϕ form a basis of clopen sets for a topology on
Sn(B), the space of complete n-types over B , a profinite space.

Example (Type spaces in ACF)
Let K |= ACF and let K0 ⊆ K be a subfield. Then, by QE,

Sn(K0) ∼= Spec(K0[x1, . . . , xn]), via

p(x) 7→ {f (x) ∈ K0[x ] | f (x) = 0 is in p} ,

as types are determined by the polynomial equations they contain.
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Space of 1-types in o-minimal theories

Let T be o-minimal (e.g. T = DOAG or RCF) and D |= T .

Note D ↪→ S1(D) naturally, via d 7→ tp(d/D).

For p(x) ∈ S1(D) \ D, let Cp := {d ∈ D | d < x is in p}.
The map p 7→ Cp induces a bijection between

I S1(D) \ D and
I cuts in D (viewed as initial pieces).

Hence, we have

S1(D)
1:1←→ D ∪̇ {cuts in (D, <)}.
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Saturation

Definition
Let κ be an infinite cardinal. An L-structureM is κ-saturated if
for every B ⊆ M with |B |< κ, every p ∈ Sn(B) is realised inM.

Remark
It is enough to check the condition for n = 1.

Examples

1. K |= ACF is κ-saturated if and only if tr. deg(K ) ≥ κ.
2. R |= RCF is not ℵ0-saturated: the type p∞(x) ∈ S1(∅)

determined by {x > n | n ∈ N} is not realised in R.
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Homogeneity

Definition
Let κ be given. An L-structureM is κ-homogeneous if for all
B ⊆ M with |B |< κ and all a, b ∈ Mn with tp(a/B) = tp(b/B)
there is σ ∈ AutB(M) s.t. σ(a) = b.

Remark
It is enough to check the condition for n = 1.

Example
Let K |= ACF. Then K is |K |-homogeneous.

Fact
Let κ andM be given. There exists an elementary extension
N <M which is κ-saturated and κ-homogeneous.
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The Universe
Let T be complete and κ a very big cardinal.

A universe U for T is a κ-saturated and κ-homogeneous model.

When working with a universe U ,
I "small" means "of cardinality < κ";
I "M |= T" means "M 4 U and M is small";
I similarly, all parameter sets B are small subsets of U.

We write U for some fixed universe (for T ).

Fact
Let D be a definable set in U , and let B ⊆ U be a set of
parameters. TFAE:
1. D is B-definable.
2. σ(D) = D for all σ ∈ AutB(U).
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Definable and algebraic closure I

Definition
Let B ⊆ U be a set of parameters and a ∈ U .

I a is definable over B if {a} is a B-definable set;

I a is algebraic over B if there is a finite B-definable set
containing a.

I The definable closure of B is given by

dcl(B) = {a ∈ U | a definable over B}.

I Similarly define acl(B), the algebraic closure of B .
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Definable and algebraic closure II

Examples

I In ACF, if K denotes the field generated by B , then
dcl(B) = K 1/p∞ and acl(B) = K alg .

I In DOAG, dcl(B) = acl(B) is the divisible hull of 〈B〉.
I In RCF, dcl(B) = acl(B) equals the real closure of the field

generated by B .

Fact

1. a ∈ dcl(B) if and only if σ(a) = a for all σ ∈ AutB(U)

2. a ∈ acl(B) if and only if there is a finite set A0 containing a
which is fixed set-wise by every σ ∈ AutB(U).
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A criterion for QE

The following criterion is often useful in practice.

We will use it in the context of valued fields.

Theorem
Let T be a theory and κ an infinite cardinal. TFAE:
1. T has QE.
2. Let A ⊆M,N |= T. Assume

I |M |< κ and
I N is κ-saturated.

ThenM may be embedded into N over A.
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Some Model Theory of Valued Fields

Valued fields: notations and choice of a language
Let K be a valued field. We use standard notation:

I val : K× → Γ (the valuation map)

I Γ = ΓK is an ordered abelian group (written additively), plus a
distinguised element ∞ (+ and < are extended as usual);

I O = OK ⊇ m = mK ;

I res : O → k = kK := O/m is the residue map.

I For a ∈ K and γ ∈ Γ denote B≥γ(a) (resp. B>γ(a)) the
closed (resp. open) ball of radius γ around a.

I K gives rise to an Ldiv = Lrings ∪ { div }-structure, via
x div y :⇔ val(x) ≤ val(y).

I OK = {x ∈ K : x div 1}, so OK is Ldiv-definable
⇒ the valuation is encoded in the Ldiv-structure.
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ACVF: Ldiv-theory of alg. closed non-trivially valued fields

Theorem (Robinson)
The theory ACVF has QE. Its completions are given by ACVFp,q,
for (p, q) = (char(K ), char(k)).

Corollary
1. In ACVF, a set is definable iff it is semi-algebraic, i.e. a

boolean combination of sets given by polynomial equations
and valuation inequalities.

2. In particular, definable sets in 1 variable are (finite) boolean
combinations of singletons and balls.

3. If K0 ⊆ K |= ACVF is a subfield, then acl(K0) = K alg
0 and

dcl(K0) =
(
K 1/p∞
0

)h
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Classification of purely transcendental extensions

For i = 1, 2, let Li = K (ti ) be valued fields, with ti 6∈ K = K alg .

I (residual case) If val(ti ) = 0 and res(ti ) 6∈ kK for i = 1, 2,
then t1 7→ t2 induces an isomorphism L1 ∼=K L2.

I (ramified case) If γi = val(ti ) 6∈ ΓK for i = 1, 2, and γ1 and
γ2 define the same cut in ΓK , then L1 ∼=K L2 via t1 7→ t2.

I (immediate case) If there is a pseudo-Cauchy sequence (aρ)
in K without pseudo-limit in K such that aρ ⇒ ti for i = 1, 2,
then L1 ∼=K L2 via t1 7→ t2.
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The proof of QE in ACVF
We use the criterion.
Let L, L∗ |= ACVF, and A ⊆ L, L∗ a common Ldiv-substructre.
Assume L is countable and L∗ is ℵ1-saturated. We have to show
that L embeds into L∗ over A.

I WMA A = K is a field. (Easy)
I WMA K = K alg . (Extensions of OK to K alg are Gal(K )-conj.)
⇒ Enough to K -embed K (t) into L∗, for t 6∈ K = K alg :

I K (t)/K is either residual, or ramified, or immediate.
I Residual case: replacing t by at + b for a, b ∈ K , WMA

val(t) = 0 and res(t) 6∈ k = kalg .
By saturation ∃t∗ ∈ OL∗ s.t. res(t∗) 6∈ k , so t 7→ t∗ works.

I The other cases are treated similarly.
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Multi-sorted languages and structures

A multi-sorted language L is given by
I a non-empty family of sorts {Si | i ∈ I};
I constants c , where c specifies the sort Si(c) it belongs to;
I relation symbols R ⊆ Si1 × · · · × Sin , for i1, . . . , in ∈ I ;
I function symbols f : Si1 × · · · × Sin → Si0 ;
I variables (v ij )j∈N running over the sort Si (for every i).

L-formulas are built in the obvious way.

An L-structureM is given by
I non-empty base sets SMi = Mi for every i ∈ I ;
I interpretations of the symbols, subject to the sort

restrictions, e.g. cM ∈ Mi(c).
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A variant: valued fields in a three-sorted language

Let Lk,Γ be the following 3-sorted language, with sorts K , Γ and k :

I Put Lrings on K , {0,+, <,∞} on Γ and Lrings on k ;
I val : K → Γ, and
I RES : K 2 → k as additional function symbols.

A valued field K is naturally an Lk,Γ-structure, via

RES(x , y) :=

{
res(xy−1), if val(x) ≥ val(y) 6=∞;
0 ∈ k , else.
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ACVF in the three-sorted language

Theorem
ACVF eliminates quantifiers in Lk,Γ.

Remark
The proof is similar to the one in the one-sorted context (in Ldiv).

Corollary
In ACVF, the following holds:
1. Γ is a pure divisible ordered abelian group: any definable

subset of Γn is {0,+, <}-definable (with parameters from Γ).

2. k is a pure ACF: any definable subset of kn is Lrings -definable.
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The Ax-Kochen-Eršov principle

Lemma
The class of henselian valued fields is axiomatisable in Lk,Γ.

Theorem (Ax-Kochen, Eršov)
Let K and K ′ be henselian valued fields of equicharacteristic 0.
Then, the following holds:

1. K ≡ K ′ iff k ≡ k ′ and Γ ≡ Γ′;

2. if K ⊆ K ′, then K 4 K ′ iff k 4 k ′ and Γ 4 Γ′.
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The Ax-Kochen-Eršov Principle

A general transfer principle

Corollary
For any Lk,Γ-sentence ϕ there is N ∈ N s.t. for any p > N,

Qp |= ϕ iff Fp((t)) |= ϕ.

Idea of the proof.
Else, applying compactness, one may find henselian valued fields
K ,K ′ of equicharacteristic 0 with Γ ∼= Γ′ ≡ Z and k ∼= k ′ such that
K |= ϕ and K ′ |= ¬ϕ, contradicting the AKE principle.

Remark
Ever since the approximate solution to Artin’s Conjecture, this
kind of transfer principle has shown to be extremely powerful.
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Remark
Ever since the approximate solution to Artin’s Conjecture, this
kind of transfer principle has shown to be extremely powerful.
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The Ax-Kochen-Eršov Principle

QE in p-adic fields
Let LMac = Lrings ∪ {Pn | n ≥ 1}, with Pn a new unary predicate.

Any field K gets an LMac-structure, letting Pn(x)↔ ∃y yn = x .

If K = Qp, then Zp is LMac-definable in a quantifier-free way:

x ∈ Zp ⇐⇒ Qp |= P2(1 + px2) (assume p 6= 2)

Theorem (Macintyre)
Qp has QE in LMac.

Remark
Along with p-adic cell decompostion, this was used by Denef in his
work on p-adic integration, giving rationality results for various
Poincaré series associated to an algebraic variety.



Introduction to Model Theory

Some Model Theory of Valued Fields

The Ax-Kochen-Eršov Principle

QE in p-adic fields
Let LMac = Lrings ∪ {Pn | n ≥ 1}, with Pn a new unary predicate.

Any field K gets an LMac-structure, letting Pn(x)↔ ∃y yn = x .

If K = Qp, then Zp is LMac-definable in a quantifier-free way:

x ∈ Zp ⇐⇒ Qp |= P2(1 + px2) (assume p 6= 2)

Theorem (Macintyre)
Qp has QE in LMac.

Remark
Along with p-adic cell decompostion, this was used by Denef in his
work on p-adic integration, giving rationality results for various
Poincaré series associated to an algebraic variety.



Introduction to Model Theory

Some Model Theory of Valued Fields

The Ax-Kochen-Eršov Principle

QE in p-adic fields
Let LMac = Lrings ∪ {Pn | n ≥ 1}, with Pn a new unary predicate.

Any field K gets an LMac-structure, letting Pn(x)↔ ∃y yn = x .

If K = Qp, then Zp is LMac-definable in a quantifier-free way:

x ∈ Zp ⇐⇒ Qp |= P2(1 + px2) (assume p 6= 2)

Theorem (Macintyre)
Qp has QE in LMac.

Remark
Along with p-adic cell decompostion, this was used by Denef in his
work on p-adic integration, giving rationality results for various
Poincaré series associated to an algebraic variety.



Introduction to Model Theory

Some Model Theory of Valued Fields

The Ax-Kochen-Eršov Principle

QE in p-adic fields
Let LMac = Lrings ∪ {Pn | n ≥ 1}, with Pn a new unary predicate.

Any field K gets an LMac-structure, letting Pn(x)↔ ∃y yn = x .

If K = Qp, then Zp is LMac-definable in a quantifier-free way:

x ∈ Zp ⇐⇒ Qp |= P2(1 + px2) (assume p 6= 2)

Theorem (Macintyre)
Qp has QE in LMac.

Remark
Along with p-adic cell decompostion, this was used by Denef in his
work on p-adic integration, giving rationality results for various
Poincaré series associated to an algebraic variety.



Introduction to Model Theory

Some Model Theory of Valued Fields

The Ax-Kochen-Eršov Principle

QE in p-adic fields
Let LMac = Lrings ∪ {Pn | n ≥ 1}, with Pn a new unary predicate.

Any field K gets an LMac-structure, letting Pn(x)↔ ∃y yn = x .

If K = Qp, then Zp is LMac-definable in a quantifier-free way:

x ∈ Zp ⇐⇒ Qp |= P2(1 + px2) (assume p 6= 2)

Theorem (Macintyre)
Qp has QE in LMac.

Remark
Along with p-adic cell decompostion, this was used by Denef in his
work on p-adic integration, giving rationality results for various
Poincaré series associated to an algebraic variety.



Introduction to Model Theory

Some Model Theory of Valued Fields

The Ax-Kochen-Eršov Principle

Angular component maps
A map ac : K → k is an angular component if

I ac(0) = 0;
I ac �K× : K× → k× is a group homomorphism;
I val(x) = 0⇒ ac(x) = res(x).

Example
In K = k((Γ)), mapping an element to its leading coefficient
defines an angular component map. (This also works in Qp.)

Fact

1. Let s : Γ→ K× be a cross-section (homomorphic section of
val). Then ac(a) := res

(
s(a)−1a

)
is an angular component.

2. If K is an ℵ1-saturated valued field, then K admits a
cross-section, so in particular an angular component map.
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Relative QE in Pas’ language

Let LPas = Lk,Γ ∪ {ac}, where ac : K → k .
Let TPas be the LPas-theory of henselian valued fields of
equicharacteristic 0 with an angular component map.

Theorem (Pas)
TPAS admits elimination of field quantifiers:
If ϕ(x f , xγ , x r ) is an LPas-formula, with variables x f , xγ and x r
running over the sorts K, Γ and k, respectively, there is an
LPas-formula ψ(x f , xγ , x r ) without field quantifiers such that ϕ and
ψ are equivalent modulo TPas.

Remark
The map ac is not definable in Lk,Γ. Thus, passing from Lk,Γ to
LPas leads to more definable sets.
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Extensions to valued difference fields

A valued difference field is a valued field K together with a
distinguished automorphism σ ∈ Aut(K ).
⇒ get induced automorphisms σΓ on Γ and σres on k .

Remark
AKE principles and relative QE in Pas’ language have recently been
obtained for several classes of valued difference fields:

I in the Witt Frobenius case, where σΓ = id (work by Scanlon,
Bélair-Macintyre-Scanlon, Azgin-van den Dries);

I in the ω-increasing case (e.g. the non-standard Frobenius),
where one has γ > 0 ⇒ σΓ(γ) > nγ ∀ n ∈ N (work by
Hrushovski, Azgin).
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Imaginaries

Context
I L is some countable language (possibly many-sorted);
I T is a complete L-theory;
I U |= T is a fixed universe (i.e. very saturated and

homogeneous);
I all modelsM we consider (and all parameter sets A) are

small, withM 4 U ;
I there is a dominating sort Sdom: for every sort S from L

there is n ∈ N and an n-ary function πS in L,

πS : Sn
dom → S

such that πUS is surjective.
I E.g., the field sort is a dominating sort for a theory of valued

fields considered in Lk,Γ (3-sorted).
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Imaginary Sorts and Elements

Definition
An imaginary element in U is an equivalence class d/E , where E is
a definable equivalence relation on some D ⊆def Un and d ∈ D(U).

If D = Un for some n and E is definable without parameters, the
set of equivalence classes Un/E is called an imaginary sort.



Introduction to Model Theory

Imaginaries

Imaginary Sorts and Elements

Definition
An imaginary element in U is an equivalence class d/E , where E is
a definable equivalence relation on some D ⊆def Un and d ∈ D(U).

If D = Un for some n and E is definable without parameters, the
set of equivalence classes Un/E is called an imaginary sort.



Introduction to Model Theory

Imaginaries

Examples of Imaginaries I

Unordered Tuples

I In any theory, the formula

(x = x ′ ∧ y = y ′) ∨ (x = y ′ ∧ y = x ′)

defines an equiv. relation (x , y)E2(x ′, y ′) on pairs, with

(a, b)E2(a′, b′)⇔ {a, b} = {a′, b′}.

Thus, {a, b} may be thought of as an imaginary element.

I Similarly, {a1, . . . , an} may be thought of as an imaginary.
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Examples of Imaginaries II

A group (G , ·) is a definable group in U if, for some k ∈ N,
I G ⊆def Uk and
I Γ = {(f , g , h) ∈ G 3 | f · g = h} ⊆def U3k .

Example (Cosets)
Let (G , ·) be definable group in U , and let H ≤ G a definable
subgroup of G . Then any coset g · H is an imaginary.

(Note that gEg ′ ⇔ ∃h ∈ H g · h = g ′ is definable.)
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Shelah’sMeq-Construction

There is a canonical way, due to S. Shelah, of expanding

I L to a many-sorted language Leq,
I T to a (complete) Leq-theory T eq and

I M |= T toMeq |= T eq such that

I M 7→Meq is an equivalence of categories between
〈Mod(T ),4〉 and 〈Mod(T eq),4〉.
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Shelah’sMeq-Construction (continued)

For any ∅-definable equivalence relation E on Sn
dom we add

I a new imaginary sort SE (Sdom is called the real sort),
a new function symbol πE : Sn

dom → SE
⇒ obtain Leq;

I axioms stating that πE is surjective and that its fibres
correspond to E -classes
⇒ obtain T eq;

I the interpretation of πE and SE on modelsM |= T according
to the axioms
⇒ obtainMeq.
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Existence of codes for definable sets in U eq

Fact
For any definable D ⊆ Un there exists c ∈ Ueq such that
σ ∈ Aut(U) fixes D setwise iff it fixes c.

Proof.
Suppose D is defined by ϕ(x , d). Define an equivalence relation

E (z , z ′) :⇔ ∀x(ϕ(x , z)↔ ϕ(x , z ′)).

Then c := d/E serves as a code for D.

We sometimes write pDq = pϕ(x , b)q for this code (it is unique up
to interdefinability).
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Galois Correspondence in T eq

The definitions of definable / algebraic closure make sense in Ueq.
We write dcleq or acleq to stress that we work in Ueq.

I For B ⊆ Ueq, any σ ∈ AutB(U) fixes acleq(B) setwise.

I Gal(B) := {σ �acleq(B) | σ ∈ AutB(U)} is called the absolute
Galois group of B .

Theorem (Poizat)
The map

H 7→ {a ∈ acleq(B) | h(a) = a ∀ h ∈ H}

induces a bijection between the set of closed subgroups of Gal(B)
and D = {A | B ⊆ A = dcleq(A) ⊆ acleq(B)}.
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Elimination of Imaginaries
Definition (Poizat)
The theory T eliminates imaginaries if every imaginary element
a ∈ Ueq is interdefinable with a real tuple b ∈ Un.

Fact
I Suppose that for every ∅-definable equivalence relation E on
Un there is an ∅-definable function

f : Un → Um (for some m ∈ N)

such that E (a, a′) if and only if f (a) = f (a′).

Then T eliminates imaginaries.
I The converse is true if there are two distinct ∅-definable

elements in U .
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Examples of theories which eliminate imaginaries

1. T eq (for an arbitrary theory T )

2. ACF (Poizat)

This follows from

I the existence of a smallest field of definition of a variety, and
I the fact that finite sets can be coded using symmetric

functions, e.g. {a, b} is coded by (a + b, ab).

3. RCF (see the following slides)
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Theorem (Definable choice in RCF)
Let R |= RCF and let (Da)a∈Rk be a definable family of non-empty
subsets of Rn. Then there is a definable function f : Rk → Rn s.t.
f (a) ∈ Da ∀ a ∈ Rk . Furthermore, if Da = Db, then f (a) = f (b).

Proof.
Projecting and using induction, it suffices to treat the case n = 1.
Da is a finite union of intervals. Let I be the leftmost interval.

I If I is reduced to a point, we let f (a) be this point;
I if I = R , let f (a) = 0;
I if Int(I ) =]c ,+∞[, let f (a) = c + 1;
I if Int(I ) =]−∞, c], let f (a) = c − 1;
I if Int(I ) =]c , d [, let f (a) = c+d

2 .
Clearly, this construction is uniform and gives what we want.
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Elimination of imaginaries in RCF and in DOAG

Corollary
The theory RCF eliminates imaginaries.

In proving definable choice, we only used that the theory is an
o-minimal expansion of DOAG (with some non-zero element
named). From this, one may easily infer the following.

Corollary
DOAG eliminates imaginaries. More generally, any o-minimal
expansion of DOAG eliminates imaginaries.
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Utility of Elimination of Imaginaries

T has EI ⇒ many constructions may be done already in T :

I quotient objects are present in U
(e.g. a definable group modulo a definable subgroup)

⇒ easier to classify e.g. interpretable groups and fields in U ;

I every definable set admits a real tuple as a code

I get a Galois correspondence in T , replacing dcleq, acleq by dcl
and acl, respectively.
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Imaginaries in valued fields

In search for imaginaries in ACVF
Consider K |= ACVF (in Ldiv).

I Clearly, k and Γ are imaginary sorts, i.e. k , Γ ⊆ K eq.
I More generally, Bo and Bcl (the set of open / closed balls) are

imaginary sorts.

Fact
There is no definable bijection between k and a subset of Kn,
similarly for Γ instead of k.

Proof idea.
I By QE, any infinite def. subset of K contains an open ball.
I Thus, every infinite definable subset of Kn admits definable

maps with infinite image to k as well as to Γ.
I But, using QE in Lk,Γ, it is easy to see that every definable

subset of k × Γ is a finite union of rectancles D × E .
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In search for imaginaries in ACVF (continued)

Question
Does (K , k , Γ) eliminate imaginaries (in Lk,Γ)?

I The answer is NO (Holly).
I The answer is NO even if in addition Bo and Bcl are added.

(Haskell-Hrushovski-Macpherson)

Sketch: Let γ > 0 and let b1, b2 be generic elements of O.
Let Ai be the set of open balls of radius γ inside B≥γ(bi ). Then Ai
is a definable affine space over k .
It can be shown that a generic affine morphism between A1 and A2
cannot be coded in K ∪ Bo ∪ Bcl .
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The geometric sorts
I s ⊆ Kn is a lattice if it is a free O-submodule of rank n;
I for s ⊆ Kn a lattice, s/ms ∼=k kn.

For n ≥ 1, let
Sn := {lattices in Kn} ,

Tn :=
⋃̇

s∈Sn
s/ms.

Fact

1. Sn and Tn are imaginary sorts, S1 ∼= Γ (via aO 7→ val(a)), and
also k = O/m ⊆ T1.

2. Sn ∼= GLn(K )/GLn(O) ∼= Bn(K )/Bn(O)

3. There is a similar description of Tn as a finite union of coset
spaces.
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Classification of Imaginaries in ACVF

G = {K} ∪ {Sn, n ≥ 1} ∪ {Tn, n ≥ 1} are the geometric sorts.
Let LG be the (natural) language of valued fields in G.

Theorem (Haskell-Hrushovski-Macpherson 2006)
ACVF eliminates imaginaries down to geometric sorts, i.e. the
theory ACVF considered in LG has EI.

Using this result, Hrushovski and Martin were able to classify the
imaginaries in the p-adics:

Theorem (Hrushovski-Martin 2006)
Qp eliminates imaginaries down to {K} ∪ {Sn, n ≥ 1}.
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Classification of Imaginaries in ACVF (cont’d)

Some consequences of the classification of imaginaries in ACVF:

1. May do Geometric Model Theory in valued fields.

2. Development of stable domination as a by-product
⇒ apply methods from stability outside the stable context.

3. There are striking applications outside model theory:

I in representation theory (Hrushovski-Martin);

I in non-archimedean geometry (Hrushovski-Loeser).
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Definable Types

Basic Properties and examples

The notion of a definable type
I As before, T is a complete L-theory;
I U |= T is very saturated and homogeneous.

Definition
LetM |= T and A ⊆ M. A type p(x) ∈ Sn(M) p is A-definable if
for every L-formula ϕ(x , y) there is an LA-formula dpϕ(y) s.t.

ϕ(x , b) ∈ p ⇔ M |= dpϕ(b) (for every b ∈ M)

We say p is definable if it is definable over some A ⊆ M.
The collection (dpϕ)ϕ is called a defining scheme for p.

Remark
If p ∈ Sn(M) is definable via (dpϕ)ϕ, then the same scheme gives
rise to a (unique) type over any N <M, denoted by p | N.
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Basic Properties and examples

Definable types: first properties

I (Realised types are definable)
Let a ∈ Mn. Then tp(a/M) is definable.
(Take dp ϕ(y) = ϕ(a, y).)

I (Preservation under definable functions)
Let b ∈ dcl(M ∪ {a}), i.e. f (a) = b for some M-definable
function f . Then, if tp(a/M) is definable, so is tp(b/M).

I (Transitivity) Let a ∈ N for some N <M, A ⊆ M. Assume
I tp(a/M) is A-definable;
I tp(b/N) is A ∪ {a}-definable.

Then tp(ab/M) is A-definable.
We note that the converse of this is false in general.
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Definable 1-types in o-minimal theories

Let T be o-minimal (e.g. T = DOAG) and D |= T .

I Let p(x) ∈ S1(D) be a non-realised type.
I Recall that p is determined by the cut

Cp := {d ∈ D | d < x ∈ p}.
I Thus, by o-minimality, p(x) is definable
⇔ dpϕ(y) exists for ϕ(x , y) := x > y
⇔ Cp is a definable subset of D
⇔ Cp is a rational cut

I e.g. in case Cp = D, dpϕ(y) is given by y = y ;
I in case Cp =]−∞, δ], dpϕ(y) is given by y ≤ δ

(p(x) expresses: x is "just right" of δ; this p is denoted by δ+).
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Definable 1-types in o-minimal theories (cont’d)
Corollary
Let D |= DOAG The following are equivalent:
1. D ∼= (R,+, <);
2. Any p ∈ S1(D) is definable;
3. For every n ≥ 1, any p ∈ Sn(D) is definable.

Proof.
1.⇒ 2. Clearly, every cut in R is rational.

2.⇒ 3. If p = tp(a1, . . . , an/D), by QE, p is determined by the
1-types tp(a′/D), where a′ =

∑n
i=1 ziai for some zi ∈ Z.

2.⇒ 1. If D is non-archimedean, choose 0 < ε << d .
Then {d ∈ D | d < nε for some n ∈ N} is an irrational cut. So D
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Definable 1-types in ACVF

Let K |= ACVF, K 4 L, t ∈ L \ K , and put p := tp(t/K ).
I If K (t)/K is a residual extension, then p is definable.

Proof.
Replacing t by at + b, WMA val(t) = 0 and res(t) 6∈ kK .
⇒ Enough to guarantee definably that
val(X n + an−1X n−1 + . . .+ a0) = 0 is in p for all ai ∈ OK .

I If K (t)/K is a ramified extension, up to a translation WMA
γ = val(t) 6∈ Γ(K ).

p is definable ⇔ the cut def. by val(t) in Γ(K ) is rational.

(Indeed, p is determined by pΓ := tpDOAG(γ/Γ(K )), so p is
definable ⇔ pΓ is definable.)
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Definable 1-types in ACVF (cont’d)
I If K (t)/K is an immediate extension, then p is not definable.

(There is no smallest K -definable ball containing t. If p were
definable, the intersection of all (closed or open) K -definable
balls containing t would be definable.)

Corollary
Let K |= ACVF The following are equivalent:
1. K is maximally valued and Γ(K ) ∼= (R,+, <);
2. Any p ∈ S1(K ) is definable;
3. For every n ≥ 1, any p ∈ Sn(K ) is definable.

Proof.
1.⇔ 2. follows from the above. 1.⇒ 3. follows from the detailed
analysis of types in ACVF by Haskell-Hrushovski-Macpherson.
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Definability of types in ACF

Proposition
In ACF, all types over all models are definable.

Proof.
Let K |= ACF and p ∈ Sn(K ).
Let I (p) := {f (x) ∈ K [x ] | f (x) = 0 ∈ p} = (f1, . . . , fr ).
By QE, every formula is equivant to a boolean combination of
polynomial equations. Thus, it is enough to show:

For any d the set of (coefficients of) polynomials g(x) ∈ K [x ] of
degree ≤ d such that g ∈ Ip is definable. This is classical.

Remark
The above result is a consequence of the stability of ACF.
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Equivalent definitions of stability

Definition
A theory T is called stable if there is no formula ϕ(x , y) and tuples
(ai , bi )i∈N (in U) such that U |= ϕ(ai , bj) ⇔ i ≤ j .

Theorem (Shelah)
The following are equivalent:
1. T is stable.
2. There is an infinite cardinal κ such that for every A ⊆ U with
| A |≤ κ one has | S1(A) |≤ κ.

3. All types over all models are definable.

3.⇒ 2. There are ≤|AN | many A-def. types, so κ = 2ℵ0 works.
2.⇒ 1. T unstable ⇒ may code cuts in the type space.
1.⇒ 3. More difficult.
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Examples of stable theories

I ACF, more generally every strongly minimal theory;
I any theory of abelian groups.

Examples of unstable theories

I Every o-minimal theory (e.g. DOAG, RCF);
I the theory of any non-trivially valued field, e.g. ACVF;
I the theory of any pseudofinite field...



Introduction to Model Theory

Definable Types

Stable theories

Examples of stable theories

I ACF, more generally every strongly minimal theory;
I any theory of abelian groups.

Examples of unstable theories

I Every o-minimal theory (e.g. DOAG, RCF);
I the theory of any non-trivially valued field, e.g. ACVF;
I the theory of any pseudofinite field...



Introduction to Model Theory

Definable Types

Stable theories

Examples of stable theories

I ACF, more generally every strongly minimal theory;
I any theory of abelian groups.

Examples of unstable theories

I Every o-minimal theory (e.g. DOAG, RCF);
I the theory of any non-trivially valued field, e.g. ACVF;
I the theory of any pseudofinite field...



Introduction to Model Theory

Definable Types

Stable theories

Examples of stable theories

I ACF, more generally every strongly minimal theory;
I any theory of abelian groups.

Examples of unstable theories

I Every o-minimal theory (e.g. DOAG, RCF);
I the theory of any non-trivially valued field, e.g. ACVF;
I the theory of any pseudofinite field...



Introduction to Model Theory

Definable Types

Stable theories

Examples of stable theories

I ACF, more generally every strongly minimal theory;
I any theory of abelian groups.

Examples of unstable theories

I Every o-minimal theory (e.g. DOAG, RCF);
I the theory of any non-trivially valued field, e.g. ACVF;
I the theory of any pseudofinite field...



Introduction to Model Theory

Definable Types

Stable theories

Uniform definability of types in stable theories
Theorem
Let T be stable and ϕ(x , y) a formula. Then there is a formula
χ(y , z) such that for every type p(x) (over a model) there is b such
that dpϕ(y) = χ(y , b).

Problem
Is Dϕ,χ = {b ∈ U | χ(y , b) is the ϕ-definition of some type}
always a definable set?

Fact
For T stable, all Dϕ,χ are definable iff
for every formula ψ(x , y) (in T eq), there is Nψ ∈ N such that
whenever ψ(U , b) is finite, one has |ψ(U , b) |≤ Nψ.

Corollary
In ACF, the sets Dϕ,χ are definable.



Introduction to Model Theory

Definable Types

Stable theories

Uniform definability of types in stable theories
Theorem
Let T be stable and ϕ(x , y) a formula. Then there is a formula
χ(y , z) such that for every type p(x) (over a model) there is b such
that dpϕ(y) = χ(y , b).

Problem
Is Dϕ,χ = {b ∈ U | χ(y , b) is the ϕ-definition of some type}
always a definable set?

Fact
For T stable, all Dϕ,χ are definable iff
for every formula ψ(x , y) (in T eq), there is Nψ ∈ N such that
whenever ψ(U , b) is finite, one has |ψ(U , b) |≤ Nψ.

Corollary
In ACF, the sets Dϕ,χ are definable.



Introduction to Model Theory

Definable Types

Stable theories

Uniform definability of types in stable theories
Theorem
Let T be stable and ϕ(x , y) a formula. Then there is a formula
χ(y , z) such that for every type p(x) (over a model) there is b such
that dpϕ(y) = χ(y , b).

Problem
Is Dϕ,χ = {b ∈ U | χ(y , b) is the ϕ-definition of some type}
always a definable set?

Fact
For T stable, all Dϕ,χ are definable iff
for every formula ψ(x , y) (in T eq), there is Nψ ∈ N such that
whenever ψ(U , b) is finite, one has |ψ(U , b) |≤ Nψ.

Corollary
In ACF, the sets Dϕ,χ are definable.



Introduction to Model Theory

Definable Types

Stable theories

Uniform definability of types in stable theories
Theorem
Let T be stable and ϕ(x , y) a formula. Then there is a formula
χ(y , z) such that for every type p(x) (over a model) there is b such
that dpϕ(y) = χ(y , b).

Problem
Is Dϕ,χ = {b ∈ U | χ(y , b) is the ϕ-definition of some type}
always a definable set?

Fact
For T stable, all Dϕ,χ are definable iff
for every formula ψ(x , y) (in T eq), there is Nψ ∈ N such that
whenever ψ(U , b) is finite, one has |ψ(U , b) |≤ Nψ.

Corollary
In ACF, the sets Dϕ,χ are definable.



Introduction to Model Theory

Definable Types

Prodefinability

Prodefinable sets

Definition
A prodefinable set is a projective limit D = lim←−i∈I Di of definable
sets Di , with def. transition functions πi ,j : Di → Dj and I some
small index set. (Identify D(U) with a subset of

∏
Di (U).)

We are only interested in countable index sets ⇒ WMA I = N.

Example

1. (Type-definable sets) If Di ⊆ Un are definable sets,
⋂

i∈N Di
may be seen as a prodefinable set: WMA Di+1 ⊆ Di , so the
transition maps are given by inclusion.

2. Uω = lim←−i∈N U i is naturally a prodefinable set.
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Some notions in the prodefinable setting
Let D = lim←−i∈I Di and E = lim←−j∈J Ej be prodefinable.

I There is a natural notion of a prodefinable map f : D → E .

I D is called strict prodefinable if it can be written as a
prodefinable set with surjective transition functions;

I D is called iso-definable if it is in prodefinable bijection with a
definable set.

I X ⊆ D is called relatively definable if there is i ∈ I and
Xi ⊆ Di definable such that X = π−1i (Xi ).

Remark
D is strict pro-definable iff πi (X ) ⊆ Di is definable for every
relatively definable X and any i .
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relatively definable X and any i .
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The set of definable types as a prodefinable set
Assume:

I T has EI and
I uniform definability of types (e.g. T stable)

For any ϕ(x , y) fix χϕ(y , z) such that for any definable type p(x)
we may take dpϕ(y) = χϕ(y , b) for some b = pdpϕq.
⇒ may identify p (more exactly p | U) with the tuple (pdpϕq)ϕ.

Proposition

1. With these identifications, the set of definable n-types Sdef ,n is
naturally a prodefinable set. Moreover, if X ⊆ Un is definable,
denoting Sdef ,X (A) the set of A-definable types on X , Sdef ,X is
a relatively definable subset of Sdef ,n.

2. If all Dϕ,χ are definable, then Sdef ,X strict prodefinable.
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Definable Types

Prodefinability

The space of types in ACF as a prodefinable set

Corollary
Let V be an algebraic variety. There is a strict prodefinable set D
(in ACF) such that for any field K, SV (K ) ∼= D(K ) naturally.

Proposition
1. If V is a curve, then SV is iso-definable.
2. If dim(V ) ≥ 2, then SV is not iso-definable.

Proof sketch.
1. is clear, since SV is the set of realised types (which is always
iso-definable) plus a finite number of generic types.
2. If V = A2, one may show that the generic types of the curves
given by y = xn may not be seperated by finitely many ϕ-types.
The result follows. (The general case reduces to this.)
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