Second International Conference on Valuation Theory

El Escorial (Spain)

On R—places and related topics

Danielle Gondard (Université Paris 6)

gondard@math jussieu.fr

24 juillet 2011



. Background in Real Algebra

. The space of R — places

. Valuation fans

. The real holomorphy ring

. On connected components of M(K)
. Towards abstract R—places

. Open questions



Part |

Background in Real Algebra



Artin-Schreier paper in Crelle Journal (1927) defines real
fields and real-closed fields. Is a basis for Real Agebra
and Real Algebraic Geometry.

Almost no change after ; see Moderne Algebra by Van
der Waerden (1930), Lectures in Abstract Algebra by N.
Jacobson (1964), and Algebra by S. Lang (1965). But
the notion of cone associated to an order came later :
J.P. Serre (1949).

This 1927 paper allowed Artin to solve Hilbert's 17th
problem again in Crelle 1927. This result was reproved
by S.Lang in 1953 using valuations and real places.



K commutative field s.t. —1 ¢ Y K?

&> exists total ordering compatible with field structure
From order <p to positive cone P C K :

a<b& b—ac P ;then P satifies

P+PCP PPCP,PU—-P=K,—-1¢&P
Implying : 0, 1€ P, PN —P = {0}, SK2CP
Any real field must have char K =0

Examples : Q(+/2), R((X)), R(X)...

Nice theorem : 5" K2 = NP;, P; orderings of K



Krull valuation : v : K* — I, I a totally ordered
abelian group (the value group) such that

(1) v(zy) = v(z) + v(y) for any x,y in K*

(2) v(@ + ) > min {v(z), v(y)}, for any @,y in K*,
with z + vy in K*

Valuation ring : A= {a € K |a=0orwv(a) > 0}
Maximal ideal : I = {a € K |a = 0 or v(a) > 0}
Residue field : k = A/I ; Group of units : A* = A\I
A valuation v is real if and only if the residue field k

is formally real (=1 ¢ Y k?). And a field K admits
real valuations if and only if it is a formally real field

(-1¢ > K?)



Given K a formally real field,

P an ordering of K , v a valuation
v is compatible with P

S 141, CP

& Ay is convex with respect to P
& [, is convex with respect to P
& 0<pa<pb=v(a) > v(b) (in value group I').

The trivial valuation is compatible with any P



K a formally real field, I” an ordering, and v a valuation
compatible with P, then P, induced by P in the residue
field ky, is an ordering of ky.

Important example is :

AP)={z€eK|3IreQ, —r<pz<pr}
A(P) is a valuation ring, with maximal ideal

I(PY)={ae K |VreQ",—r<pa<pr}
v valuation associated to A(P) is compatible with P.

P induced by P in the residue field ky = A(P)/I(P)
is an archimedean ordering of k.

The valuation rings compatible with a given P form a
chain under inclusion with smallest element A(P).



Part 11

The space of R- places



Places on a field K :
w: K — FU{oco}

where [ is a field, sum and product are extended to
FU{oo} by + 00 = oo for x € I, and xoo = oo for
r € F*U{oo}

@ is such that ©(1) = 1, and satisfies homomorphism
rules p(z +y) = @) + ¢(y) and p(2y) = ¢(2)e(y)

whenever right side terms are defined.

Real places : same with I’ formally real (or real-

closed).

R—places : same with ' = R.



P ordering of K a formally real field, v valuation asso-
ciated to A(P) ={a € K |3r € Q,—r <pa <pr}
and I(P) ={a € K |Vr € Q*,—r <pa <p r} the
maximal ideal of A(P).

P induces over the residue field ky, = A(P)/I(FP) an
archimedean order P; hence (ky P) can be embedded
uniquely in (IR, R?)

The R — place associated to Pis Ap : K — RU{oco}

defined by the following commutative diagram :
Ap
K — RU {oco}

™™\ ¢

ko U {oo}



Let M (K) denote the space of R—places of K then

M(K)={Ap| P € xx} because any R — place can
be defined as before using an ordering P of K.

The space M(K) is given the coarsest topology such
that the evaluation applications defined Va € K below

are continuous :

eq : M(K) — RU {0}

Ap > Ap(a)
Explicitely : Ap(a) = oo if a & A(P)

and if a € A(P), Ap(a) =inf{r e Q| a <pr}

=sup{r e Q|r <pa}



The space of orderings of a formally real field K is
usually denoted by xz .

It is equipped with the Harrison topology generated by
the open-closed sets :

H(a) ={P € xx | a € P}.

X is a compact, Hausdorff and totally disconnected
space hence a Boolean space.

Craven has shown that every boolean space is isomorphic
to the space of orderings x z of some field K.



The following map A

Pl——>)\p

is continuous, closed and surjective:
M (K) is a compact Hausdorff space.

This topology on the space M(K) of R — places is
also the quotient topology inherited from that of xx
the space of orderings equipped with the usual Harrison
topology.



Theorem (Becker) :

the following are equivalent :
(1) N\ is a bijection ;

(2)Va € K a? €Y K*;

(3) every real valuation of K has a 2-divisible value
group ;

(4) K does not admit any ordering of exact level 2 .



Theorem : The following are equivalent :

(1) Ap = AQ
(2) PN Q is a valuation fan.

(3) P and Q belong to a 2-primary chain of orderings
(2-power levels).

Definition (Harman) : a 2-primary chain of orderings is
(Pn) = (FPo P1, .. Pn,...), Py being a usual order, Pp
an ordering of level 2™ ~1 such that

All the P, induce the same archimedean order I, on the
residue field k, of the valuation v associated to the valua-

tion ring A(FPy) = {CLE K|dreQ —r<p,a<p fr'}
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Valuation fans



K a real field, T' C K is a preordering iff
T+TCT, T.TCT

O,leT and —1¢ 7T

T* = T\ {0} is a subgroup of K*

T is a quadratic preordering < K2cT
T is a level n preordering < K" C T
T is possibly without level

T is compatible with a valuation v & 1+ 1, C T



A preordering 1" is a fan
<= Va ¢ —T holds T +aT CTUal

These preorderings are well behaved for compatibility :
Given v a valuation of a real field K, and T" a preordering
compatible with v : T is a fan in K < T is a fan in k.

Trivialization theorem : T a fan in K then there exists
a valuation v compatible with T inducing in the residue
field ky a trivial fan T (meaning an ordering P, or the
intersection of two orderings Py N P»)

Quadratic case proved by Brocker

Torsion preordering case proved by Becker



A valuation fan is a preordering 'I" such that there ex-
ists a real valuation v, compatible with 'I', inducing an
ordering on the residue field k.

One can even ask 7' induces an archimedean ordering
using A(T) ={x e K |IreQ rxzecT}

- usual orderings (level 1) ;
- higher level orderings (level n, Becker 1978) ;
-T = (A(P)* N P)U{0} (no level).

Original and alternative definition for valuation fan
(Bill Jacob, 1981) is : T preordering such that

Ve d +T holdsl+xz €T orl+xteT



K a formally real field, P C K is an ordering of exact
level n iff :

SK2C PP+ P C P, PP C P (hence P*is a
subgroup of K™)

and we have K*/P* ~ 7 /2nZ.
Level 1 orderings are the total usual orders.

Theorem (Becker) : 3" K= N P

level of P divides n

Theorem (Becker) : Let p be a prime,

S K2 £ Y K2P <= K admits orderings of level p.



Example : K = R((X))

The two usual orders are :

Py =K?UXK?and P = K°U—-XK?

For any prime p there exist two orderings of level p :

P,y =K*UXPK? and P, _ = K?P U —XPK?P



A signature of level n is a morphism of abelian groups

o K* — pioy

such that the kernel is additively closed.

Then P = ker o U {0} is an ordering of higher level, and
its level divides n.

A generalized signature (N. Schwartz 1990) is a mor-
phism of abelian groups

c: K*—{

such that the kernel is a valuation fan



Important level 1 valuation fans are the
1T = NFkF;
where the P; are obtained from the R—place A by

AT ={P | Ap = A}

Q(2%) and R((X)) have isomorphic spaces of order-
ings, but the first one has two IR — places and no
ordering of level 2 and the second one has only one
R — place but has one 2-primary chain of higher level

orderings.



The Baer-Krull Theorem :

Let K be a formally real field, v be a real valuation
of K, and P be an ordering in the residue field k.

Denote by x,p the set of all orderings P, of K in-
ducing the given P in ky.

There is a bijection between x, 7 and Hom(Iy, Z/2),
where [y denotes the value group of v.

As a consequence of the Baer-Krull theorem, if 'y /21

has, as vector space over Z/2, a basis of n classes,
_ n .

then Xy P has 2" elements F; .

Hence the lifting of P to K is unique if and only if
[, is 2—divisible.
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The real holomorphy ring



The real holomorphy ring H(K) of a formally real
field K is defined as the intersection of the real valu-
ation rings of K.

We have also :

(1) H(K) = NA(P) where P ranges over x(K) the
space of orderings of K and

AP)={a € K|3IreQ —r <pa<pr}isthesmall-
est valuation ring compatible with P.

(2) HHK)={ae K|3dnecNs. t n:l:aEZKQ}

(3) H(K) = Ql{1L; | ¢ € 3 K?)]



The real spectrum of H(K) :
Sper H(K) = {« | « prime ordering of H(K) }

A prime ordering is o C H(K) satisfying : a+ao C ¢,
aa C o, HK)? C o, -1 ¢ o, a U ~a = H(K),
a N —a = a prime ideal.

Then « induces on H(K)/p a prime ordering & such
that @ N —a& = {0}, therefore @ extends uniquely to an
ordering of qf(H(K)/p). Conversely given a prime ideal
p and an ordering @ on qf(H(K)/p), we get by restric-
tion to H(K)/p a prime ordering with support {0}, the
preimage in H(K) is a prime ordering with support p.

Hence we have another description of Speri(K) :

{(p,@) | p€ specH(K), @ order of quot(H(K)/p)}



A basis of open sets of the topology on H(K) is
D(ay,..,an) = {a € SperH(K) | a; ¢ —« for all 7}
The topology is compact (does not mean Hausdorff)

a is minimal if there is no B such that 8 # a and 8 C «
3 is maximal if there is no v such that 8 # cand o C 8
MinSperH(K) = {a € Sper H(K) | o minimal}
MaxSperH(K) = {8 € Sper H(K) | 8 maximal}

B is a specialization of o whenever o C 3 .

The specializations of a prime ordering form a chain under
inclusion and a prime ordering is contained in a unique

maximal specialization.



Theorem : the following diagram is commutative
X(K) ey MinSperH(K)
LA Lsp

M(K) "S Hom(H(K),R) & MazSperH(K)

The horizontal mappings are homeomorphisms, and
the vertical one are continuous surjections. The spaces

are compact and M(K) and MaxSperH(K) have
quotient topologies inherited from A and sp.

speri is defined by P — PN H(K),
sp by o — M3,

res by A — Ny and j by ¢ o~ 1( R?).
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On connected components of M (k)



The space of R —places M (K) of a formally real field K
can be totally disconnected (e.g. totally archimedean
fields).

M (K) can be connected like in the case of K = R(X)
or K = R((X)).

Theorem (Harman) : M (K) is connected < M (K (X))
connected < M(K((X)) connected.

Theorem (Schulting) : M(K) and M(K(X)) have
the same number of connected components.

Theorem (Becker-G.) : when the number of connected
components of the space M (K) is finite then it is

1+ logo[K*2 NS K4 (Y K*2)2).



Denote by 7mo(M(K)) the set of connected compo-
nents of the space of real places, using the units of
the real holomorphy ring we have :

| mo(M(K)) |= logol £+ E7]
where E are the units of the real holomorphy ring H(K)
and where ET = EN Y K2

For any formally real field K we can even get :

| mo(M(K)) |= 1+ logo[K*2 N Y K*: (30 K*2)7]

by proving that K*2NY K4/(2 K*2)2 is isomorphic to
E/(ETU-ET).

Behind this is the separation of connected components of
M(K) by elements 3 ¢ 3> K2 such that B2 e S K4,



Theorem (Becker-G.) : Ap and Ag are in two dis-
tinct connected components of M (K) if and only if

P K*(BePN-QetBed K

Lemma : ifexists b, s. t. b¢ Y K? and eSS K4,
then does not exist P € H(b) and () € H(—b) such
that Ap = Ao -

Otherwise b ¢ (PN Q)U —(PNQ) and Ap = Ag
imply that there exists an ordering of level 2, P, such
that P, U —P, = (PNQ)U—(PNQ) with b ¢ P>
hence b ¢ " K* = NPy,

<= Suppose that Ap and A are in the same con-
nected component C of M(K) (P # Q), and that
there exists b € P N —Q with b2 € 3 K%, A being
closed CNA(H (b)) and CNA(H(—b)) are a partition
of C into two non empty closed sets, impossible.



= If Ap and A\ are in C and C’ two distinct con-
nected components, M (K) being compact and Haus-
dorff, there exists an open-closed set U O (' and

Ue = M(K)\U D C'.

Let X = A~1(U) and Y = A~}(U?®), X and Y form
a partition of x(K) ; A being surjective

AL ANY0))) = A D)
hence A"L(A(X)) = X and also A"L(A(Y)) =Y.

By Harman's following lemma "If x(K) = x1 U X2
where x1 and x» are open-closed disjoint sets such
that A1 (A(x1)) = x1 and A"H(A(x2)) = x2 then
there exists a such that x1 = H(a) and xo = H(—a)"
then there exits b such that X = H(b) and ¥ =
H(—b) with b2 € Y. K%, then we have b € PN —Q
and b° € Y, K.



Theorem (Becker-G.) : Let Y be a smooth pro-

jective irreducible variety over R with function field
K = R(Y), and denote |mg(Y(R))| the number of
connected components of Y( R) # 0 then :

| 7o(Y (R)) |= 1+ logo[K* N> K*: (30 K*2)7]

The original proof uses the connected components of
the space of R—places M(K') since we can prove that:

| mo(Y(R)) |=| mo(M(R(Y))) |
and that for the real field K = R(Y):

| mo(M(K)) |= 1+ loga[K*2 N Y K4 (37 K*%)?)

Recall Harnack’s inequality for algebraic curves :

| mo(Y(R)) |< g + 1 with g = (n — 1)(n — 2)/2 for
an algebraic smooth curve of degree n.



Sketch of proof of

| mo(Y(R))) |=] mo(M(R(Y))) |
We use the center map ¢: M(K) — Y ( R) , defined
by ¢(\) = ¢(V)) the unique point = (Y projective)
whose local ring 0, is dominated by V) the valua-
tion ring associated to the R—place. In that case c is
surjective, the central points being the closure of the

regular points. And one can prove that c is continu-
ous.

Brocker proved that the fiber of a central point has
a finite number of connected components, and if x is
regular then the fiber is connected.

Lemma: if an application, from a compact space X
to another compact space Y, is surjective and contin-
uous, and if each fiber is connected, then it induces a
bijection beetween mo(X) and wp(Y).
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Towards abstract R—places



The space of orderings of a field, studied in relation
with quadratic forms and real valuations, have been
the origin of the theory of abstract spaces of orderings

(1979-80) and of Marshall’s problem :

"is every abstract space of orderings the space of or-
ders of some field ?7”

We have shown that -under certain conditions- one
can associate to an abstract space of orderings a " —
structure' (partition of the space of orderings into
subspaces which are fans and such that any fan in-
tersects only one or two classes) corresponding to the
space of R — places in the field case.



An abstract space of orderings is (X, G) where G

is a group of exponent 2 (hence abelian), -1 a distin-

guished element of G, X a subset of Hom(G, {1, —1})
such that :

(1) X is a closed subset of Hom/(G, {1, —1})
(2)Voe X o(—-1)=-1

(3) O'QX kerc =1 (keroc ={a € G|o(a)=1})

(4) f, g quadratic forms over GG

Dx(feg) =
U{Dx (z,y) | =€ Dx(f), ve Dx(9)}
where Dx (f) = {a € G represented by f}, i.e. there exits

gsuchthat f =x (a) P g (f =x hiff f and h have same
dimension, and Vo € X same signature)



Fans can be seen as sets of signatures, then a level

1 fan of four elements is characterized by :

00010903 = 1

4
and it corresponds to the fan 1" = _ﬂl ker o; U {0}.
1=

In the abstract situation an abstract fan is an abstract
space of orderings (X, G) such that

X = {o € Hom(G,{1,~1}) | o(~1) = —1}.

It is characterized by :
Vop,01,09 € X the product ogoiop € X



Definition : a P — structure is an equivalence re-
lation on a space of signatures (X, () such that the
canonical mapping N : X — M (M is the set of
equivalence classes) satisfies :

(1) each fiber is a fan ;

(2) if ogo10003 = 1 then {0g,01,092,03} has a non
empty intersection with at most two fibers

Marshall has shown that every abstract space of or-
derings has a P — structure.

But unlikely the case of the set of R—places in a field,
this P — structure, M, equipped with the quotient
topology is not always Hausdorff.



Theorem (Marshall-G) :

Let (X,G) be a subspace of a space of signatures
(X', G"), with 2-power exponent. For og,01 € X,
define oq ~ o1 if ogoy =12 € X'

Then the following are equivalent :

(1) ~ defines a P — structure on X.

(2) If cgo10903 =1, then :

o is in relation by ~ with exactly one of the 61,092, 03

or o is in relation by ~ with everyone of the 01,09, 03.

Moreover in that case the induced P — structure de-
fined on X by ~ has a Hausdorff topology.



In fields, the space of R—places is determined as soon
as one knows the usual orders and the orderings of
level 2.

Q(Z%) and R((X)) have isomorphic spaces of order-
ings, but the first one has two R — places and no
ordering of level 2 and the second one has only one
R — place but has a 2-primary chain of higher level

orderings.

2-primary chain of higher level orderings start with a
pair of usual orders Py, P, and corresponding 2-level
ordering P» satisfies

PU—-Py=(PyNP)U(=(Fon 1))

For a 2-level ordering a® € Py <= a € P,U—P, ; on
the side of signatures this gives (7 associated to P%)

7(a?) = 7%(a) = op(a)o1(a)



Definition : a space of signatures of level 2" is (X, (),
where G is an abelian group of exponent 2™, and X
contained in Hom(G, puon) = x(G) is such that :

(0) Vo € X, Vk € N with k odd, o € X
(1) X is a closed subset of x(G)
(2)Vo € X o(—1) = —1 (-1 distinguished element)

(3) UQXkera =1 (oukero={a€G|o(a)=1})

(4) f,g forms over GG

Dx(f®g) =
U{Dx (x,y) | =€ Dx(f),y € Dx(9)}
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Open questions



- Does M(K((X))) have the same number of connected
components as M(K) ? (Conjecture : yes)

- In which cases are the connected components of M (K)
homeomorphic ? (conjecture : geometric case at least).
Study the space mg(M(K)) of the connected compo-
nents of M(K).

- Study the space of valuation fans, and its relation with
Sper H(K); recall xj consists of valuation fans F;, and
to a R—place X\ can be associated a valuation fan NF;
where P; € A=1()). Or same question dealing with sig-
natures.

- Try to define a notion of abstract space of valuation
fans and write a theory of abstract R—places. Then
use abstract R—places to solve Marshall's problem of
realizability of abstract spaces of orderings.

- Characterize the topological spaces which are realizable
as spaces of R—places (see Osiak's talk for some results)



