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QUICKSTEP ON NORMALIZATION

Herwig Hauser

Motivation

• a = 1 + 3
√

2 is integral overZ since(a− 1)3 − 2 = 0.
• s(x) =

√
1 + x is integral overR[x] sinces2 − (1 + x) = 0.

• u(t) = t is integral overC[t2, t3] sinceu2 − t2 = 0.
• u(x, y) = x

y is integral overC[x, y]/〈x2 − y3〉 sinceu2 − y = 0.

In order to give sense to the algebraic equations satisfied by the integral elements, these have to belong to some chosen
ring extension.

Algebraic Side

Let R ⊆ S be a ring extension of commutative rings with1R = 1S (often assumed to be Noetherian). An elementa ∈ S

is calledintegral overR (or integrally dependent onR) if and only if a satisfies an equation

an + cn−1a
n−1 + . . . + c1a + c0 = 0 (∗)

with all ci ∈ R. Equivalent:a is integral overR if and only if R[a] is a finitely generatedR-module. The equation(∗) is
called anequation of integral dependencesatisfied bya overR.

• The extensionR ⊆ S is calledintegral if every elementa ∈ S is integral overR.
• R is calledintegrally closed inS, if ervery element inS which is integral overR already belongs toR.
• R is calledintegrally closedif R is integrally closed in Quot(R), the total quotient ring ofR.
• R is callednormal if R is reduced and integrally closed.

Theorem 1. (Finite extensions)Let R ⊆ S be a ring extension and leta1, . . . , ak ∈ S be integral overR. Then
R[a1, . . . , ak] is a finitely generatedR-module.

Proof. Induction onk. Zariski-Samuel, Commutative Algebra, vol. I, p. 255.

Corollary. Let R ⊆ S be a ring extension. ThenR
S

= {a ∈ S; a integral overR} is a subring ofS which containsR,

andR
S

is integrally closed inS.

The ringR
S

is called theintegral closureof R in S. In the case thatS is the total quotient ring ofR we denote the integral
closure ofR by R. The most important case is the one in whichR is an integral domain, its total quotient ring being then
its quotient field.

When dealing with an integrally closed integral domainR (that is, with an integral domain which is integrally closed in its
quotient field) we shall refer toR as anintegrally closed domain. In the case thatR is reduced, we callR thenormalization
of R. Notice that the normalization of a ring is normal.

Corollary. (Transitivity of integral dependence)Let R ⊆ S ⊆ T be ring extensions, withR ⊆ S andS ⊆ T integral.
ThenR ⊆ T is an integral extension.

Proof. Let a be an element ofT , and let

an + cn−1a
n−1 + . . . + c0 = 0

(ci ∈ S) be an equation of integral dependence fora overS. Then the ringS′ := R[c0, . . . , cn−1] is a finiteR-module
(Theorem 1). Sincea is integral overS′, S′[a] is a finiteS′-module, and therefore a finiteR-module. Thereforea is
integral overR.

Example1. A unique factorization domainR is integrally closed. In fact, letxy ∈ Quot(R) for x, y ∈ R be integral over
R; we may assume that gcd(x, y) = 1. Then there existci ∈ R with(

x
y

)n

+ cn−1

(
x
y

)n−1

+ . . . + c1

(
x
y

)
+ c0 = 0.
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We multiply the equation withyn and conclude

xn = −y(cn−1x
n−1 + . . . + c0y

n).

Hencey dividesxn. Since gcd(x, y) = 1 it follows thaty is invertible, and soxy ∈ R.

Example 2. Let R be an integrally closed domain and letA be a multiplicatively closed set of non-zero divisors ofR.
Then the quotient ringRA is integrally closed.

In fact, letx be an element of the common quotient field ofR andRA which is integral overRA. Since any finite number
of elements ofRA has a common denominatord ∈ A there existci ∈ R with

xn + cn−1
d xn−1 + . . . + c1

d x + c0
d = 0.

We multiply the equation withdn and conclude thatdx is integral overR. Thereforedx ∈ R, sinceR is integrally closed.
Now we setz := dx ∈ R and getx = z

d ∈ RA.

Example3. LetR be an integrally closed domain andI a prime ideal inR. Then the residue class ringR/I is in general
not integrally closed. In fact, any finite integral domainK[a1, . . . , an] over a fieldK is of the formR/I, whereR is
the polynomial ringK[x1, . . . , xn], but finite integral domains are not in general integrally closed. For this, consider the
principal idealI = 〈x2 − y3〉. In this case,xy does not belong to the ringK[x, y], but x

y is integral over that ring since
(x

y )2 = y.

Theorem 2. (Structure of integrally closed rings)Let R be a Noetherian integral domain. ThenR is integrally closed if
and only ifR = ∩pRp, wherep runs over all minimal primes ofR and the ringsRp are principal valuation rings.

Proof. Zariski-Samuel I, chap. V, sec. 6; Mumford, The Red Book of Varieties and Schemes, chap. III, sec. 8, p. 272;
Bourbaki, Commutative Algebra, Chap. 7.

Theorem 3. (Normalization Lemma)Let R = K[x1, . . . , xn] be a finite integral domain over a fieldK, and letd be
the transcendence degree ofK(x1, . . . , xn) over K. Then there existd linear combinationsy1, . . . , yd of thexi with
coefficients inK, such thatR is integral overK[y1, . . . , yd].

Proof. Zariski-Samuel I, chap. V, sec. 4, p. 266, for infinite fields. The proof for finite fields is due to Nagata, cf.
Mumford.

The next theorem is the basis for the existence of the normalization of algebraic varietes.

Theorem 4. (Kronecker-Noether)LetR = K[x1, . . . , xn] be a finite integral domain over a fieldk, and letF be a finite

algebraic extension of the quotient fieldK(x1, . . . , xn) of R. Then the integral closureR
F

of R in F is a finite integral
domain overK, and is a finiteR-module.

Proof. Uses the Normalization Lemma. Zariski-Samuel I., chap. V, sec. 4, pp. 264-267; de Jong-Pfister, Local Analytic
Geometry, chap. 1.5, p. 41; Lang, Introduction to Algebraic Geometry, p. 120.

Theorem 5. (Zariski’s Main Theorem)Let R be a local (Noetherian) ring,̂R the completion of R andR the integral
closure ofR. Then the integral closure of̂R is the completion ofR, that is

R̂ = R̂.

Proof. Zariski-Samuel II, chap. VIII, 13, pp. 313-320. See Thm. 12 below for equivalent formulations.

Notice that the normalization of a local ring is not necessarily a local but only a semi-local ring. Zariski-Samuel II, chap.
VIII, sec. 13, Lemma 3, p. 317; de Jong-Pfister, chap. 1.5, Remarks 4.4.4, p. 162.

Theorem 6. (Criterion for Normality, Grauert-Remmert)Let R be a Noetherian reduced ring. LetI =
√

I ⊆ R be a
radical ideal such that I contains a nonzerodivisor ofR andI is contained in all prime idealsp of R for whichRp is not
normal. ThenR is normal if and only if the canonical inclusionR ⊆ HomR(I, I) is an equality.

Proof. de Jong-Pfister, chap. 1.5, p. 38.

The proof uses the following lemma.

Lemma. LetR be a Noetherian reduced ring,̃R its normalization. LetI ⊆ R be an ideal containing a nonzerodivisor of
R. ThenR ⊆ HomR(I, I) ⊆ R. If, moreover,I is radical, thenHomR(I, I) = R ∩HomR(I,R).
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Proof. de Jong-Pfister, chap. 1.5, p. 38, Decker-Greuel-de Jong-Pfister, p. 2.

Example4. LetR = K[x, y]/〈x · y〉 andI = 〈x, y〉 and setu = x
x+y . ThenR[u] = HomR(I, I). Cf. de Jong-Pfister, p.

40.
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Geometric side

In this section, we assume thatK is an algebraically closed field. LetX be an affine variety overK (i.e., an integral
scheme of finite type overK) and letK[X] = K[x1, . . . , xn]/I be the affine coordinate ring ofX (I ≤ K[x1, . . . , xn]
prime ideal). We denote the local ring ofX ata ∈ X byOa, sayOa = K[X]Ma .

A point a ∈ X is called anormal point ofX, or X is said to benormal at a, if the ringOa is integrally closed in its
quotient fieldK(X). X is callednormal if it is normal at every point. Note that a varietyX is normal if and only if its
affine coordinate ringK[X] is integrally closed in the function fieldK(X). In fact, an intersection of integrally closed
rings is integrally closed again and for any domainR, R = ∩pRp, the intersection running over allp ⊆ R prime.

Example5. Any regular point ofX is a normal point.

Example6. The cuspx2 = y3 is not normal at0. (Compare with example 3.)

Example 7. The nodex2 = y2 + y3 is not normal at0. In fact,u := x
y does not belong to the ringO0, butu is integral

overK(X) sinceu2 = 1 + y. Shafarevich, Basic Algebraic Geometry, p. 109, Mumford, chap. III, sec. 8, p. 279.

Theorem 7. LetX be a normal variety and letS = Sing(X) ⊆ X be the singular locus ofX. ThencodimX(S) ≥ 2.

Proof. Mumford, chap. III, sec. 8, p. 273; Shafarevich, p. 111.

Corollary. LetX be a curve. ThenX is non-singular if and only ifX is factorial if and only ifX is normal.

A varietyX is said to benon-singular in codimension 1if codimX(S) ≥ 2.

Theorem 8. Let X ⊆ An be an irreducible affine hypersurface, or, more generally, a complete intersection. ThenX is
non-singular in codimension1 if and only ifX is normal.

Proof. Mumford, chap. III, sec. 8, p. 274; de Jong-Pfister, chap. 6.5, Cor. 9, p. 263.

Example8. The conex2 + y2 = z2 is singular at0, not factorial, but normal, by Theorem 9. Mumford, chap. III, sec. 8,
p. 277.

Example9. The surface in4-space of equationsx2y − z2 = y3 − w2 = 0 is regular in codimension1, but not normal at
0. Mumford, chap. III, sec. 8, p. 275. See Shafarevich, p. 112, for another example.

Example10. x2 + y2 + z2 + v2 + w2 = 0 is factorial and singular at0. Mumford, chap. III, sec. 7, p. 277.

Example11. x2 + y3 + z5 = 0 has an isolated singularity in0, it is factorial hence normal, Shafarevich, p. 112.

Example12. xy − zw = 0 is a normal at0, but not factorial. Mumford, chap. III, sec. 9, p. 291.

Example13. The Whitney-umbrellax2 = y2z has thez-axis as singular locus and is hence not normal.

For an example of integral closures in ring extensions different from the quotient field, see Mumford, p. 279, and
Shafarevich, p. 126.
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Let X be an affine variety and letL be a finite algebraic extension ofK(X). A normalization ofX in L is a normal
variety X̃ with function fieldK(X̃) = L, plus a finite surjective morphismπ : X̃ → X such that the induced map
π∗ : K(X) → K(X̃) = L is the given inclusion ofK(X) in L. If L = K(X), so thatπ is birational,X̃ andπ are simply
called anormalization of X.

Theorem 9. (Normalization)For every varietyX and every finite algebraic extensionL of K(X), there is one and only
one normalization ofX in L: if πi : X̃i → X were 2 normalizations ofX then there is a unique isomorphismt : X̃1 → X̃2

such thatπ1 = π2 ◦ t and such thatt∗ is the identity map fromL to L.

Proof. Pass to th affine case and use the finiteness ofK[X]. Mumford, chap. III, sec. 8, p. 277; Shafarevic, chap. II, sec.
5.2, p. 113.

Example13. The Whitney-umbrellax2 = y2z has normalization with coordinate ringK[X][u] for u = x
y .

Theorem 10.The set of normal points of a variety is open.

Proof. Mumford, chap. III, 8, p. 278.

Question: Are there natural equations for the non-normal locus of a variety?

Theorem 11. If X is a projective variety, then its normalization in any finite algebraic extensionL ⊇ K(X) is a projective
variety.

Proof. Via Segre embeddingsof projective varieties. Mumford, chap. III, sec. 8, pp. 280-284; Shafarevich, pp. 120-122
for curves, Lang, pp. 134-139.

Theorem 12. (Zariski’s Main Theorem)
Original form: Let X be a normal variety overK and letf : Y → X be a birational morphism with finite fibres from a
varietyY to X. Thenf is an isomorphism ofY with an open subsetU ⊆ X.

Topological form:LetX be a normal variety overC, and leta ∈ X be a closed point. LetS be the singular locus ofX.
Then there is a basis{Ui} of complex neighbourhoods ofa such thatUi \ Ui ∩ S is connected, for all i.

Power series form:LetX be a normal variety overK and leta ∈ X be a normal point (not necessarily closed). Then the
completionÔX,a is an integral domain, integrally closed in its quotient field.

Grothendieck’s form:Let f : Y → X be a morphism of varieties overK with finite fibres. Then there exists a map
g : Z → X whereZ is variety,Y is an open set inY andg is afinite morphism.

Connectedness Theorem:LetX be a variety overK, normal at a closed pointa. Letf : Y → X be a birational proper
morphism. Thenf−1(a) is a connected set (in the Zariski topolgy).

Proof. Mumford, chap. III, sec. 9, pp. 286-295; Zariski-Samuel, pp. 313-320; EGA, chap. III, 4.3, and IV, Lang, p. 124.
The original proof of Zariski appeared in: Theory and applications of holomorphic functions on algebraic varieties over
arbitrary ground fields. Memoirs Amer. Math. Soc. 1951.

Analytic Side

Let X ⊂ Cn be an analytic variety. A holomorphic functionf : X \ Sing(X) → C is weakly holomorphicon X if it is
locally bounded at all points ofX (i.e., for alla ∈ X, there is a neighborhoodU of a in X so thatf|U is bounded). The
setÕX,a of germs of weakly holomorphic functions onX at a pointa ∈ X forms an overring ofOX,a.

Example14. ForX be the union of the two coordinate axes inC2, the functionf = x
x+y on X \ Sing(X) is weakly

holomorphic onX.

Theorem 13.The ringÕX,a equals the integral closureOX,a ofOX,a, andX is normal ata if and only ifÕX,a = OX,a.

Proof. De Jong-Pfister, chap. 4.4, p. 167. Compare the assertion with the Riemann Extension Theorem for manifolds, cf.
de Jong-Pfister, pp. 84-85:

If U ⊆ Cn is open and connected,X ⊂ U analytic,f : U \ X → C analytic and locally bounded at all pointsa ∈ U ,
thenf has an analytic extension toU . Similarly, forn ≥ 2 anda ∈ U , any analyticf : U \ {a} → C has an analytic
extension toU .
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