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QUICKSTEP ON NORMALIZATION

Herwig Hauser

Motivation

e a=1+3y2isintegral overZ since(a — 1)3 — 2 = 0.

e s(x) =+/1+ xisintegral oveiR[z] sinces? — (1 + z) = 0.

e u(t) = tisintegral overC[t?, t3] sinceu? — 2 = 0.

e u(z,y) = 7 isintegral overClz,y]/(x? — y3) sinceu? —y = 0.

In order to give sense to the algebraic equations satisfied by the integral elements, these have to belong to some chosen
ring extension.

Algebraic Side

Let R C S be aring extension of commutative rings with = 1 (often assumed to be Noetherian). An elemest .S
is calledintegral overR (or integrally dependent oR) if and only if ¢ satisfies an equation

a4 cp_1a ..+ cat+co=0 (%)
with all ¢; € R. Equivalent:a is integral overR if and only if R[a] is a finitely generated&-module. The equatiofx) is
called arequation of integral dependensatisfied by over R.

The extensio? C S is calledintegral if every element: € S is integral overR.

R is calledintegrally closed inS, if ervery element in5 which is integral overR already belongs t&.
R is calledintegrally closedf R is integrally closed in QuoR), the total quotient ring oR.

R is callednormalif R is reduced and integrally closed.

Theorem 1. (Finite extensions)et R C S be a ring extension and let;,...,a; € S be integral overR. Then
Rlay, ..., a] is afinitely generated?-module.

Proof. Induction onk. Zariski-Samuel, Commutative Algebra, vol. |, p. 255.

Corollary. Let R C S be a ring extension. TheR® = {a € S;aintegral overR} is a subring ofS which containsR,
andR’ is integrally closed inS.

The ringﬁs is called thantegral closureof R in S. In the case that is the total quotient ring oR we denote the integral
closure ofR by R. The most important case is the one in whigls an integral domain, its total quotient ring being then
its quotient field.

When dealing with an integrally closed integral doma&ifthat is, with an integral domain which is integrally closed in its
quotient field) we shall refer t& as arintegrally closed domainin the case thak is reduced, we calk thenormalization
of R. Notice that the normalization of a ring is hormal.

Corollary. (Transitivity of integral dependenceépt R C S C T be ring extensions, witlk C S andS C T integral.
ThenR C T is an integral extension.

Proof. Let a be an element df’, and let
a” 4+ cp1a" P+ =0

(¢; € S) be an equation of integral dependencedaver S. Then the ringS” := R]co, . .., ¢,—1] is a finite R-module
(Theorem 1). Since is integral overS’, S’[a] is a finite S’-module, and therefore a finitB-module. Therefore is
integral overR.

Example 1. A unique factorization domaift is integrally closed. In fact, lef € Quot(R) for z,y € R be integral over
R; we may assume that gee y) = 1. Then there exist; € R with

n n—1
(g) +enot (i) foota (5) +co=0.
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We multiply the equation witly™ and conclude
2" = —y(cp_12" 1t + ..+ coy™).
Hencey dividesz™. Since gcdzx, y) = 1 it follows thaty is invertible, and sg € R.

Example 2. Let R be an integrally closed domain and létbe a multiplicatively closed set of non-zero divisorsiaf
Then the quotient rind 4 is integrally closed.

In fact, letz be an element of the common quotient fieldand R 4 which is integral oveiR 4. Since any finite number
of elements of? 4 has a common denominatére A there exist; € R with

N Cn—1,n—1 c1 Co
x —|——d x +...+dx+d =

We multiply the equation witkd™ and conclude thatz is integral overR. Thereforedx € R, sinceR is integrally closed.
Now we set: := dr € Rand getr = % € Rx.

Example 3. Let R be an integrally closed domain afd prime ideal inR. Then the residue class rifgy I is in general

not integrally closed. In fact, any finite integral domahfia, ..., a,] over a fieldK is of the formR/I, whereR is

the polynomial ringK[z1, . . . , ], but finite integral domains are not in general integrally closed. For this, consider the
principal ideall = (z? — »3). In this case;; does not belong to the ring [, y], but % is integral over that ring since
(£)?=y.

Theorem 2. (Structure of integrally closed ringgpt R be a Noetherian integral domain. Théis integrally closed if

and only ifR = N, R, wherep runs over all minimal primes aR and the ringsR,, are principal valuation rings.

Proof. Zariski-Samuel I, chap. V, sec. 6; Mumford, The Red Book of Varieties and Schemes, chap. lll, sec. 8, p. 272;
Bourbaki, Commutative Algebra, Chap. 7.

Theorem 3. (Normalization Lemma)Let R = KJz4,...,z,] be a finite integral domain over a field, and letd be
the transcendence degree Bf(z4,...,z,) over K. Then there exist linear combinationsgy,, ..., yq of thex; with
coefficients ink, such thatr is integral overK [y, . .., y4)-.

Proof. Zariski-Samuel I, chap. V, sec. 4, p. 266, for infinite fields. The proof for finite fields is due to Nagata, cf.
Mumford.

The next theorem is the basis for the existence of the normalization of algebraic varietes.

Theorem 4. (Kronecker-Noetherlet R = K|z, ..., z,] be afinite integral domain over a field and letF' be a finite
algebraic extension of the quotient fiehl(x1, . .., z,,) of R. Then the integral closurg” of Rin F is a finite integral
domain overk, and is a finiteR-module.

Proof. Uses the Normalization Lemma. Zariski-Samuel |., chap. V, sec. 4, pp. 264-267; de Jong-Pfister, Local Analytic
Geometry, chap. 1.5, p. 41; Lang, Introduction to Algebraic Geometry, p. 120.

Theorem 5. (Zariski's Main Theorem).et R be a local (Noetherian) ringR the completion of R and& the integral
closure ofR. Then the integral closure dt is the completion oR, that is

R=R.
Proof. Zariski-Samuel Il, chap. VIII, 13, pp. 313-320. See Thm. 12 below for equivalent formulations.

Notice that the normalization of a local ring is not necessarily a local but only a semi-local ring. Zariski-Samuel II, chap.
VIIl, sec. 13, Lemma 3, p. 317; de Jong-Pfister, chap. 1.5, Remarks 4.4.4, p. 162.

Theorem 6. (Criterion for Normality, Grauert-Remmertet R be a Noetherian reduced ring. Lét= /I C R be a
radical ideal such that | contains a nonzerodivisor/®fnd! is contained in all prime ideals of R for which R,, is not
normal. ThenR is normal if and only if the canonical inclusiaR C Homg(1, I) is an equality.

Proof. de Jong-Pfister, chap. 1.5, p. 38.
The proof uses the following lemma.
Lemma. Let R be a Noetherian reduced ring its normalization. Lef C R be an ideal containing a nonzerodivisor of

R. ThenR C Hompg(I,I) C R. If, moreover/ is radical, thenHomg(I,I) = RN Homg(I, R).
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Proof. de Jong-Pfister, chap. 1.5, p. 38, Decker-Greuel-de Jong-Pfister, p. 2.

Exampled. LetR = K|z, y]/(z -y) and] = (z,y) and setu = 7. ThenR[u] = Homg(I, I). Cf. de Jong-Pfister, p.
40. '
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Geometric side

In this section, we assume that is an algebraically closed field. Léf be an affine variety oveK (i.e., an integral
scheme of finite type ovek) and letK[X] = K|z, ...,x,]/I be the affine coordinate ring & (I < K|[z1,...,x,)
prime ideal). We denote the local ring &fata € X by O,, sayO, = K[X], -

A pointa € X is called anormal point of X, or X is said to benormal at g if the ring O, is integrally closed in its
quotient fieldK (X). X is callednormalif it is normal at every point. Note that a variey is normal if and only if its
affine coordinate ring<[X] is integrally closed in the function fiel# (X). In fact, an intersection of integrally closed
rings is integrally closed again and for any dom&nk = N, R,, the intersection running over allC R prime.

Example5. Any regular point ofX is a normal point.
Example6. The cusp:? = 32 is not normal ab. (Compare with example 3.)

Example 7. The noder? = y? + 2 is not normal ab. In fact,u := £ ,, does not belong to the rin@,, butu is integral
over K (X) sinceu? = 1 + y. Shafarevich, Basic Algebraic Geometry, p. 109, Mumford, chap. Ill, sec. 8, p. 279.

Theorem 7. Let X be a normal variety and le¥ = Sing(X) C X be the singular locus aX. Thencodimx (S) > 2.
Proof. Mumford, chap. Ill, sec. 8, p. 273; Shafarevich, p. 111.

Corollary. Let X be a curve. ThetX is non-singular if and only ifX is factorial if and only if X is normal.

A variety X is said to benon-singular in codimensionit codimx (S) > 2.

Theorem 8. Let X C A™ be an irreducible affine hypersurface, or, more generally, a complete intersection. XTlren
non-singular in codimensionif and only if X is normal.

Proof. Mumford, chap. lll, sec. 8, p. 274; de Jong-Pfister, chap. 6.5, Cor. 9, p. 263.

Example8. The coner? + y? = 2?2 is singular ab, not factorial, but normal, by Theorem 9. Mumford, chap. Ill, sec. 8,
p. 277.

Example9. The surface id-space of equationg®y — 22 = 3 — w? = 0 is regular in codimensioh, but not normal at
0. Mumford, chap. lll, sec. 8, p. 275. See Shafarevich, p. 112, for another example.

Example 10. 2% + y? + 22 + 0% + w? = 0 is factorial and singular & Mumford, chap. Ill, sec. 7, p. 277.
Example 11. 2% + ¢ + 2° = 0 has an isolated singularity iy it is factorial hence normal, Shafarevich, p. 112.
Example12. xy — zw = 0 is a normal ab, but not factorial. Mumford, chap. Ill, sec. 9, p. 291.

Example 13. The Whitney-umbrella? = y2z has thez-axis as singular locus and is hence not normal.

For an example of integral closures in ring extensions different from the quotient field, see Mumford, p. 279, and
Shafarevich, p. 126.



Let X be an affine variety and Igt be a finite algebraic extension &f(X). A normalization ofX in L is a normal
variety X with function field K ( ~) = L, plus a finite surjective morphism : X — X such that the induced map
7 : K(X) — K(X) = Lis the given inclusion of (X) in L. If L = K(X), so thatr is birational, X andx are simply
called anormalization of X

Theorem 9. (Normalization)For every varietyX and every finite algebraic extensidnof K (X), there is one and only
one normalization oX in L: if m; : X; — X were 2 normalizations o then there is a unique isomorphigsm X; — X,
such thatr; = 7 o t and such that* is the identity map frond. to L.

Proof. Pass to th affine case and use the finiteneds[6f]. Mumford, chap. Ill, sec. 8, p. 277; Shafarevic, chap. Il, sec.
5.2, p. 113.

Example 13. The Whitney-umbrella? = 32z has normalization with coordinate ridg[X|[u] for u = .
Theorem 10. The set of normal points of a variety is open.

Proof. Mumford, chap. lll, 8, p. 278.

Question: Are there natural equations for the non-normal locus of a variety?

Theorem 11.If X is a projective variety, then its normalization in any finite algebraic extension K (X ) is a projective
variety.

Proof. Via Segre embeddings projective varieties. Mumford, chap. IIl, sec. 8, pp. 280-284; Shafarevich, pp. 120-122
for curves, Lang, pp. 134-139.

Theorem 12. (Zariski’s Main Theorem)
Original form: Let X be a normal variety ovek and letf : Y — X be a birational morphism with finite fibres from a
varietyY to X. Thenf is an isomorphism of” with an open subséf C X.

Topological form:Let X be a normal variety ove€, and leta € X be a closed point. Lef be the singular locus oX.
Then there is a basi§U; } of complex neighbourhoods @fsuch that; \ U; N S is connected, for all i.

Power series formtet X be a normal variety oveK and leta € X be a normal point (not necessarily closed). Then the
completionOx , is an integral domain, integrally closed in its quotient field.

Grothendieck’s form:Let f : Y — X be a morphism of varieties ovdf with finite fibres. Then there exists a map
g : Z — X whereZ is variety,Y is an open set i” and g is afinite morphism.

Connectedness Theorernet X be a variety overk, normal at a closed point. Letf : Y — X be a birational proper
morphism. Therf~!(a) is a connected set (in the Zariski topolgy).

Proof. Mumford, chap. Ill, sec. 9, pp. 286-295; Zariski-Samuel, pp. 313-320; EGA, chap. Ill, 4.3, and IV, Lang, p. 124.
The original proof of Zariski appeared in: Theory and applications of holomorphic functions on algebraic varieties over
arbitrary ground fields. Memoirs Amer. Math. Soc. 1951.

Analytic Side

Let X C C” be an analytic variety. A holomorphic functigh: X \ Sing(X) — C is weakly holomorphion X if it is
locally bounded at all points oX’ (i.e., for alla € X, there is a neighborhodd of a in X so thatf|;; is bounded). The
setOx , of germs of weakly holomorphic functions dn at a pointa € X forms an overring 0Ox .

Examplel4. ForX be the union of the two coordinate axesG#, the functionf = #y on X \ Sing(X) is weakly
holomorphic onX.

Theorem 13.The ring@X,a equals the integral closu@x , of Ox ., and X is normal ata if and only if(’)X,a = Oxq.

Proof. De Jong-Pfister, chap. 4.4, p. 167. Compare the assertion with the Riemann Extension Theorem for manifolds, cf.
de Jong-Pfister, pp. 84-85:

If U C C™ is open and connected C U analytic, f : U \ X — C analytic and locally bounded at all pointse U,
then f has an analytic extension d. Similarly, forn > 2 anda € U, any analyticf : U \ {a} — C has an analytic
extension td/.



