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Definition 1. Let X be a topological space. A presheaf over X is a functor F : Op(X)op → Sets, such
that F(∅) = {∗}. Where Sets is the category of sets, {∗} denotes a set with one element and Op(X) is the
category with objects the open sets of X and arrows the inclusions. Op(X)op denotes the oposite category:
same objects and reversed arrows.
A morphism of presheaves is a morphism in the functor category.

F : Op(X)op → Sets
U → F(U) = Γ(U,F)

Every element of s ∈ F(U) is called a section of F in U . In the literature is used also the notation
Γ(F , U) = F(U).
If V ⊂ U are two open sets, the restriction morphism is:

U ⊃ V
↓ ↓

F(U) → F(V )
s → s|V

Definition 2. A presheaf F is a sheaf if the following condition holds for every open set U :

• Given any open covering {Ui}i∈I of U and given sections si ∈ F(Ui) such that si|Ui∩Uj = sj |Ui∩Uj
then

there exists a unique section s ∈ F(U) such that s|Ui = si.

One may define in a similar way presheave and sheaves of Groups, Rings, Modules, just by changing the
category of sets by the corresponding category.

Exercise 3. Let X be an algebriac variety over a field k. We define a sheaf O on X: For every open U ,
O(U) is the set of regular functions defined in U → k. Recall that regular functions are the functions which
are locally a quotient of polynomials (of the same degree if X ⊂ Pn).
It is obvious that O is a presheaf if we consider the usual restrictions of functions.
Prove that O is a sheaf.
Hint: By patching one obtains a function, which is a regular function by definition.

Example 4. A presheaf which is not a sheaf.
Let X be a topological space and let A be a fixed set. Define F(U) = A for every open set U . Is is trivial
that F is a presheaf, the constant presheaf.
But F is not a sheaf. Let U = U1∪U2 be an open set with two connected components, U1∩U2 = ∅, Consider
two sections si ∈ A = F(Ui), i = 1, 2. If s1 6= s2 there is not any section s ∈ A = F(U) with s|Ui = si.
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Definition 5. We recall the definitions of limit and colimit in a category C.
Given objects {Ci}i∈I and morphisms {fij : Ci → Cj}(i,j)∈Λ, with Λ ⊂ I × I. One may define the limit and
the colomit of the Ci’s (w.r.t the morphisms fij):
The limit lim←−i∈I Ci, if it exists, is an object C together with morphisms fi : C → Ci such that:

• For every object A and morphisms gi : A→ Ci such that fijgi = gj for every (i, j) ∈ Λ, there exists a
unique morphism g : A→ C with gi = fig, for any i ∈ I.
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The colimit lim−→i∈I Ci, if it exsits, is an object C together with morphisms fi : Ci → C such that:

• For every object A and morphisms gi : Ci → A such that gjfij = gi for every (i, j) ∈ Λ, there exists a
unique morphism g : A→ C with gi = gfi, for any i ∈ I.
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We say that the limit is filtered if for every (i, j) ∈ Λ there is a k ∈ I with (k, i), (k, j) ∈ Λ.
The colimit is cofiltered if for every (i, j) ∈ Λ there is a k ∈ I with (i, k), (j, k) ∈ Λ.

A special case of limit and colimit is when Λ = ∅, we do not have morphisms fij . In this case the limit is
called product and the colimit is the coproduct.

Definition 6. Let F be a presheaf and let x ∈ X. The stalk of F at the point x is

Fx = lim−→
U3x
F(U)

The stalk Fx contains all the germs of sections at the point x. Every element s̄ ∈ Fx is an equivalence
class, a representant is a pair (s, U) where s ∈ F(U) and x ∈ U . Two representants (s1, U1), (s2, U2) are
equivalent if s1|U1∩U2 = s2|U1∩U2 in F(U1 ∩ U2).
If s ∈ F(U) is a section and x ∈ U , the natural map F(U)→ Fx sends s to the germ, which we will denote
by sx.

Exercise 7. Let F and G be two sheaves on X. If ϕ : F → G is morphism of sheaves then prove that for
any x ∈ X it induces naturally a morphism on the stalks ϕx : Fx → Gx.

Proposition 8. Let F and G be two sheaves on X. A morphism of sheaves ϕ : F → G is an isomorphism
if and only if for every x ∈ X the induced morphism ϕx : Fx → Gx is an isomorphism.
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Proof. If ϕ is isomorphism, there is an inverse ϕ−1 and then for every x ∈ X ϕ−1
x is the inverse of ϕx.

Conversely, assume now that ϕx is an isomorphism for all x ∈ X.
Let U ⊂ X be an open set. First we prove that ϕ(U) is injective. Consider two sections s1, s2 ∈ F(U) such
that t = ϕ(U)(s1) = ϕ(U)(s2). For any point x we have ϕx(s1,x) = ϕx(s2,x) = tx so that by hypothesis
s1,x = s2,x for all x ∈ U . For every x ∈ U there is an open set x ∈ Vx ⊂ U such that s1|Vx = s2|Vx . Now
{Vx}x∈U is a covering of U and by the sheaf property s1 = s2.
Now we construct the inverse ϕ−1(U) : G(U)→ F(U) for any open set U .
Let t ∈ G(U) and consider the germ tx ∈ Gx at every x ∈ U . Let sx = ϕ−1

x (tx), the germ sx has a representant
s(x) ∈ F(Vx) for some open x ∈ Vx ⊂ U . The sections ϕ(Vx)(s(x)) and t|Vx represent the same germ tx at
x, so that we may assume that Vx is small enough such that ϕ(Vx)(s(x)) = t|Vx .
We have section s(x) ∈ F(Vx), where {Vx}x∈U is a covering of U . We want to prove that they patch to a
section s ∈ F(U). If x, y ∈ U the restrictions s(x)|Vx∩Vy and s(y)|Vx∩Vy are such that

ϕ(Vx ∩ Vy)
(
s(x)|Vx∩Vy

)
= ϕ(Vx ∩ Vy)

(
s(y)|Vx∩Vy

)
We have already prove that ϕ(Vx∩Vy) is injective, so that s(x)|Vx∩Vy

= s(y)|Vx∩Vy
and the sections {s(x)}x∈U

patch to a unique section s ∈ F(U).
We have defined maps G(U) → F(U) for U ∈ Op(X). Exercise: check that those maps are (ϕ(U))−1 and
they define a map of sheaves G → F inverse of ϕ.

Definition 9. Let F be a presheaf. The associated sheaf to F is a sheaf F+ together with a morphism of
presheaves θ : F → F+ such that:

• For any sheaf G and any morphism of presheaves ϕ : F → G there is a unique morphism ψ : F+ → G
with ϕ = ψθ.

F
θ
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ψ
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Proposition 10. The sheaf associated to a presheaf exists and it is unique up to isomorphism.

Proof. Let E = tx∈XFx. Define F+(U) as the set of maps s : U → E such that

• s(x) ∈ Fx, for all x ∈ U .

• s is locally given by sections of F . More precisely for every x ∈ U there is a neighborhood x ∈ V ⊂ U
and a section t ∈ F(V ) such that s(y) = ty for all y ∈ V .

Exercise 11. Check that F+ is a sheaf and it satisfies the universal property of the definition 9.

Exercise 12. Let F be a sheaf. Prove that the associated sheaf to F is F+ = F .

Exercise 13. Consider the presheaf of 4. Prove that the associated sheaf F+ is the following: If U is an
open set with r connected components, then

F+(U) = At r· · · tA

Definition 14. Let f : X → Y a continuous map.
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• If F is a sheaf on X, we define the direct image sheaf f∗F :

f∗F(V ) = F
(
f−1(V )

)
, V ∈ Op(Y )

• If G is a sheaf on Y , we define the sheaf inverse image f−1(G) as the associated sheaf to the presheaf:

U → lim−→
V⊃f(U)

G(V ), U ∈ Op(X)

Example 15. A sheaf G such that the inverse image presheaf is not a sheaf.
Assume that U = U1 ∪ U2 is a union of two connected components and W = f(U1) = f(U2) is an open set
of Y .

f−1G(Ui) = lim−→
V⊃f(Ui)

G(V ) = G(f(Ui)) = G(W ), i = 1, 2

lim−→
V⊃f(U)

G(V ) = G(W )

f−1G(U) = G(W ) t G(W )

Exercise 16. Construct explicitly the previous example.

Proposition 17. Let f : X → Y be a continuous map.

1. If F is a sheaf on X, there is a natural morphism of sheaves on X, f−1f∗F → F .

2. If G is a sheaf on Y , there is a natural morphism of sheaves on Y , G → f∗f
−1G.

3. Let F be a sheaf on X and G be a sheaf on Y . There is a natural bijection of sets:

HomX(f−1G,F) ∼= HomY (G, f∗F)

Proof. 1. If U ∈ Op(X),

f−1f∗F(U) = lim−→
V⊃f(U)

f∗F(V ) = lim−→
V⊃f(U)

F(f−1(V ))→ F(U)

where the last arrow comes from f−1(V ) ⊃ U . Then we have a map of presheaves and the universal
property of 9 gives the result.

2. Let V ∈ Op(Y ),
G(V )→ lim−→

W⊃f(f−1(V ))

G(W ) = f−1G(f−1(V )) = f∗f
−1G(V )

the first arrow comes from V ⊃ f(f−1(V )). This map of presheaves induces a map of sheaves.

3. It follows from the previous results.

Definition 18. An étalé space over a topological space X is a topological space E togheter with a
morphism Π : E → X such that for any point ξ ∈ E there exists a neighborhood W ⊂ E such that Π|W
defines an homeomorphism to an open set of X.
A section of the étalé space is a continuous map s : U → E defined in an open set U of X such that
Π ◦ s = IdU .
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It is easy to check that the sections of the étalé space form a sheaf on X, which we will denoted by F(E).

Proposition 19. Let F be a presheaf. Define E = tx∈XFx and Π : E → X the natural projection. For
every open set U , and every section s ∈ F(U), we define s : U → E as s(x) = sx. Give to E the strongest
topology such that the maps s are continuous.
Then E is an étalé space. Moreover the sheaf F(E) is the sheaf F+ associated to the presheaf F .

Proof. Exercise.

Exercise 20. The category of sheaves on X is equivalent to the category of étalé spaces over X.
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