
SEDANO 2005: AN INTRODUCTION TO CONSTRUCTIVE
DESINGULARIZATION.

ORLANDO EUGENIO VILLAMAYOR

In these notes we prove two important Theorems of algebraic geometry over fields of char-
acteristic zero:

1) Desingularization (or Resolution of singularities).
2) Embedded Principalization or Log-Resolution of ideals.
Both results, stated in Theorems 1.2 and 1.3, are due to Hironaka. We focus here on the

proof in [15], which is more elementary than that of Hironaka. In fact, it avoids the use of
Hilbert Samuel functions, and of normal flatness.

Hironaka’s proof of both theorems is existential; he proves that every singular variety, over
a field of characteristic zero, can be desingularized. Our proof of the theorems is constructive,
in the sense that we provide an algorithm to achieve such desingularization. We refer to [5]
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and to [16] for two computer implementations. Bodnár-Schicho’s implementation available
at

http://www.risc.uni-linz.ac.at/projects/basic/adjoints/blowup

There are several other proofs of these two theorems, which also provide an algorithm: [3],
[10], [12], [25], and [27].

These notes are written as an introduction to the subject. Resolution of singularities is
based on a peculiar form of induction. In the case of resolution of hypersurfaces this form
of induction was stated clear and explicitly by Abhyankar, in what is called a Tschirnhausen
transformation.

We will focus on this point in Part 1, where we discuss examples of this form of induction,
with some indication on how it provides inductive invariants. These invariants are gathered
in our resolution functions, and we prove the two Main Theorems 1.2 and 1.3 by extracting
natural properties from these functions. In Part II we prove results which were motivated
through examples in the first Part. In Part III we introduce the resolution functions. A
mild technical aspect appears in Part II, where the behavior of derivations and monoidal
transformations are discussed. But essentially the first three parts are intended to provide a
conceptual (non-technical) and self-contained introduction to desingularization.

The algorithm in these notes is equivariant, and it also extends to étale topology. However
we do not study these properties in these introductional notes, and we refer to [8] and [14]
for the study of these and of further properties of this proof. Among these further properties
discussed in those cited papers, there is a new and remarkable formulation of embedded
desingularization, with a strong algebraic flavor, obtain in [10] (see 4.4 in these notes).

We finally refer to the notes of D. Cutkosky [11], H. Hauser [19], and K. Matsuki [23], for
other introductions to desingularization theorems.

The picture in the front page, of the surface x2 − z3 = y2z2, was produced by Sebastian
Gann, University of Innsbruck, Austria (FWF project P15551).

1. First definitions and formulation of Main Theorem.

The set of regular points, of a reduced scheme of finite type over a field, is a dense open
set.

Definition 1.1. We say that a birational morphism of reduced irreducible schemes

(1.1.1) X
π←− X ′

is a desingularization of X if:
i) π defines an isomorphism over the open set U = Reg(X) of regular points.
ii) π is proper, and X ′ is regular.

We will prove the existence of desingularizations, over fields of characteristic zero, by
proving a theorem of embedded desingularization in Theorem 1.2. There we view an irreducible
scheme as a closed subscheme in a smooth scheme W .

Let W1
π←− W2 be a proper birational morphism of smooth schemes of dimension n. If

a closed point x2 ∈ W2 maps to x1 ∈ W1, there is a linear transformation of n-dimensional
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tangent spaces, say TW2,x2 → TW1,x1 . The set of points x2 ∈ W2 for which TW2,x2 → TW1,x1

is not an isomorphism defines a hypersurface H in W2, called the jacobian or exceptional
hypersurface. It turns out that there is an open set U ⊂ W1 such that U

π← π−1(U) is an
isomorphism, and π−1(U) = W2 −H. Examples of proper birational morphisms of this kind
are the monoidal transformations, defined by blowing up a closed and smooth subscheme Y
in a smooth scheme W1. In such case H = π−1(Y ) is a smooth hypersurface. Let

(1.1.2)
W0 ←− (W1, E1 = {H1}) ←− (W2, E2 = {H1, H2}) · · · ←− (Wr, Er = {H1, H2, .., Hr})
Y Y1 Y2

be a composition of monoidal transformations, where each Yj ⊂ Wj is closed and smooth, Hj ⊂ Wj

is the exceptional hypersurface of Wj−1 ← Wj (the blow up at Yj−1), and where {H1,H2, ..,Hr}
denote the strict transforms of the H ′

is in Wr. The composite W0 ← Wr is a proper birational
morphism of smooth schemes, and H = ∪1≤i≤rHi is the exceptional hypersurface.

Theorem 1.2 (Embedded Resolution of Singularities). Given W0 smooth over a field k of
characteristic zero, and X0 ⊂ W0 closed and reduced, there is a sequence (1.1.2) such that

(i) ∪r
i=1Hi have normal crossings in Wr.

(ii) W0 − Sing(X0) ' Wr \ ∪r
i=1Hi, and hence it induces a square diagram

W0
Πr←− Wr

∪ ∪
X0

Πr←− Xr

of proper birational morphisms, where Xr denotes the strict transform of X0.
(iii) Xr is regular and has normal crossings with Er = ∪r

i=1Hi.

In particular Reg(X0) ∼= Π−1
r (Reg(X0)) ⊂ Xr and X0

Πr←− Xr is a desingularization (1.1).

Theorem 1.3 (Embedded Principalization of ideals). Given I ⊂ OW0, a non-zero sheaf of
ideals, there is a sequence (1.1.2) such that:

(i) The morphism W0 ← Wr defines an isomorphism over W0 \ V (I).
(ii) The sheaf IOWr is invertible and supported on a divisor with normal crossings, i.e.,

(1.3.1) L = IOWr = I(H1)c1 · . . . · I(Hs)cs ,

where E′ = {H1,H2, . . . , Hs} are regular hypersurfaces with normal crossings, ci ≥ 1 for
i = 1, . . . , s, and E′ = Er if V (I) has no components of codimension 1.

Part I
Throughout these notes W will denote a smooth scheme of finite type over a field k of characteristic

zero. We first recall here some definitions used in the formulation of the previous theorems.

Definition 1.4. Fix y ∈ W , and let {x1, . . . , xd} be a regular system of parameters (r.s. of p.) in
the local regular ring OW,y.

1) Y (⊂ W ), defined by I(Y ) ⊂ OW , is regular at y ∈ Y , if there is a r. s. of p. such that
I(Y )y =< x1, ..., xs > in OW,y.

2)A set {H1, . . . , Hr} of hypersurfaces in W has normal crossings at y if there is a r.s. of p. such
that ∪Hi = V (〈xj1 · xj2 · · ·xjs〉) locally at y, for some ji ∈ {1, . . . r}.
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3) A closed subscheme Y has normal crossings with E at y, if there is a r.s. of p. such that,
locally at y:

I(Y )y =< x1, ..., xs > and ∪Hi = V (〈xj1 · xj2 · · ·xjs〉).
Y is said to be regular if it is regular at any point; and E = {H1, . . . , Hr} is said to have normal

crossings if the condition holds at any point.

Remark 1.5. If
W0

π←− W1 ⊃ H = π−1(Y ),
Y

denotes a monoidal transformation with a closed and regular center Y (⊂ W0) , then:
1) π is proper and W1 smooth.
2) H = π−1(Y ) is a smooth hypersurface in W1.
3) W0 − Y ∼= W1 −H (i.e. π is birational).

Definition 1.6. The order of an non-zero ideal J in a local regular ring (R,M) is the biggest integer
b ≥ 0 such that J ⊂ M b.

Remark 1.7. Assume that Y in 1.5 is irreducible with generic point y ∈ W , and let h ∈ W1 be the
generic point of H. Note that OW,y is a local regular ring, and that OW1,h is a discrete valuation
ring. Let My denote the maximal ideal of OW,y.

Set W0 ←− W1 and H ⊂ W1 as above. Then, for an ideal J ⊂ OW , the following are equivalent:

a) Jy ⊂ M b
y (i.e. the order of J at OW,y is ≥ b)

b)JOW1 = I(H)b · J1 for some J1 in OW1 .

c) JOW1 has order ≥ b at OW1,h.

Definition 1.8. Given a sheaf of ideals J ⊂ OX and a morphism of schemes, X ← Y , the sheaf
of ideals JOY is called the total transform of J in Y . In the previous remark we considered the
total transform by a monoidal transformation, and we do not assume b to be the order of J at the
generic point of Y . When such condition holds, then b is the highest integer for which an expression
JOW1 = I(H)b · J1 can be defined; and in such case J1 is called the proper transform of J .

The following result will be used to ensure that Er has normal crossings in a sequence of monoidal
transformations (1.1.2).

Proposition 1.9. Let W be smooth over k, and let E = {H1, . . . , Hs} be a set of smooth hypersur-
faces with normal crossings. Assume that Y (⊂ W ) is closed, regular, and has normal crossings with
E = {H1, . . . , Hs}, and set the monoidal transformation

(W,E = {H1, . . . , Hs}) π←− (W1, E1 = {H ′
1, . . . , H

′
s,Hs+1 = π−1(Y )})

Y

where H ′
i denotes the strict transform of Hi. Then E1 has normal crossings in W1.
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2. Examples: Tschirnhausen and a form of induction on resolution problems.

A variety, or an ideal, is usually presented by equations in a certain number of variables. A
key point in resolution problems is to argue by induction on the number of variables involved. In
order to illustrate the precise meaning of this form of induction we first consider the polynomial
f = Z2 +2 ·X ·Z +X2 +X ·Y 2 ∈ k[Z, X, Y ], defining a hypersurface X ⊂ A3

k, where k denotes here
an algebraically closed field of characteristic zero. We will see that all points in this hypersurface
are of multiplicity at most two.

Question: How to describe the closed set of points of multiplicity 2?, say F2 ⊂ X.
Recall first two definitions:

Definition 2.1. Set p ∈ X = V (〈f〉) ⊂ Spec(k[Z, X, Y ]). We say that the hypersurface X has
multiplicity b at p, or that p is a b-fold point of the hypersurface, if 〈f〉 has order b at the local
regular ring k[Z, X, Y ]p (1.6). We will denote by Fb the set of points in X with multiplicity b.

There are now two ways in which we can address our question.
Approach 1): Consider the extension of the ideal J = 〈f〉, say:

J(1) = 〈f,
∂f

∂X
,
∂f

∂Y
,
∂f

∂Z
〉.

Clearly V (J(1)) = F2. In fact, by taking Taylor expansions at any closed point q we conclude that
q ∈ V (J(1)) if and only if the multiplicity of X at q is at least 2. Note also that X has no closed
point of multiplicity higher than 2 since ∂2f

∂2Z
is a unit. So the hypersurface X has only closed points

of multiplicity one and two.
As for the non-closed points of X, recall first that in a polynomial ring any prime ideal is the

intersection of all maximal ideals containing it. On the other hand the multiplicity defines an upper-
semi-continuous function on the hypersurface. So the multiplicity at a non-closed point, say y ∈ X,
coincides with the multiplicity at closed points in an non-empty open set of the closure y. This
settles our question.

2.2. Approach 2) (linked to the previous): Set Z1 = Z + X. At k[Z1, X, Y ] = k[Z,X, Y ]:

(2.2.1) f = Z2
1 + X · Y 2.

2i) Note first that Z1 ∈ J(1), and hence F2 ⊂ W , where W = V (Z1) is a smooth hypersurface.
2ii) Set J∗ = 〈X · Y 2〉 ⊂ OW . We claim that F2 ⊂ W is also defined as the set of points q ∈ W

where the order of J∗, at the local regular ring OW,q, is at least 2.
In fact, if q ∈ Spec(k[Z, X, Y ]) is a point (a prime ideal) of order 2, then J(1) ⊂ q, so

Z1 ∈ q ⊂ k[Z1, X, Y ].

It is clear that among the prime ideals containing Z1, those where Z2
1 +X ·Y 2 has order 2, are those

where X ·Y 2 has order at least 2. So the claim follows by setting W = V (Z1) and J∗ = 〈X ·Y 2〉 ⊂ OW
as before.

2.3. We will see that the answer to our earlier Question, provided in Approach 2, is better adapted
to resolution problems, at least over fields of characteristic zero.

We started by asking for those points where the ideal 〈f〉 ⊂ k[Z, X, Y ] has order at least 2. So
we fixed an ideal J (J = 〈f〉 in this case), and a positive integer b (b = 2 in this case), and we
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considered the closed set F2 of points where this ideal has order 2. We ended up with a new ideal,
J∗ = 〈X · Y 2〉 in the ring of functions in W , where

W = (Spec(k[X,Y ]) =)Spec(k[Z1, X, Y ]/〈Z1〉) ⊂ Spec(k[X, Y, Z]),

together with an integer b1 = 2, describing the same closed set F2, but involving one variable less.

Definition 2.4. Fix a scheme W , smooth over a field of characteristic zero. A couple will be an
ideal J ⊂ OW and an integer b, and will be denoted by (J, b).

The set described by the couple will be the set of points {x ∈ W/νx(J) ≥ b}, where νx(J) denotes
the order of J at the local regular ring OW,x.

2.5. The set described by the couple (J = 〈Z2
1 +X ·Y 2〉, 2) in A3

k is included in a smooth hypersurface
W = V (Z1). The dimension of W is of course one less then that of W . This inclusion is called
the local inductive principal. Note that this closed set is also defined by the couple (J∗, 2) (J∗ =
〈X · Y 2〉 ⊂ OW ).

Example 2.6. The fact that J∗ ⊂ OW is principal just a coincidence of the previous example. Let
now Y ⊂ A3

k be the hypersurface defined by g = Z3 + X · Y 2 · Z + X5 ∈ k[Z, X, Y ]. Define

J(2) = 〈g,
∂g

∂xi
,

∂2g

∂xi∂xj
/ where x1 = X,x2 = Y, x3 = Z〉

so V (J(2)) = F3 is the set of points of multiplicity at least 3. The pattern of this equation is

Z3 + a2 · Z + a3 with a2, a3 in k[X, Y ].

One can check that Z ∈ J(2), and that Y has at most points of multiplicity 3 since ∂3g
∂3Z

is a unit.
We can argue as in Approach 2 to show that if q ∈ Spec(k[Z, X, Y ]) is a point (a prime ideal) of

multiplicity 3, then J(2) ⊂ q. So
Z ∈ q ⊂ k[Z,X, Y ],

and among all prime ideals q containing Z, the polynomial Z3 + X · Y 2 · Z + X5 has order 3 at
k[Z,X, Y ]q if and only if X · Y 2 has order at least 2, and X5 has order at least 3. In fact Z has
order one at k[Z,X, Y ]q, and Z,X, and Y are independent variables.

Set now W = V (Z), a2 = X · Y 2, a3 = X5 (the class of a2 and a3 in OW ), and note that

F3 = {x ∈ W/νx(a2) ≥ 2; νx(a3) ≥ 3};
where νx(ai) denotes the order of ai at the local regular ring OW,x.

Set

(2.6.1) (J∗, 6), where J∗ = 〈(a2)3, (a3)2〉 ⊂ OW .

Finally check that F3 ⊂ W (local inductive principal (2.5)), and note that we use this fact to
show that the closed set F3 is also defined by the couple (J∗, 6).

Remark 2.7. Transformations of couples and stability of inductive principal.
Let Y ⊂ A3

k be the hypersurface defined by g = Z3 + X · Y 2 ·Z + X5 ∈ k[Z, X, Y ], as in Example
2.6. The origin 0 ∈ A3

k is clearly a point of the closed set defined by (J, 3). We now define:

(2.7.1) A3
k ←− W1
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as the blowup at 0. Let W 1 be the strict transform of W , Y1 the strict transform of Y, and H the
exceptional hypersurface. By restriction of the morphism to the subschemes we obtain

(2.7.2) W ←− W 1,

which is also the monoidal transformation at the point 0 ∈ W , with exceptional hypersurface
H = H ∩W 1.

Note that there is a well defined factorization of the form

(2.7.3) JOW1 = I(H)3 · J1

for an ideal J1 ⊂ OW1 , defined in terms of (2.7.1); and a factorization

(2.7.4) J∗OW 1
= I(H)6 · J∗1

for J∗1 ⊂ OW 1
, defined in terms of (2.7.2). These factorizations hold because 0 is a point of the

closed set defined by (J, 3), thus of the closed set in W defined by (J∗, 6).
Since 0 is a point of order 3 of J (a point of multiplicity 3 of the hypersurface Y), J1 ⊂ OW1 is

the ideal defining the strict transform Y1.

Claim: The set of 3-fold points of the hypersurface Y1, or say the closed set of points defined by
(J1, 3), is included in W 1 and coincides with the closed set defined by (J∗1 , 6).

In other words, we claim that the role played by W and (J∗, 6) for the hypersurface Y (the local
inductive principal (2.5)), is now played by W 1 and (J∗1 , 6) for the hypersurface Y1. We call this
the stability of the local inductive principal.

To check this claim note first that W can be covered by three charts:

UX = Spec(k[Z/X, X, Y/X]) = A3
k

UY = Spec(k[Z/Y, X/Y, Y ]) = A3
k

UZ = Spec(k[Z,X/Z, Y/Z]) = A3
k

The morphism: A3 ←− UY = Spec(k[Z/Y, X/Y, Y ]) = A3
k, induced by (2.7.1), is defined by the

inclusion k[Z,X, Y ] → k[Z/Y,X/Y, Y ].
At this chart I(H) = 〈Y 〉, the factorization in (2.7.3) is

g = Z3 + X · Y 2 · Z + X5 = Y 3 · ((Z/Y )3 + (X/Y ) · Y · (Z/Y ) + (X/Y )5 · Y 2),

and I(W1 ∩ UY ) = 〈Z/Y 〉.
Note that g1 = (Z/Y )3 +(X/Y ) ·Y · (Z/Y )+(X/Y )5 ·Y 2 ∈ k[Z/Y, X/Y, Y ] has the same general

pattern as g, namely: (Z/Y )3 + b2 · (Z/Y ) + b3, with b2, b3 in k[X/Y, Y ]. So the same argument
applied to g asserts that:

1) The set of 3-fold points of Y1 ∩ UY is included in V (〈Z/Y )〉), or say in

W 1 ∩ UY = Spec(k[Z/Y,X/Y, Y ]/〈Z/Y 〉) = Spec(k[X/Y, Y ]).

2) The set of 3-fold points Y1 in UY is the closed set in W 1 ∩ UY defined by (A, 6), where

A = 〈(b2)3, (b3)2〉 ⊂ k[X/Y, Y ].
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We are finally ready to address the main property of our form of induction in the number of
variables, namely the compatibility of induction with transformations. To this end note that

W ←− W 1 ∩ UY

is defined by k[X, Y ] → k[X/Y, Y ], and the transform of the couple (J∗, 6) in (2.6.1), defined in
(2.7.4), is such that

J∗1O(W 1∩UY ) = A.

A similar argument applies for A3 ←− UX . To study our claim for A3 ←− W1 it suffices to check
at the charts UX , UY . In fact, UX ∪UY cover all of W1 except for one point (the origin at UZ = A3),
which is not a point of Y1. So UZ can be ignored for our purpose.

2.8. Summarizing: Stability of inductive principal. Our previous discussion showed that the
set of 3-fold points of Y ⊂ A3 (defined by g = Z3 + X · Y 2 · Z + X5 ∈ k[Z, X, Y ]) is included in a
smooth hypersurface W (defined by Z ∈ k[Z,X, Y ])(2.5). From this fact we conclude that the set is
also defined by (J∗, 6), where J∗ is an ideal in the surface W . The property that links W with 3-fold
points of Y goes beyond this fact. A transformation at a 3-fold point of Y defines a strict transform
Y1. It also induces a transformation W ←− W 1, together with a transformation of (J∗, 6), say
(J∗1 , 6). W 1 is the strict transform of W , and the property is that the set of three fold points of
Y1 is included in W 1. This is what we call the stability of the inductive principal. Furthermore,
(J∗1 , 6) defines the closed set of 3-fold points of Y1. In particular, if J∗1 would not have points of
order 6 (which is not the case in our example), then Y1 would not have 3-fold points. Here we have
analyzed this stability for one quadratic transformation, but it turns out that the same argument
holds for any sequence of monoidal transformations: Defining a sequence of transformations, say

(2.8.1) A3 π1←− W1
π2←− . . .

πr←− Wk,
Y Y1 Yk

where each πi+1 is a blow-up at a closed and smooth centers included in the 3-fold points of Yi, the
strict transform of Yi−1, is equivalent to the definition of a sequence of transformations

(2.8.2) W
π1←− W 1

π2←− . . .
πr←− W k.

(J∗, 6) (J∗1 , 6) (J∗k , 6)

where each J∗i ⊂ OW 1
, and (J∗i , 6) is defined in terms of (J∗i−1, 6) as in (2.7.4). Moreover, each W i

is a smooth hypersurface in Wi, and the closed set defined by (J∗i , 6) in the hypersurface W i is the
set of 3-fold points of Yi. In particular, if the second sequence is defined with the property that J∗k
has no points of order 6 in W k, then the hypersurface Yk has at most points of multiplicity 2.

This is induction on the dimension of the ambient space, where the lowering of the highest order
of an ideal in a smooth scheme of dimension 3 is equivalent to a related problem in a smooth scheme
of dimension 2. This property of the smooth hypersurface W will be discussed in Section 6.

2.9. Tschirnhausen. Set f = Zb + a1Z
b−1 + · · · + ab ∈ k[Z,X1, .., Xn], with ai ∈ k[X1, .., Xn]

for i = 1, . . . , b. If the characteristic of k is zero set Z1 = Z + 1
ba1. Check that k[Z, X1, . . . , Xn] =

k[Z1, X1, . . . , Xn], and that f = Zb
1 + c2Z

b−2
1 + · · ·+ cb, with ci ∈ k[X1, . . . , Xn] and c1 = 0. One can

argue as in Example 2.6, to show that the b-fold points of Y are included in the hypersurface W =
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V (Z1)(⊂ An+1)(local inductive principle (2.5)). Furthermore, W will have the stability property
discussed above, where the role of (J∗, 6) in Remark 2.7 (in (2.8.2)) is now played by (J∗, b!), where

J∗ = 〈c
b!
i
i , i = 2, 3, . . . , b〉 ⊂ OW .

3. Resolution functions and the main resolution theorems.

Our proofs of the two main theorems 1.2 and 1.3 will be constructive, as opposed to the original
existential proofs of Hironaka. We introduce here the notion of resolution algorithm, or resolution
functions. Constructive resolutions will be defined in terms of these functions, and the main purpose
in this Section is to show how both proofs follow easily from natural properties of these functions.

3.1. In 2.6 we study the transform of a hypersurface in A3 by a monoidal transformation at a 3-fold
point. Note that (2.7.3) is an example of a proper transform of an ideal, as defined in 1.8. However
the ideal J∗ has order 9 at the center of the monoidal transformation, so J∗1 in (2.7.4) is not a
proper transform. This shows that our form of induction will lead us to transformations, defined by
expressions of the form JOW1 = I(H)b · J1, even when b is not the highest possible integer in such
expression.

We have defined couples as pairs (J, b), where J ⊂ OW is a non-zero sheaf of ideals, and b ∈ N is
a positive integer. We introduce now two notions related to couples:
• The closed set attached to (J, b):

Sing(J, b) = {x ∈ W/νx(Jx) ≥ b},
namely the set of points in W where J has order at least b. This is closed in W (see 5.4, ii)).

•Transformation of (J, b):
Let Y ⊂ Sing(J, b) be a closed and smooth subscheme, and let

W
π←− W1 ⊃ H = π−1(Y )

Y

be the monoidal transformation at Y . Since Y ⊂ Sing(J, b), the total transform JOW1 can be
expressed as a product:

JOW1 = I(H)bJ1(⊂ OW1)

for a uniquely defined J1 in OW1 . The new couple (J1, b) is called the transform of (J, b), and the
transformation is denoted by

(3.1.1) W
π←− W1

(J, b) (J1, b)

A sequence of transformations will be denoted as

(3.1.2) W
π1←− W1

π2←− . . .
πk←− Wk.

(J, b) (J1, b) (Jk, b)

Note that in such case

(3.1.3) JOWk
= I(H1)c1 · I(H2)c2 · · · I(Hk)ck · Jk
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for suitable exponents c2, . . . , ck, and c1 = b. Furthermore, all ci = b if for any index i < k the
center Yi is not included in ∪j≤iHj ⊂ Wi (the exceptional locus of W ←− Wi).

Example 3.2. The ideal J =< x2−y5 >⊂ k[x, y] has a unique 2-fold point at the origin (0, 0) ∈ A2.
Let W = A2 ←− W1 be the blow up at the origin. The strict transform of the curve has a unique
2-fold point, say q ∈ W1. Set W1 ←− W2 by blowing-up q. This defines a sequence,

(3.2.1) W ←− W1 ←− W2

(J, b) (J1, b) (J2, b)

Here JOW2 = I(H1)2 · I(H2)4 · J2 provides an expression of the total transform of J involving J2.

Remark 3.3. The ideal J1 in the previous example is the proper transform of J , and J2 is the
proper transform of J1 (Def 1.8). In particular J2 does not vanish along H1 or H2. Recall however
that this is not a general fact as indicated in 3.1. Set now K = J , and note the same sequence as
before defines (K, 1); (K1, 1); (K2, 1) and KOW2 = I(H1)1 · I(H2)2 ·K2.

In this case the ideal K2 does vanish along the exceptional hypersurface Hi, in fact there is a
unique and well defined expression, say

(3.3.1) K2 = I(H1)a · I(H2)b ·K2

in OW2 , so that K2 does not vanish along the exceptional hypersurfaces. It follows from 3.2 that
a = 1, b = 2 and K2 = J2.

Definition 3.4. Fix J ⊂ OW , W smooth over a field of characteristic zero, and a couple (J, b). A
sequence of transformations as in (3.1.2) is said to be a resolution of (J, b) if:

i) Sing(Jk, b) = ∅.
ii) The exceptional locus of W ←− Wk, namely ∪1≤i≤kHi, is a union of hypersurfaces with normal

crossings.

3.5. We define a pair, denoted by (W,E = {H1, .., Hr}), to be a set of smooth hypersurfaces
H1, .., Hr with normal crossings in a smooth scheme W .

Let W ←− W1 be a monoidal transformation at a closed an d smooth center Y . If Y has normal
crossings with ∪Hi, we say that Y is permissible for the pair (W,E), and that

(W,E = {H1, .., Hr}) ←− (W1, E1 = {H1, .., Hr, Hr+1})
is a transformation of pairs (see Prop 1.9).

We define a basic object to be a pair (W,E = {H1, ..,Hr}) together with a couple (J, b), with the
condition that Jx 6= 0(⊂ OW,x)) at any point x ∈ W . We indicate this basic object by

(W, (J, b), E).

If a smooth center Y defines a transformation of the pair (W,E), and in addition Y ⊂ Sing(J, b),
then a transform of the couple (J, b) is defined. In this case we say that

(W, (J, b), E) ←− (W1, (J1, b), E1)

is a transformation of the basic object. A sequence of transformations

(3.5.1) (W, (J, b), E) ←− (W1, (J1, b), E1) ←− · · · ←− (Ws, (Js, b), Es)

is a resolution of the basic object if Sing(Js, b) = ∅.
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In such case

(3.5.2) J · OWs = I(Hr+1)c1 · I(Hr+2)c2 · · · I(Hr+s)cs · Js

for some integer ci, where Js is a sheaf of ideals of order at most b − 1, and the Hj have normal
crossings.

Definition 3.6. Let X be a topological space, and (T,≥) a totally ordered set. A function g : X → T
is said to be upper semi-continuous if: i) g takes only finitely many values, and, ii) for any α ∈ T
the set

{x ∈ X /g(x) ≥ α}
is closed in X.

Then largest value achieved by g will be denoted by

max g.

Clearly the set
Max g = {x ∈ X : g(x) = max g}

is a closed subset of X.

3.7. Resolution functions. We now show why constructive resolutions of basic objects will lead
us to simple proofs of both Main Theorems 1.2 and 1.3.

In 2.2 we defined an upper semi-continuous function, say h3 : Spec(k[Z1, X, Y ] → Z, defined by
taking order of the ideal J =< Z2

1 + X · Y 2 >. It was shown that maxh3 = 2, and that Maxh3(=
F2) ⊂ W , where W = V (Z1) is a smooth hypersurface isomorphic to Spec(k[X, Y ]). Furthermore,
an ideal J∗ = 〈X · Y 2〉 ⊂ OW was attached to Maxh3. We may take now h2 : Spec(k[X, Y ]) → Z,
defined by taking order of the ideal J∗, so that Maxh2 is included in a smooth hypersurface; and
ultimately define a function h1 with values at Z.

In this frame of mind it is conceivable to assign a copy of Z for each dimension, namely Z×Z×Z,
with lexicographic order, and a function, say h = (h3, h2, h1) with values at this ordered set, so
that h is upper semi-continuous. This is not exactly the way we will proceed, but we will define a
totally ordered set for each dimension, and then take the product of copies of this set, one for each
dimension.

We will fix an integer d, and define a totally ordered set (Id,≥). Moreover, for any basic object

B : (W, (J, b), E),

dimension of W = d, an upper semi-continuous function fB : Sing(J, b) → Id will be defined with
the property that Max fB is a smooth subscheme of Sing(J, b), and a permissible center for the pair
(W,E). Thus, a transformation of the basic object can be defined with center Max fB.

In this way a unique sequence (3.5.1) is defined inductively, by setting centers Max fBi . In
addition, this sequence defined by the functions will be a resolution of the basic object. In fact, for
some index s (depending on B) Sing(Js, b) = ∅.

In other words, the set (Id,≥) will be fixed, and the functions on this set defined so as to provide
a resolution for any basic object of dimension d. We now state the properties that will hold for such
sequence:

Properties:
P1) For each l, Max fl is closed regular and has normal crossings with ∪Hi∈El

Hi.
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P2) For some index k0, depending on the basic object B, Sing(Jk0 , b) = ∅.

If p ∈ Sing(Jk, b), and p /∈ Max fk, then p can be identified with a point in Wk+1. Furthermore,
p ∈ Sing(Jk+1, b), and:

P3) fk(p) = fk+1(p).

Of particular interest will be the case of basic objects with b = 1. In such case Sing(J0, 1) is the
underlying topological space of V (J0) (the subscheme defined by the sheaf of ideals J0).

P4) There is fixed value R ∈ Id, and whenever p ∈ Sing(J0, 1) is a point where the subscheme
defined by J0 is smooth, then f0(p) = R (where f0 : Sing(J0, 1) → Id).

The definition of (Id,≥), and of the functions f , will be discussed in Part III, and studied
exhaustively in Part IV. We now prove our two Main Theorems 1.2 and 1.3 using the the properties
of resolution functions.

3.8. Proof of Theorem 1.3. Fix I ⊂ OW as in Theorem 1.3, and consider the basic object

(3.8.1) (W, (J, 1), E = ∅),
with J = I, and the resolution defined by the resolution functions. Property P2) asserts that
Sing(Jk0 , 1) = ∅ for some index k0. It follows that Jk0 = OWk0

, namely that

JOWk0
= I(H1)c1 · I(H2)c2 · · · I(Hk0)

ck0 .

It is easy to check now that the conditions of the Theorem are fulfilled for W ← Wk0 .

3.9. Proof of Theorem 1.2. Let J ⊂ OW0 be the sheaf of ideals defining X ⊂ W0 in Theorem 1.2,
and consider, as above, the resolution of the basic object (3.8.1) defined by the resolution functions.
So again Jk0 = OWk0

, and hence JOWk0
= I(H1)c1 · I(H2)c2 · · · I(Hk0)

ck0 .
Let V = W0 − Sing(X) be the complement of the singular locus of X. Note that V is an open

set, dense in W0, and f0(p) = R for any p ∈ V ∩ Sing(J, 1). Here X = Sing(J, 1), and V ∩ Sing(J, 1)
is dense in Sing(J, 1) since X is reduced. Furthermore, f0(p) = R for any p ∈ V ∩ Sing(J, 1) (P4)).
So max f0 ≥ R.

If max f0 = R, then Sing(J, 1) = Max f0 and X is smooth in W0 (P1)).
If max f0 > R, then V can be identified with an open set, say V1, in W1, and f1(p) = R for any

p ∈ V1 ∩ Sing(J1, 1) (P3)).
If max f1 = R, then the strict transform of X is a union of components of Max f1, so the strict

transform defines an embedded desingularization (P1)).
If max f1 > R then V can be identified with an open subset V2 in W2.
Note that that there must be an index k, for some k < k0, so that max fk = R. In fact this

follows from P4), P2), and the fact that Sing(Jk0 , 1) = ∅. Note that V can be identified with an
open set, Vk ⊂ Wk, and that the strict transform of X in Wk fulfills the conditions of the Theorem.

4. On the notion of strict transforms of ideals.

4.1. The notion of strict transform of embedded schemes appears in the very formulation of our
Main Theorem 1.2. A subscheme of a given schemes is defined by a sheaf of ideals. Given a blow-up
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at the scheme, there is a notion of strict transform of ideals, corresponding to the notion of strict
transform of embedded schemes.

A novel aspect of the proof of Theorem 1.2 given in 3.9, as compared to the proof of Hironaka
and from previous constructive proofs ([3], [26]), is that we do not consider, within this algorithmic
procedure, the notion of strict transform of ideals. In fact, let J ⊂ OW be the sheaf of ideals defining
X ⊂ W0, and let

(W0, (J, 1), E0) ← (W1, (J1, 1), E1)

be a transformation with center Y ⊂ Sing(J, 1). We show here that, in general, J1 is not the sheaf
of ideals defining the strict transform of X in W1 (i.e. is not the strict transform of J). Let H ⊂ W1

denote the exceptional locus of
W ← W1

so that W − Y = W1 −H. The strict transform of X is the smallest subscheme of W1 containing
X − Y , via the identification W1 −H = W − Y . In other words, it is the closure of X − Y in W1

by this identification.
Such smallest subscheme is defined by the biggest sheaf of ideals, say J̃1 ⊂ OW1 , which coincide

with J when restricted to W1 −H. We claim that the biggest sheaf ideal that fulfills this condition
is that defined by the increasing union of colon ideals:

J̃1 = ∪k(JOW1 : I(H)k).

To check this, set U = Spec(A), an open affine set of W1, so that the hypersurface H∩U is defined
by an element a ∈ A. Let K denote the ideal defined by restriction of J̃1 to U . The localization
K ·Aa is also a restriction of the sheaf of ideals J to Ua = Spec(Aa).

Note that K · Aa ∩ A is the biggest ideal in A defining K · Aa at Ua = Spec(Aa). On the other
hand K ·Aa ∩A = ∪k(K : ak). Since this holds for an affine covering of W1, it turns out that J̃1 is
the biggest sheaf of ideals with the previous condition.

The ideal K (the restriction of J̃1 to U), is a finite intersection of p-primary ideals, called the
p-primary components. The ideal K · Aa ∩ A is obtained from K by neglecting, in the previous
intersection, those p-primary components corresponding to prime ideals containing the element
a ∈ A (i.e. with closure of p included in the exceptional hypersurface H).

It is not hard to check that
J1 ⊂ J̃1,

in fact J1 = (JOW1 : I(H)1) according to the definition of transformation of basic objects.
If W1 arises from blowing up W = A3

k at the origin, and J =< Z, X2 − Y 3 >⊂ k[X, Y, Z], then
V (J1) ∩ H is a line, whereas V (J̃1) (the strict transform of the curve), intersects H at a unique
point. So J1 6= J̃1 in this case.

4.2. Resolution of singularities is defined by a proper birational morphism, defined in a step by step
procedure, each step consisting of a suitably defined monoidal transformation. So given equations
defining the ideal J , and a monoidal transformation as above, Hironaka provides equations defining
the strict transform ideal J̃1. This turns out being, in general, a very difficult task. In fact a major
part of the proof of Hironaka is devoted to address this particular point; he introduces the notions
of Hilbert-Samuel functions and of normal flatness with this purpose. An important conceptual
simplification of constructive desingularization, presented in 3.9, relies on the fact that it provides a
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proof avoiding all these notions. In fact, we prove resolution by means of elementary transformations
(defining J1), avoiding the use of the strict transform ideal J̃1.

Example 4.3. The following example illustrates a situation in which both notions of transforma-
tions discussed in 4.1 coincide (i.e. where J1 = J̃1).

Let X ⊂ W be a closed and smooth subscheme of W . Set J = I(X), and note that Sing(J, 1) = X,
and that the order of J at OW,x is one at any x ∈ X.

Let W ←− W1 be the monoidal transformation with center Y which defines a transformation,
say: (J, 1) ; (J1, 1). In other words, assume that Y ⊂ Sing(J, 1) (so that JOW1 = J1 · I(H), where
H ⊂ W1 denotes the exceptional locus). We claim now the following holds:

(1) Sing(J1, 1) (= V (J1)) is the strict transform of X.
(2) The subscheme X1 ⊂ W1, defined by J1, is smooth.

Note that (2) follows from (1). In fact the induced morphism X ← X1 is the blowup of
X at Y , and the blowup of a smooth scheme in a smooth subscheme is smooth. To prove 1)
note that at any point x ∈ W , there is a regular system of parameters {x1, . . . , xn} such that
Jx = 〈x1, . . . , xr〉 and I(Y )x = 〈x1, . . . , xs〉 for r ≤ s. The fiber over x ∈ W can be covered by
Spec(OW [x1/xi, x2, . . . , xs/xi, xs+1, . . . , xn] for i = 1, 2, . . . , s. Finally (1) can be checked directly
at the charts corresponding to indices r + 1 ≤ i ≤ s.

4.4. There is a stronger formulation of embedded desingularization than that in 1.2, which was
proved in [10]. That theorem proves that given W0 smooth over a field k of characteristic zero, and
X0 ⊂ W0 closed and reduced, there is a sequence of monoidal transformations, say

W0 ←− (W1, E1 = {H1}) ←− (W2, E2 = {H1,H2}) · · · ←− (Wr, Er = {H1,H2, .., Hr}),
Y Y1 Y2

such that, in addition to the three conditions i), ii), and iii) in 1.2, it also holds that:
iv) I(X0)OWr = I(H1)c1 · I(H2)c2 · · · I(Hr)cr · I(Xr)
where Xr denotes the strict transform of X.

Consider the particular case in which X is an irreducible subscheme in W0 = Spec(k[X1, · · · , Xn])
defined by a prime ideal P of height h. In this case the theorem says that at any point x ∈ Wr there
is a regular system of parameters {Z1, · · ·Zn} at OWr,x, such that:

i)P · OWr,x =< Z1, · · · , Zh > ·Za1
j1
· Za2

j2
· · ·Zas

js
if x is a point of the strict transform Xr, and

ii) P · OWr,x =< Za1
j1
· Za2

j2
· · ·Zas

js
> (is an ideal spanned by a monomial in these coordinates) if

x is not in Xr.
This result does not hold, in general, for desingularizations which make use of invariants such as

Hilbert Samuel functions ( which we avoid in our proof). This algebraic formulation of embedded
desingularization is not a consequence of the theorem of desingularization as proved by Hironaka.

Part II
In 2.8 we discussed a strong link between the set of 3-fold points of the hypersurface Y ⊂ A3,

defined by g = Z3 + X · Y 2 · Z + X5 ∈ k[Z, X, Y ], and the smooth hypersurface W defined by
Z ∈ k[Z,X, Y ]. The link showed that the reduction of 3-fold points of Y, by means of monoidal
transformations, was equivalent to a related problem for a suitable ideal in the smooth subscheme
W (see also 2.9).
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This is the key for induction in resolution Theorems. In this second Part we justify the discussion
in 2.8 (see Example 6.15), and generalize this main property in Section 7 . In section 6 we study an
important preliminary: the behavior of derivations with monoidal transformations.

5. Derivations and monoidal transformations on smooth schemes.

In this Section we study behavior of derivations when applying monoidal transformations. This
will be used in the next Section 6, where the inductive properties discussed in 2.8 will be clarified.

Fix W smooth over a field k, and y ∈ W a closed point. Let {x1, . . . , xn} be a regular system of
parameters at OW,y.

We define an operator ∆y on ideals in OW,y by setting, for Jy =< f1, f2, . . . , fs > in OW,y:

∆y(Jy) =< f1, f2, . . . , fs,
∂fj

∂xi
/1 ≤ i ≤ n; 1 ≤ j ≤ s > .

Note that ∆y(∆y(Jy)) =< f1, f2, . . . , fs,
∂fj

∂xi
,

∂2fj

∂xi∂xj
/1 ≤ i ≤ n; 1 ≤ j ≤ s >. The whole point

of restriction to fields of characteristic zero relies on the following property:

5.1. Characteristic zero. If k is a field of characteristic zero and (b ≥ 1), then Jy has order b at
OW,y iff ∆y(Jy) has order b− 1.

Example 5.2. Let OW,y = k[x1, x2, x3]<x1,x2,x3>.

Jy =< x3
1 + x4

2 + x4
3 >⊂ ∆y(Jy) =< x2

1, x
3
2, x

3
3 >⊂ ∆2

y(Jy) =< x1, x
2
2, x

2
3 >⊂ ∆3

y(Jy) = OW,y

Note that, if k is of characteristic zero, the orders of these ideals drop by one : 3,2,1,0.

5.3. Further properties of the operator ∆y are:
i) Jy ⊆ ∆y(Jy) ⊆ ∆y(∆y(Jy)) = ∆2

y(Jy) ⊆ ∆3
y(Jy) ⊆ . . .

ii) Jy ⊂ OW,y has order b(≥ 1) iff ∆b−1
y (Jy) has order 1.

iii) The order of Jy ⊂ OW,y is ≥ s iff ∆s−1
y (Jy) is a proper ideal in OW,y.

5.4. On the ∆ operator. The locally defined operators ∆y can be globalized in the following
sense. Fix W smooth over a field k, there is an operator ∆ on the class of all OW -ideals , such that:

J ⊆ ∆(J)(⊂ OW ),

and at any closed point y ∈ W :
∆(J)y = ∆y(Jy).

Furthermore, the following properties hold:

i) J ⊆ ∆(J) ⊆ ∆2(J) ⊆ . . . ( hence V (J) ⊇ V (∆(J)) ⊇ V (∆2(J)) ⊃ . . .

ii) V (∆s−1(J)) = Sing(J, s). In fact V (∆s−1(J)) is the closed set of points in W where J has
order ≥ s (i.e. (∆s−1(J))y = ∆s−1

y (Jy) ( OW,y) iff the order of JyOW,y is ≥ s).

iii) If b is the biggest order of J , V (∆b(J)) = ∅ and V (∆b−1(J)) is locally included in a smooth
hypersurface.

Proof of iii) If b is the biggest order of J , ∆b(J) = OW and ∆b−1(J) has order at most 1. So if
y ∈ V (∆b−1(J)), ∆b−1(J)OW,y has order 1 at OW,y. If g ∈ ∆b−1(J) has order 1 at OW,y, then:

W = V (< g >) ⊃ V (∆b−1(J)),
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and W is a smooth hypersurface in a neighborhood of y.

Example 5.5. Set W = A3
k = Spec(k[X, Y, Z]), F = Z3 + XY 2Z + X5, and J =< F >, as in 2.8.

Then:

∆(J) =< 3Z2 + XY 2, Y 2Z + 5X4, 2XY Z, F >⊂ ∆2(J) =< Z, XY, Y 2, X3 >⊂ ∆3(J) = k[X, Y, Z].

So, as indicated in 2.8, the 3-fold points of the hypersurface Y ⊂ A3 defined by V (< J >) are
included in smooth hypersurface W = V (< Z >).

5.6. We now address the compatibility of ∆ operators with monoidal transformations. So fix a
couple (J, b), and consider a transformation

(5.6.1) W
π←− W1

(J, b) (J1, b).

Lemma 5.7. Given (J, b) (J ⊂ OW ) and a transformation (5.6.1), then:
1) If b ≥ 2, (5.6.1) induces a transformation of (∆(J), b− 1):

W
π←− W1

(∆(J), b− 1) ((∆(J))1, b− 1).
2) (∆(J))1 ⊂ ∆(J1).

Proof: Let Y ⊂ W be the center of the monoidal transformation, and let H ⊂ W1 be the
exceptional locus. By assumption Y ⊂ Sing(J, b), so J · OW1 = I(H)b · J1. It follows from 5.4,ii)
that for general b, Sing(J, b) ⊂ Sing(∆(J), b− 1). In particular Y ⊂ Sing(∆(J), b− 1), which proves
1).

In order to prove 2) we first note that if U ⊂ W is open, a sheaf of ideals in W induces a sheaf
of ideals in U , and the ∆ operators (on W and on U) are compatible with restrictions. On the
other hand note that the pull-back of U in W1, say U1, is an open set, and the induced morphism
U ←− U1 fulfills the conditions in 1) for the restriction of J to U .

If we can prove that 2) holds over U (at U ←− U1), for all U in an open covering of W , then it
is clear that 2) holds. Therefore we may argue locally.

Let ξ ∈ W be a closed point and choose a regular system of parameters {x1, . . . xn} ⊂ OW,ξ

so that the center of the monoidal transformation is locally defined by 〈x1, . . . , xs〉. Now consider
an affine neighborhood U of ξ such that x1, . . . , xs are global sections of OU , and such that J is
generated by global sections, say f1, . . . , fr. We may also assume that

{
∂
∂x1

, . . . , ∂
∂xn

}
are global

derivations, and that ∆(J) is generated by the global sections {fk}r
k=1 ∪

{
∂fk
∂xj

}
k=1,...,r
j=1,...,n

.

By the previous discussion we may assume that U = W . The scheme W1 is defined by patching
the affine rings

Ai = OW [x1/xi, . . . , xs/xi], i ∈ {1, . . . , s},
and I(H) = 〈xi〉 at Ai. For each index k ∈ {1, . . . , r} there is a factorization fk = xb

igi
(k), and

{gi
(1), gi

(2), . . . , gi
(r)} generate the restriction of J1 to Spec(Ai), say J

(i)
1 . In order to prove 2) we

must show that, for each index k ∈ {1, . . . , r}:

a) fk

xb−1
i

∈ ∆(J (i)
1 ), and
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b)
(

∂fk
∂xj

)

xb−1
i

∈ ∆(J (i)
1 ).

The assertion in a) is clear since fk

xb−1
i

= xig
(k)
i ∈ J

(i)
1 ⊂ ∆(J (i)

1 ). We now address b). In what

follows we fix an index k ∈ {1, . . . , r} and set f = fk. We also fix an index j ∈ {1, . . . , n} and set
δ = ∂

∂xj
which is a global derivation on U .

Note that

δ

(
xj

xi

)
=

δ(xj)
xi

− xj

xi

δ(xi)
xi

,

and that
I(H) · δ|Spec(Ai)

= xi · δ : Ai → Ai,

and hence I(H) · δ is an invertible sheaf of derivations on W1.
Now in Ai consider the factorization f = xb

igi, so gi ∈ J
(i)
1 ⊂ Ai, and xi · δ is a derivation on Ai.

Finally check that

δ(f)
xb−1

i

=
xiδ(xb

i · gi)
xb

i

=
xiδ(xb

i)
xb

i

gi + xb
i

(xiδ)(gi)
xb

i

) = b · δ(xi) · gi + (xiδ)(gi).

This already proves b) since the right hand side is in ∆(J (i)
1 ). ª

Our argument also shows that this equality is stable by any sequence of transformations (see 5.9).

Remark 5.8. Fix K ⊂ J two ideals in OW , and couples (J, b) and (K, b). Then clearly:

a) Sing(J, b) ⊂ Sing(K, b).

b) Any transformation, as in (5.6.1), of (J, b), induces the transformation

W
π←− W1

(K, b) (K1, b)

and K1 ⊂ J1.

5.9. We finally extend the previous result to study the behavior of ∆ operators with an arbitrary
sequence of transformations.

Corollary 5.10. Fix a couple (J, b) (J ⊂ OW ) and a sequence of transformations

(5.10.1) W
π1←− W1

π2←− . . .
πr←− Wr

(J, b) (J1, b) (Jk, b).

1) If b ≥ 2, then (5.10.1) induces a sequence of transformations

W
π1←− W1

π2←− . . .
πr←− Wr,

(∆(J), b− 1) ((∆(J))1, b− 1) ((∆(J))r, b− 1),

and
2) (∆(J))r ⊂ ∆(Jr).
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Proof. The case when r = 1 is in 5.7. Consider now the case r = 2, namely

W
π1←− W1

π2←− W3

(J, b) (J1, b) (J2, b).

Then 5.7 asserts that π1 defines a transform of (∆(J), b−1), say ((∆(J))1, b−1), and that (∆(J))1 ⊂
∆(J1). The same result says that π2 defines a transform of (∆(J1), b− 1), say ((∆(J1))1, b− 1), and
that (∆(J1))1 ⊂ ∆(J2). The statement follows in this case from 5.8.

The general case r ≥ 2 follows similarly, by induction. ª

Corollary 5.11. Fix a couple (J, b) (J ⊂ OW ) and, as before, a sequence of transformations
(5.10.1). Assume that b ≥ 2. Then, for each index 1 ≤ j ≤ b− 1:

1) The sequence (5.10.1) induces a sequence of transformations ((∆(j)(J)), b− 1− (j − 1)), say

W
π1←− W1

π2←− . . .
πr←− Wr

(∆(j)(J), b− 1− (j − 1)) ((∆(j)(J))1, b− 1− (j − 1)) ((∆(j)(J))r, b− 1− (j − 1))

and
2) (∆(j)(J))r ⊂ ∆(j)(Jr).

Proof. Note that for j = 1, ∆(j) = ∆ and we obtain the previous corollary. So we prove now the
statement for j assuming that it holds j − 1. Set J∗ = ∆(j−1)(J) and b∗ = b − 1 − (j − 2). By
induction:

i) The sequence of transformations (5.10.1) induces transformations of (J∗, b∗), say:

W
π1←− W1

π2←− . . .
πr←− Wr,

(J∗, b∗) (J∗1 , b∗) (J∗r , b∗)
and

ii) J∗r ⊂ ∆(j−1)(Jr).

Applying our previous Corollary 5.10 to i), we get:

i’) The sequence in i) induces transformations of (∆(J∗), b∗ − 1):

W
π1←− W1

π2←− . . .
πr←− Wr,

(∆(J∗), b∗ − 1) ((∆(J∗))1, b∗ − 1) ((∆(J∗))r, b
∗ − 1)

and
ii’) (∆(J∗))r ⊂ ∆(J∗r ).

Here ∆(J∗) = ∆(j)(J) and i’) is statement 1). On the other hand, applying ∆ to ii) we get

∆(J∗r ) ⊂ ∆(j)(Jr),

which together with ii’) proves 2).
ª

In the next Section we shall apply Corollary 5.11, basically in the case j = b − 1. The reader
might want to look into Example 6.15 to get have an overview of this application of the Corollary.
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6. Simple couples and a form of induction on resolution problems.

6.1. The purpose of this Section is the study of simple couples (J, b) (J ⊂ OW ). Examples of
simple couples appear already in Section 2. They will play a central role in our inductive arguments
(induction on the dimension of the ambient space). The main results of this Section are Theorem
6.5 and Proposition 6.13, where the notion of stability of induction discussed in 2.8 is formalized.

6.2. Fix J ⊂ OW , assume that Jx 6= 0(⊂ OW,x) for any x ∈ W , and define a function

(6.2.1) ordJ : W → N,

where ordJ(x) denotes the order of Jx in the local ring OW,x.
Note that ordJ is upper-semi-continuous (3.6). In fact, for any positive integer s:

{x ∈ W/ordJ(x) ≥ s} = V (∆s−1(J)) (see 5.4).

Remark 6.3. The following conditions are equivalent:
1) max−ordJ = b (where, as in 3.6, max−ordJ denotes the maximum value achieved).
2) V (∆b−1(J)) 6= ∅ and V (∆b(J)) = ∅.
3) max−ord∆b−1(J) = 1.

The equivalence follows from the properties of the ∆ operator discussed in 5.4.

Definition 6.4. We say that (J, b) is a simple couple if the previous conditions hold for J and b.

The following theorem is a central result in this section.

Theorem 6.5. If (J, b) (J ⊂ OW ) is a simple couple, and

W
π←− W1

(J, b) (J1, b)

is a transformation, then either Sing(J1, b) = ∅ or (J1, b) is a simple couple.

The case b = 1 will be proved in Proposition 6.8, and the case b ≥ 2 in Proposition 6.9.
We shall first draw attention to the case of simple couples of the form (J, 1).

Remark 6.6. The following conditions are equivalent:
1) max−ordJ = 1.
2) V (J)) 6= ∅ and V (∆(J)) = ∅.
3) There is an open covering {Uλ}λ∈Λ of W , and for each λ a smooth hypersurface W λ in Uλ

such that I(W λ) ⊂ Jλ, where Jλ denotes the restriction of J to Uλ.

For the proof of 3), note that an ideal of order one in a local regular ring OW,x contains an element
of order one; and that element defines a smooth hypersurface in some open neighborhood of x ∈ W .

Remark 6.7. Fix, as before, an open covering of W , say {Uλ}λ∈Λ, and a monoidal transformation
with center Y ⊂ W , say W ←− W1. For each index λ set U

(1)
λ ⊂ W1 as the pull-back of Uλ. In this

way we get
Uλ ←− U

(1)
λ

which is either a monoidal transformation (in case Y ∩Uλ 6= ∅), or the identity map (if Y ∩Uλ = ∅).
Note also that {U (1)

λ }λ∈Λ is an open cover of W1.
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Proposition 6.8. Fix J ⊂ OW with maximum order 1, and a sequence of transformations

(6.8.1) W
π1←− W1

π2←− . . .
πr←− Wr

(J, 1) (J1, 1) (Jr, 1)

then the maximum order of Jr is either 1 or 0 (i.e. Jr = OWr in the last case).

Proof. Define an open covering {Uλ}λ∈Λ of W , and inclusions

(6.8.2) I(W λ) ⊂ Jλ,

where W λ is a smooth hypersurface in Uλ, as indicated in Remark 6.6,3).
The sequence (6.8.1) defines, for each index λ, a sequence of transformations:

Uλ
π1←− U

(1)
λ

π2←− . . .
πr←− U

(r)
λ

(Jλ, 1) ((Jλ)1, 1) ((Jλ)r, 1),

and also
Uλ

π1←− U
(1)
λ

π2←− . . .
πr←− Uλ(r)

λ

(I(W λ), 1) ((I(W λ))1, 1) ((I(W λ))r, 1).
Furthermore

(I(W λ))r ⊂ (Jλ)r

by Remark 5.8. Let W
(r)
λ ⊂ U r

λ denote the strict transform of W λ. Since W λ is smooth in Uλ,

Example 4.3 asserts that W
(r)
λ is smooth, and defined by the ideal (I(W λ))r. In particular (I(W λ))r

has maximum order at most one, and hence the same holds for (Jλ)r. Since the open sets (Uλ)(r)

cover Wr it follows that Jr has order at most 1. ª
Proposition 6.9. Fix J ⊂ OW with maximum order b ≥ 2, and consider a sequence of transfor-
mations

(6.9.1) W
π1←− W1

π2←− . . .
πr←− Wr

(J, b) (J1, b) (Jr, b).

Then then the maximum order of Jr(⊂ OWr) is at most b.

Proof. From 5.4 we conclude that the maximum order of ∆b−1(J)(⊂ OW ) is 1. Corollary 5.11
applied for j = b− 1 says that (6.9.1) defines the sequence of transformations

(6.9.2) W
π1←− W1

π2←− . . .
πr←− Wr

(∆b−1(J), 1) ((∆b−1(J))1, 1) ((∆b−1(J))r, 1),

and that (∆b−1(J))r ⊂ ∆b−1(Jr). On the other hand Proposition 6.8 asserts that (∆(J))r has order
at most 1, and hence ∆b−1(Jr) has order at most one. From this and 5.4 we conclude that Jr has
order at most b. ª
Remark 6.10. There is a stronger outcome that follows from the proof of Proposition 6.9 that
relates to induction in the dimension of the ambient space. Note that J has highest order b, so
∆b−1(J) has highest order one. We can argue as in the proof of Proposition 6.8, and define an open
cover {Uλ}λ∈Λ of W , and for each index λ, a smooth hypersurface W λ ⊂ Uλ, defined by

(6.10.1) I(W λ) ⊂ (∆b−1(J))λ.
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Now use the compatibility of the ∆ operator with restriction to open sets and check that
(∆b−1(J))λ = (∆b−1(Jλ)). Note also that Sing(J, b) ∩ Uλ ⊂ W λ. Recall that (6.9.2) defines, for
each index λ, a sequence of transformations of ((∆b−1(J))λ, 1), say:

Uλ
π1←− U

(1)
λ

π2←− . . .
πr←− U

(r)
λ

((∆b−1(J))λ, 1) (((∆b−1(J))λ)1, 1) (((∆b−1(J))λ)r, 1),

and also
Uλ

π1←− U
(1)
λ

π2←− . . .
πr←− Uλ(r)

λ

(I(W λ), 1) ((I(W λ))1, 1) ((I(W λ))r, 1).

Furthermore, (I(W λ))r ⊂ ((∆b−1(J))λ)r, and (I(W λ))r defines a smooth hypersurface W
(r)
λ ⊂

U
(r)
λ which is the strict transform of W λ. We finally note that {U (r)

λ }λ∈Λ is a cover of W (r), and
taking restriction of the inclusion (∆b−1(J))r ⊂ ∆b−1(Jr), we get that:

((∆b−1(J))λ)r = ((∆b−1(J))r)λ ⊂ (∆b−1(Jr))λ,

and hence (I(W λ))r ⊂ (∆b−1(Jr))λ. In particular

(Sing((J)r, b) ∩ U
(r)
λ =)Sing((Jλ)r, b) ⊂ W

(r)
λ .

Lemma 6.11. Fix J ⊂ OW with maximum order b. There is an open covering, say {Uλ}λ∈Λ of W ,
and for each index λ a smooth hypersurface W λ ⊂ Uλ, such that the following properties hold:

P1) Sing(Jλ, b) ⊂ W λ.
P2) For any sequence

(6.11.1) W
π1←− W1

π2←− . . .
πr←− Wr

(J, b) (J1, b) (Jr, b)

and setting by restriction, for each λ, say:

(6.11.2) Uλ
π1←− U

(1)
λ

π2←− . . .
πr←− U

(r)
λ ,

(Jλ, b) ((Jλ)1, b) ((Jλ)r, b)

then {U (r)
λ }λ∈Λ is an open covering of Wr, and

(6.11.3) Sing(Jr, b) ∩ U
(r)
λ = Sing((Jλ)r, b) ⊂ W

(r)
λ ,

where W
(r)
λ is the smooth hypersurface defined by the strict transform of W λ.

Proof. The case b = 1 (in which Sing(J, 1) = V (J)) is in the proof of Proposition 6.8. The case
b ≥ 2 is in Remark 6.10, and relies entirely on the inclusion (6.10.1).

ª

6.12. Let W
(i)
λ denote the strict transform of W

(0)
λ in U

(i)
λ (see (6.11.2)). A consequence of (6.13.1)

is that all the centers of monoidal transformations involved in (6.11.2) are included in W
(i)
λ ; hence

(6.11.2) defines a sequence of monoidal transformations

(6.12.1) W λ ←− W
(1)
λ ←− · · · ←− W

(r)
λ .
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Proposition 6.13. Fix J ⊂ OW with maximum order b. There is an open covering, say {Uλ}λ∈Λ

of W , and for each index λ a closed and smooth hypersurface W λ ⊂ Uλ, and a couple (K(0)
λ , b!) with

K
(0)
λ ⊂ OW λ

, such that, in addition to P1) and P2) (6.11), the following property holds:

P3) The sequence (6.12.1) defined by (6.11.1) as above, induces a sequence of transformations

(6.13.1) W λ
π1←− W

(1)
λ

π2←− . . .
πr←− W

(r)
λ

(Kλ, b!) ((Kλ)1, b!) ((Kλ)r, b!)

and

(6.13.2) Sing((Jλ)r, b) = Sing((Kλ)r, b!)(⊂ W
(r)
λ ).

Remark 6.14. On the converse. Set W = Uλ so that (J, b) = (Jλ, b). The equality in (6.13.2)
asserts, by induction on r, that any sequence 6.13.1 induces a sequence (6.11.1). And furthermore,
if 6.13.1 is a resolution, so is (6.11.1).

We are interested mainly in this converse, since we will argue by increasing induction on the
dimension of the ambient space. If we accept, by induction, that there is a resolution 6.13.1 for each
index λ, then we will have defined a resolution (6.11.2) for each λ. We will define these resolutions
so that they patch to a resolution (6.11.1).

Full details of the proof of Proposition 6.13 will be given in Part IV, however the following example
illustrates the basic idea of the proof.

Example 6.15. In Example 5.5 we considered the case W = A3
k = Spec(k[X,Y, Z]), and

J =< Z3 + XY 2Z + X5 >,

an ideal of maximum order b = 3. In such example we noted that Z ∈ ∆2(J) =< Z, XY, Y 2, X3 >,
and we considered the smooth hypersurface W = V (< Z >). This is a particular example of Lemma
6.11, where there is no need to consider the open covering {Uλ}λ∈Λ of W . In fact here the Lemma
applies globally in W . In this example b! = 6, and Proposition 6.13 applies by setting K = J∗ as in
(2.6.1).

A similar situations holds, more generally, in 2.9, for K = J∗ = 〈c
b!
i
i , i = 2, 3, . . . , b〉.

Remark 6.16. The compatibility of the ∆ operator with open restrictions has played an important
role in the proofs in this section. If the transformation in Theorem 6.5 is defined with center Y ⊂ W ,
and if H ⊂ W1 denotes the exceptional locus, then JOW1 = I(H)b · J1, and J1 has at most order
b. Suppose now that the highest order of J along points in W is bigger than b, but that we simply
know that the order of J is constant and equal to b along any point of the center Y . Since the
order of J along points in W defines an upper-semi-continuous function on W , then there is an open
neighborhood, say U ⊂ W of Y , so that b is the highest order of the restriction JU . In particular
there is an open neighborhood U1 of H in W1 so that the restriction (J1)U1 has highest order ≤ b.

Remark 6.17. The compatibility of the ∆ operator with open restrictions will also play a role in
our proof of Proposition 6.13, and this will allow us to present the ideals Kλ so that they are also
compatible with a restriction of W to an open set U , at least if the restricted ideal JU is again of
highest order b.

There is yet another context in which there is a natural compatibility of the operator ∆, which
are not open restrictions, but will also play a role in the proof of Proposition 6.13. In fact, set
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W ←− W1 = W × A1
k where A1

k denotes the affine line and the map is the projection on the first
coordinate. Note that if J is an ideal in OW , and if ∆1 denotes the operator on the smooth scheme
W1, then

∆1(JOW1) = ∆(J)OW1 .

Note that a covering {Uλ}λ∈Λ of W induces by pull-back, a covering of W1. The setting of Proposition
6.8 and the inclusions (6.8.2) are compatible with pull-backs; and so are the setting of Proposition
6.9 and the inclusions (6.10.1). This will guarantee the compatibility of all our development for this
particular kind of projection.
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