
APN Functions 3: Linearity

Gary McGuire

Claude Shannon Institute
www.shannoninstitute.ie

and
School of Mathematical Sciences

University College Dublin
Ireland

SORIA 2010

Gary McGuire APN Functions 3: Linearity



Talk 3

1 Linear Attack

2 Nonlinearity

3 Fourier Transform

4 Kloosterman Sums, Algebraic Curves

Gary McGuire APN Functions 3: Linearity



Recall

Many modern ciphers are (roughly speaking) a series of ROUNDS,
where each round consists of an S-box and a P-box, and a subkey
input.

x −→ S(x) −→ P(S(x)) −→︸ ︷︷ ︸
one round

S(P(S(x))) −→ · · ·

The S-box has to satisfy certain criteria to be secure against
certain attacks. Some are

1 The PN or APN property provides resistance of the S-box to
differential attack.

2 The permutation property (i.e. S being invertible) makes it
easier to invert (to decrypt).

3 High algebraic degree (resistance to algebraic attack).
4 High nonlinearity provides resistance of the S-box to linear

attack (today).
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Linear Attack

Linear Cryptanalysis tries to approximate an S-Box
f : (F2)n −→ (F2)n with a linear (or affine) function.
Search for a, b, δ such that

〈a, x〉 = 〈b, f (x)〉+ δ

for ”many” x ’s. (a, b ∈ (F2)n, δ = 0 or 1)
(Matsui, 1993. Known Plaintext attack. DES in 243.)
So if the following sum∑

x∈(F2)n

(−1)〈b,f (x)〉+〈a,x〉

for some a, b ∈ (F2)n is “large” in absolute value, then our S-box
is in big trouble.
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Fourier Transform

If (F2)n = L = F2n , then we use 〈x , y〉 = tr(xy) as the inner
product, so we get ∑

x∈L

(−1)tr(bf (x)+ax)

Here tr is the trace from L to F2.

For the function
Fb(x) := (−1)tr(bf (x))

define its Fourier transform F̂b by

F̂b(a) :=
∑
x∈L

Fb(x)(−1)tr(ax) =
∑
x∈L

(−1)tr(bf (x)+ax)

So if |F̂b(a)| is “large” for some a, b then we are in trouble.
We want f such that all these Fourier coefficients are small.
Define L(f ) = maxa,b 6=0 |F̂b(a)| (the linearity of f )
So we want functions with small linearity. (i.e. highly nonlinear)
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Parseval’s Equation says (q = 2n)∑
a

|F̂b(a)|2 = q2

So the average of the squares is q, and it follows that |F̂b(a)|2 ≥ q
for some a, so

Theorem

If f : Fq −→ Fq then
√

q ≤ L(f ) ≤ q.

(We will not discuss funtions F2n −→ F2 here.)
Sidelnikov, Chabaud-Vaudenay improved this for f : F2n −→ F2n

L(f ) ≥ 2
n+1
2 =

√
2q

Exercise: Show that a linear function f has L(f ) = q. (easy)
Exercise: Find the linearity of f (x) = x3 (BCH code) (hard)
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Inverse Function

What about f (x) = x−1 ?
The Fourier coefficients become

F̂b(a) =
∑
x∈L

(−1)tr(bx−1+ax)

With a change of variable (replace x by bx) this becomes

K (c) =
∑
x∈L

(−1)tr(x−1+cx)

This is known as a Kloosterman sum.
There is a lot of literature about Kloosterman sums.
In particular, from the Weil bound it is known that

−2n/2+1 ≤ K (c) ≤ 2n/2+1,

and every value which is congruent to 0 modulo 4 in that range is
taken.
It follows that L(x−1) ≤ 2n/2+1 = 2

√
q, and equality holds if n is

even.
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Note: equality can only hold in the Sidelnikov bound if n is odd.

Theorem

(Sidelnikov, Chabaud-Vaudenay) For functions (F2)n −→ (F2)n we
have L(f ) ≥ 2(n+1)/2. Further, equality holds if and only if the
Fourier spectrum is {0,±2(n+1)/2}.

Functions for which equality holds are known as Almost Bent (AB)
functions.
We saw that x3 has this spectrum if n odd (BCH code weight
distribution).

For n even, L(x3) = 2
√

q
(BCH spectrum is {0,±2n/2,±2(n+2)/2})
For n = 8, the bound says L(f ) ≥ 29/2 so at least 23.
The inverse function, and x3, have L(f ) = 32. Best (smallest)
known. Conjectured to be optimal. (In general, conjecture that
2(n+2)/2 is best possible linearity for n even.)
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Example: Back to Coding Theory

Consider the binary cyclic code Cf of length 2n − 1 with parity
check matrix [

· · · x · · ·
· · · f (x) · · ·

]
It can be shown that the codewords in the dual code C⊥f are the
vectors (....., tr(bf (x) + ax), .......) over all a, b ∈ F2n .
Thus the weight wa,b of this codeword is given by

2n − 2wa,b =
∑
x∈L

(−1)tr(bf (x)+ax)

which is a Fourier coefficient of f !

More generally, the weight distribution of the code is given by the
Fourier spectrum of f .
Exercise: if the dual code has only three weights, show that the
distribution is determined. (Hint: We know d(Cf ) ≥ 3, and use the
MacWilliams identities to get three equations in three unknowns. )
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Fourier Spectra and APN Functions

If n is odd,
L(f ) = 2(n+1)/2 =⇒ APN

Proof: We know the entire weight distribution of C⊥f because
equality holds in the bound. (using Sidelnikov, Chabaud-Vaudenay
theorem and previous exercise)
Use the MacWilliams identities. Get the weight distribution of Cf ,
and it must be the same as the BCH code. In particular we must
have d = 5 and f is APN.
Moral: Coding theory has useful tools!

Almost all known APN functions have the same Fourier spectrum
as x3.
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Algebraic Curves

Consider ∑
x∈L

(−1)tr(bf (x)+ax)

To evaluate this, we want to know how often tr(bf (x) + ax) is 0.
Elements of trace 0 have the form y2 + y .
So we want the number of solutions (x , y) to

y2 + y = bf (x) + ax .

This is an algebraic curve defined over L.
We want the number of rational points on this curve.
Example: f (x) = x−1, or x3, the curve is an elliptic curve!
The number of rational points on elliptic curves was determined by
Deuring, Waterhouse.
x−1 gives an ordinary elliptic curve.
x3 gives a supersingular elliptic curve.
We recover the earlier results about the Fourier spectrum/weight
distribution.
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Fourier Transform in General

We note that all the Fourier transform theory can be done much
more generally.
Let f : A −→ B be a function between finite abelian groups.
We use isomorphisms α 7→ χα from A to Â (the group of
characters of A) and β 7→ ψβ from B to B̂.

We define the value of the Fourier transform of f at α ∈ A and
β ∈ B by

f̂ (α, β) =
∑
a∈A

(ψβ ◦ f )(a) χα(a) for all α ∈ A. (1)

We define the linearity of f by

L(f ) = max
α∈A,β∈B∗

|f̂ (α, β)|. (2)
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Characteristic p

Let tr denote the absolute trace map from L = Fpn to Fp.
Let ζ be a primitive complex p-th root of unity.
Let L̂ denote the group of characters of the additive group of L.
The so-called canonical additive character on L is µ(x) = ζtr(x),
and all elements of L̂ have the form µa(x) := ζtr(ax) for a ∈ L.
The Fourier transform of any complex-valued function F defined
on L is the function F̂ defined on L̂ by

F̂ (µa) :=
∑
x∈L

F (x)µa(x) =
∑
x∈L

F (x)ζ−tr(ax)

for a ∈ L.
Usually we consider F̂ to be defined on L via the identification
a↔ µa, and we write F̂ (a) instead of F̂ (µa),
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To a function f : L −→ Fp we associate the complex-valued
function F = ζ f . Such a function f is called bent if F has
|F̂ (a)|2 = q for all a.
For a function f : L −→ L, the functions fb(x) = tr(bf (x)) are
called the coordinate functions of f , for b ∈ L.
Continuing our notation, we let Fb(x) = ζtr(bf (x)).
The Fourier spectrum of f (or F ) is the set of all values of the
Fourier transform over all coordinate functions:

Λf := {F̂b(a) : a, b ∈ L, b 6= 0}.

One can study the Fourier spectrum of PN functions, and so on.
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