
PART II. CRYPTOGRAPHY

Contents

1 Introduction
1.1-2 Problem setting

1.3 Symmetric examples
1.4 A public key example: RSA
1.5 Some non-mathematical issues

2 Key exchange
2.1 The Diffie-Hellman protocol
2.2 Generic attacks

3 Elliptic curve cryptography (ECC)
3.1 Constructive aspects of ECC
3.2 Digital signatures
3.3 Constructive and destructive aspects of the Weil pairing
3.4 Other attacks and threats

4 ECC in practice
4.1 A summary of ECC’s features
4.2 Side-channel attacks
4.4 Will ECC ever be broken?
4.5 ECC in daily life

Some useful references

[1] I. Blake, G. Seroussi and N. Smart, Elliptic curves in cryptography, London Mathematical
Society Lecture Note Series 265, Cambridge University Press (1999)

[2] H. Cohen and G. Frey (eds.), Handbook of elliptic and hyperelliptic curve cryptography,
Discrete Mathematics and its Applications 34, Chapman & Hall/CRC (2005)

[3] N. Koblitz, Algebraic aspects of cryptography, Algorithms and Computation in Mathematics
3, Springer-Verlag (1997)

[4] P. Nguyen, Public-key cryptanalysis, a chapter in I. Luengo, Recent trends in cryptography,
Contemporary Mathematics series 477, AMS-RSME (2009)

[5] J. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics 106,
Springer-Verlag (1986)

The most down-to-earth text is [3]. The standard reference on elliptic curves is [5],
for which some experience with algebraic geometry is recommended (the first two
chapters give a good introduction). The most up-to-date account is the extensive
[2], of which a second edition will appear in the near future. Reference [4] is mainly
about RSA instead of elliptic curve cryptography.

1



2 PART II. CRYPTOGRAPHY

1. Introduction to cryptography

1.1. A medieval tale. We are writing 914 AD. The mighty king John the Great
has come to pass away. The empire is subdivided into three regions, according to
the number of heirs. John’s oldest daughter Alice becomes the beloved queen of the
Eastern Part. His son Bob becomes the benign king of the Western Part. John’s
youngest, bewitched daughter Eve crowns herself to become the first emperess of
the Middle Part.

But greedy Eve wants more, and soon after her father’s death she begins prepar-
ing a cowardly attack on the Western Part. However, her plans leak out, and
Alice gets informed about them. She decides to warn her brother and commands
her best messenger to bring a hand-written message across Eve’s cursed empire.
This is risky business: suppose revengeful Eve intercepts the message, then she will
probably change plans and attack Alice’s Eastern Part instead.

Alice
Bob

Eve

Now instead of fully relying on the agility of her messenger, Alice could take
some security measures herself. She could for instance put the document in an
unbreakable box equipped with an unforceable lock. Then the enemy intercepting
the message would not be able to access it. Of course, this requires that Bob has a
key to unlock the box. Therefore we call such an approach symmetric: Alice and
Bob should possess a copy of the same key. This only seems to replace the problem
by another one: how can both siblings obtain a copy of the same key? Using a
messenger? Carrying a box that is locked using another key? Which should in its
turn be sent by a messenger? One apparently runs into a vicious circle.

1.1.1. The three-pass protocol. Here is a solution to Alice’s problem. She locks the
box using one of her own keys, and sends it to Bob. Bob properly receives it, but is
unable to open it. Instead, he attaches an additional lock, and sends the box back
to Alice. Now Alice removes her own lock, and commands her exhausted messenger
to take the box to Bob once more. The latter is now able to open the box and read
the secret message. At no point in the process, the enemy will be able to access
the message.

1.1.2. A public key protocol. Another approach for Alice is that Bob possesses one
of those fancy padlocks, which can be locked by just ‘clicking’, without using a
key. Then Alice sends out her messenger to go get Bob’s open padlock. She then
attaches it to her unbreakable box, and locks it. Now Bob is the only person that is
able to open the box, and it is safe to let the messenger take it across the enemy’s
territory. So a way to think about the fancy padlock is as if it were a publicly
available key, that is free-to-use to ‘lock’ messages.



PART II. CRYPTOGRAPHY 3

1.2. Modern setting. Enough about kings, queens and evil empires. From now
on, Alice and Bob are computer users, and Eve is a bad girl eavesdropping the
internet or any other unsecured channel connecting their computers.

1.2.1. Alice’s message. In practice, Alice’s message M is a sequence of 0’s and 1’s.
One usually limits the length of the sequence to some fixed, publicly known number
r, i.e. M ∈ {0, 1}r. If the message does not meet this bound, it is split into blocks.
The set M = {0, 1}r is called the message space or the plaintext space.

1.2.2. Bob’s secret key. Bob possesses a secret key kB , which allows him to ‘unlock’
or decrypt Alice’s message. The key is a sequence of 0’s and 1’s of some publicly
known length m. Note that the key space K = {0, 1}m is finite, so in principle evil
Eve can exhaustively search for the key that unlocks Alice’s message.

Exercise 1.1. Suppose m = 80 and Eve’s computer can verify up to 4·109 candidate-
keys per second, then how long is this expected to take her?

Thus in practice, this is not a threat. We will comment more on key lengths in
Section 1.5.3.

1.2.3. Symmetric keys. In the symmetric setting, Alice uses a copy of Bob’s key to
‘lock’ or encrypt her message. In this case, we put kA = kB . As explained in our
medieval tale, obtaining such a copy is a priori non-trivial.

1.2.4. Public keys. Miraculously enough, there exist mathematical analogues of the
fancy padlock described above: everyone (including Eve) can encrypt messages, but
only Bob can decrypt them. This is based on well-chosen one-way functions

f : K 99K K,

which are publicly known functions that are easy to compute, but where computing
an inverse image of a given binary string is (believed to be) very hard. The dashed
arrow indicates that f doesn’t need to be defined everywhere. The role of the fancy
padlock is then played by kA = f(kB), which can be made public without revealing
kB . The most famous instance of a public key scheme is RSA. There, the underlying
one-way function is the map sending two prime numbers of at most ⌊m/2⌋ binary
digits to their product. See Section 1.4 for a description of RSA.

1.2.5. Encryption and decryption. The role of the unbreakable box is played by a
publicly known pair of efficiently computable functions requiring double input. The
encryption function

E :M×K 99K C
takes as input Alice’s message M , along with the key kA to ‘lock’ it. It takes values
in the ciphertext space C = {0, 1}s. The decryption function

D : C × K 99KM
takes as input an encrypted message, along with Bob’s key kB to ‘unlock’ it:

D(E(M,kA), kB) = M.

Bob’s key kB is the big secret ingredient: if Eve gets to know it, she can apply
D(·, ·) and recover the message M . ‘Unbreakable’ means that for an adversary that
doesn’t know kB , it should be extremely hard to recover M from E(M,kA). The
situation cryptographers strive for is where Eve’s only approach is to exhaustively
try all candidate-keys kB ∈ K; see Exercise 1.1 above.



4 PART II. CRYPTOGRAPHY

1.3. Symmetric examples.

1.3.1. Substitution ciphers. In a sense, Julius Caesar is the founder of modern cryp-
tography. To communicate with his generals, he substituted every letter of his mes-
sage with the third subsequent letter of the Roman alphabet. Forcing this into the
above formalism (though not forcing the non-electronic Roman empire in a binary
world), we can write

E : Z/(26) × Z/(26) → Z/(26) : (m, kB) 7→ m + kB ,
q q q

M K C

D : Z/(26) × Z/(26) → Z/(26) : (m, kB) 7→ m− kB ,
q q q

C K M
where Caesar used kB = 3. This is a very weak method due to the small key space:
an adversary trying to decipher some sequence of letters C ∈ C can simply try all 26
possibilities for kB ∈ K until the corresponding sequence of letters D(C, kB) ∈ M
makes sense1.

The size of the key space can be dramatically increased by allowing arbitrary
permutations of the alphabet:

E : Z/(26) × S26 → Z/(26) : (m,σ) 7→ σ(m).
q q q

M K C

The set S26 now contains 26! ≈ 288 elements, which is certainly big enough to
exclude exhaustive search as a possible attack, see Exercise 1.1. Nevertheless, these
more general substitution ciphers are again easily broken. This can be done using
frequency analysis. E.g., in a comparatively large English text, about 12.7% of all
letters will be ‘E’, about 9.5% will be ‘T’, about 8.2% will be ‘A’, and so on. So
by computing frequencies one can make a good guess for the secret permutation
σ ∈ S26, and some additional puzzling will reveal Alice’s message. This works very
well in practice.

1.3.2. Towards AES/Rijndael. Throughout history, mankind has produced a long
list of cryptographic schemes and attacks against these, many of which have the
above statistical flavor (although in a less obvious manner). A famous example is
the 1917 decryption of the Zimmermann telegram, which was an attempt of the
German minister of foreign affairs to set up a war between Mexico and the USA.
The main objective was to keep the USA away from Europe. But as said, the
telegram got decrypted, causing the opposite effect: the USA declared the war
against the German alliance, which brought World War I in a decisive stadium.

1Of course, this conclusion is not very honest. At the time of usage, the adversary was not

familiar with the phenomenon of encryption, let alone that the functions E and D were publicly
known. So before coming to the point of simply trying all 26 keys, he should have come to
the harder point of understanding the mechanism of Caesar’s cipher. From this perspective,

the method definitely becomes somewhat safer. However, we put emphasis on ‘somewhat’. In
practice, it almost never turns out to be a good idea to treat E and D as a part of the secret. See

Section 1.5.1.



PART II. CRYPTOGRAPHY 5

the Zimmermann telegram

Another threat for symmetric cryptosystems is differential cryptanalysis: if two
closely related messages are encrypted using the same key, then linear properties
of the cryptosystem (which should not be there!) leak information. This played
an important role in the cracking of the Enigma and Lorenz ciphers in World War
II. At some point in 1941, due to a mistake, a German clerk was forced to send
a certain message twice. But he got lazy and started using abbreviations. By
analyzing the difference of the two closely related encrypted messages, the allied
were able to break the code.

Cryptography became serious academic business as of 1976. One reason is the
discovery of public key cryptography by Diffie and Hellman, see Sections 1.4 and 2
below. Another reason is the introduction of a standardized symmetric cryptosys-
tem called DES (Data Encryption Standard) by the US Government. The academic
world was sceptical, because DES uses keys of 56 bits only (see Section 1.5.3 for
some comments on key lengths). People feared that the government had foreseen
some back door in the system. As a consequence, the system was subject to a
thorough analysis, and ironically enough DES has meant a lot for the development
of modern cryptanalysis. Nowadays, it is fully broken: in 1999, a DES key was
recovered in less than a day.

In 2002, the lessons from DES and other (semi-)failures culminated in a new
encryption standard, that was introduced through a 5-year competition: Rijndael or
AES (Advanced Encryption Standard). This is now used worldwide, and considered
very secure. For instance, the US Government itself uses it for encoding top secret
information – see Section 4.4.

1.4. A public key example: RSA. The principles of public key cryptography
were discovered2 by Diffie and Hellman in 1976. They proposed a scheme for key
exchange, that will be described in Section 2. In 1978, Rivest, Shamir and Adleman
published the first practical public key encryption method: RSA.

1.4.1. A quick sketch. In Section 1.2.4, we already mentioned that the function
sending two prime numbers to their product is considered one-way: factoring a
product of two large prime numbers is believed to be very hard. It can be used
to construct a public key scheme as follows. (We won’t put effort in forcing our
description in the formalism of Section 1.2.)

2Or better: rediscovered. In 1997, it was made public that Diffie-Hellman key exchange was

already discovered in the early 1970’s by members of a British intelligence agency.



6 PART II. CRYPTOGRAPHY

Bob chooses a pair of prime numbers kB = (p, q) and computes their product
n. He also chooses an encryption exponent e, which is an integer coprime to (p −
1)(q − 1). The pair kA = (n, e) is the public key of the cryptosystem. Alice can
freely use it to encode a message M as follows. Read M as an integer, and suppose
it is < n (otherwise the message is split into blocks as in Section 1.2.1). Then the
encrypted message is

C = Me mod n.

To decrypt, Bob first computes a multiplicative inverse d of e in the ring Z/((p −
1)(q − 1)) using Euclid’s algorithm. He then recovers the message as

Cd mod n = Med mod n = M,

where the latter equality holds by Euler’s congruence (which might fail if M is not
coprime to n, but in practice this never happens).

Clearly, if Eve knows about an efficient factoring algorithm, she can reveal Bob’s
secret key and decrypt Alice’s messages. So the security of RSA highly depends on
the hardness of factoring.

Big open question. Is factoring integers in fact equivalent to cracking RSA? I.e.
would an attack on RSA result in an efficient algorithm for factoring integers?

For a long time, people believed that the answer would be ‘yes’. However, nowa-
days the cryptographic community doesn’t seem so convinced any more (Boneh-
Venkatesan, 1998).

1.4.2. An elliptic curve factorization method. This course seems a good place for
mentioning a surprising application of elliptic curves: an algorithm for factoring n
into p and q that works considerably better than the naive methods (although not
good enough to crack RSA). It is an ingenious extension of Pollard’s p− 1 method:

Exercise 1.2 (Pollard’s p−1 method). Suppose that p−1 is a divisor of
∏β

r=2 r, for
some small bound β. Explain why the following routine is likely to factor n = pq.

(1) Take a random a ∈ {2, . . . , n− 1}.
(2) For r ∈ {2, . . . , β} do

(a) a← ar,
(b) compute gcd(a, n), if a nontrivial factor is found then stop.

(3) If no nontrivial factor was found, then go back to (1).

Of course the routine also works if q − 1 is a divisor of
∏β

r=2 r. What if both p− 1
and q − 1 are divisors?

The idea of elliptic curve factorization (Lenstra, 1987) is to replace the multi-
plicative groups F×

p , F×
q , which always have p−1 resp. q−1 elements, by randomly

chosen elliptic curve groups Ep(Fp) and Eq(Fq), whose number of elements take
values all over [p + 1− 2

√
p, p + 1 + 2

√
p] resp. [q + 1− 2

√
q, q + 1 + 2

√
q]. Whereas

the concrete numbers p − 1 or q − 1 will rarely split into small prime factors, the
above intervals are likely to contain an integer that does split into small primes.

One can exploit this as follows.

(1) Choose a small bound β ∈ Z≥0 and let k =
∏β

r=2 r.
(2) Take random A, x0, y0 ∈ Z/(n) and consider

f(x, y) = y2 − x3 −Ax−B ∈ Z/(n)[x, y],



PART II. CRYPTOGRAPHY 7

where B = y2
0 − x3

0 − Ax0. Verify that gcd(4A3 + 27B2, n) = 1. If not,
either output the non-trivial factor and stop, either try new A, x0, y0.

(3) Naively using the formulas from Exercise I.1.5, let P = (x0, y0) and itera-
tively compute k · (x0, y0) as in Step (2) of Exercise 1.2. If (at some point)
division fails, we have found a denominator d for which gcd(n, d) 6= 1. Then
either output the non-trivial factor and stop, either try new A, x0, y0.

So the idea behind the algorithm is that at each step, y2−x3−Ax−B defines two
‘random’ elliptic curves, one curve Ep over Fp and one curve Eq over Fq. Likewise,
the tuple P = (x0, y0) defines two points: Pp ∈ Ep(Fp) and Pq ∈ Eq(Fq). Now the
orders of Ep(Fp) and Eq(Fq) are ‘random’ integers in the intervals

[p + 1− 2
√

p, p + 1 + 2
√

p] , [q + 1− 2
√

q, q + 1 + 2
√

q] ,

respectively (see Section 3.1.1 for some comments on this). With some probability,
#Ep(Fp) or #Eq(Fq) will be a divisor of β. Suppose this is the case for #Ep(Fp).
Then kPp = O, which will cause a division failure in Step (3). This is likely to
produce a nontrivial factor.

We remark that nowadays there exist other methods (e.g. the number field sieve
algorithm) that do better than the elliptic curve method, at least for the size of
primes that are typically used in RSA.

1.5. Some non-mathematical issues.

1.5.1. Kerckhoffs’ principle. Already in 1880, Kerckhoffs formulated the principle
that the security of a cryptographic system should depend on the secret key only.
In other words: the encryption and decryption functions E(·, ·) and D(·, ·) should
be publicly known.

For designers of symmetric cryptosystems, it might be tempting to treat E
and/or D as part of the secret: this certainly makes it harder for an adversary
to crack the system. However,

(1) a good system does not need this,
(2) using techniques from reverse engineering, it is often possible to recover the

encryption and decryption method anyway,
(3) transparency allows a bigger community to verify the security of the system.

History has provided many examples of cryptosystems that were unsuccessfully
kept secret. For instance, using reverse engineering, in World War II the British
allied were able to emulate a Lorenz machine without ever having seen one!

Despite all this, Kerckhoffs’ principle is still being violated. A recent example
is KeeLoq, the system used in the majority of remotely controlled car locks. The
method was kept secret, but it leaked out in 2006 and one year later a team of
Belgian and Israeli cryptographers showed that about an hour of communication
with the key suffices to steal the corresponding car. Note that KeeLoq is still being
used.

1.5.2. Man-in-the-middle attacks and trusted third parties. Let us reconsider the
three-pass protocol, see Section 1.1.1. Suppose that Eve intercepts Alice’s message.
She is unable to access it, since Alice locked the box. But she has a mean plan: she
attaches one of her own locks to the box. The (corrupted) messenger takes it back
to Alice, who thinks the lock is Bob’s. Naive Alice removes her own lock and sends
the message back to Bob, uh... Eve. Eve removes her lock and reads the message.

This is called a man-in-the-middle attack :



8 PART II. CRYPTOGRAPHY

Alice BobEve
pretends
she’s Bob

As explained, the three-pass protocol is very vulnerable to this attack. Man-in-the-
middle attacks apply as well to public key schemes such as RSA: Eve can create
her own public key and pretend it is Bob’s. Also phishing, which is a plague on the
internet, is a kind of man-in-the-middle attack.

Problems of this type can be addressed using instances providing authentication
certificates. Such instances are sometimes called trusted third parties (TTP’s). An
authentication certificate is essentially a phrase ‘I am Bob’ that is digitally signed
by the TTP. Alice can then verify the signature using the TTP’s public key. We will
not go into further detail on the concrete set-up of such a public key infrastructure.
But in Section 3.2, we will describe an elliptic curve based example of a digital
signature protocol.

1.5.3. Security levels. Consider the following engineery definition.

Definition 1.3. A cryptosystem is said to provide n-bit security if Eve’s best
approach is equivalent to an exhaustive search in a set of size 2n.

We say ‘engineery’ for two reasons:

(1) The definition is modulo future breakthroughs: we only concern attacks
that we currently know about. In practice, it turns out to be very hard to
prove that a system is n-bit secure.

(2) The actual security of an n-bit secure system also depends on other factors
(e.g. the time Eve needs to verify a key).

Nevertheless, it is useful to have some standards.
In Exercise 1.1, we studied 80-bit security. In contrast with the outcome of the

exercise, this is becoming an old standard. First, instead of just a bad girl, Eve
could be a criminal organization, or an intelligence agency. Then the exhaustive
search can be spread among thousands of computers. Second, computers become
faster and faster, and for a message that is intended to be kept secret on the long
term, the clock speed mentioned in the exercise is an underestimation. USA’s
National Institute for Standards and Security (NIST) suggests that 80-bit secure
systems should no longer be used as of 2010. The new standard has become 128-bit
security. For ‘highly sensitive data’, one even imposes 192-bit or 256-bit security.

AES provides 128-bit security for 128-bit keys and 256-bit security for 256-bit
keys, which is of course the optimal situation. 3DES, the update of DES that is
used in most cash withdrawal machines, offers 112-bit security for a 168-bit key.

As for RSA, one recommends 3072-bit keys to obtain 128-bit security! This is
due to the above-mentioned factorization methods: although they do not suffice to
crack RSA, they at least force cryptographers to dramatically increase the key size.
Note however that the margin is very safe. a record-breaking RSA key of 663 bits,
published by RSA Laboratories as a challenge, was factored in 2005 (it took about
five months on a cluster of computers).



PART II. CRYPTOGRAPHY 9

2. Key exchange

Symmetric schemes typically allow much faster encryption and decryption than
their public key counterparts. Therefore, an attractive option is the following com-
bination: Bob sends his secret key kB to Alice using a public key scheme. Then
both siblings proceed using a symmetric system.

Instead of using a public key scheme, one usually prefers using one of the special-
ized key exchange protocols. These are quite related to key communication through
public key encryption, but now the key is ‘commonly generated’ instead of just
sent as a plain message. The most notorious example is the Diffie-Hellman proto-
col, which was published in 1976, thereby founding public key cryptography. The
underlying principle is that for certain groups G, · and g ∈ G, the map

Z→ G : g 7→ gA

is (believed to be) one-way: it is very hard to compute logarithms with base g.

Exercise 2.1. Show that the base g does not matter, in the following sense. Suppose
g1, g2 generate the same subgroup of G. If computing logarithms with base g1 is
easy, then so is computing logarithms with base g2.

2.1. The Diffie-Hellman protocol (DHP). The Diffie-Hellman protocol can be
formulated for any publicly known pair g,G where G, · is a group and g ∈ G. Here
is how Alice and Bob can agree upon an element of G.

Alice Bob

Eve

chooses secret A ∈ Z
computes gA

∈ G receives gA

chooses secret B ∈ Z
computes gB

∈ Greceives gB

computes
�
gB

�A
computes

�
gA

�B

Thus, Alice and Bob have agreed upon gAB ∈ G. Eavesdropping Eve collected the
following information: gA, gB . If she wants to recover the key of Alice and Bob,
she must solve the following problem:

Definition 2.2 (Diffie-Hellman problem). The Diffie-Hellman problem is about
finding an efficient method to compute gAB from any triplet g, gA and gB.

Closely related to this is

Definition 2.3 (discrete logarithm problem). The discrete logarithm problem is
about finding an efficient method to compute A (mod ord(g)) from any pair g, gA.

For well-chosen groups G, the discrete logarithm problem is believed to be very
hard. Two popular choices are G = F×

q , · for some large finite field Fq, and G =
E(Fq),⊕ for some elliptic curve E over some large finite field Fq (see Section 3).

Exercise 2.4. Show that the discrete logarithm problem is easily solved in the groups
Q×, · and Fq,+.

Exercise 2.5. Show that a solution to the discrete logarithm problem implies a
solution to the Diffie-Hellman problem.



10 PART II. CRYPTOGRAPHY

An open problem is the converse of the above statement, i.e. does a solution
to the Diffie-Hellman problem imply a solution to the discrete logarithm problem?
Recall that a similar question appeared in RSA: is factoring integers as hard as
cracking RSA? Whereas people have no clue in the RSA case, the answer in the
Diffie-Hellman case is probably yes, for any practical choice of G. This was illus-
trated by Maurer and Wolf. Their argument uses. . . elliptic curves! The details
can be found in U. Maurer and S. Wolf, The relationship between breaking
the Diffie-Hellman protocol and computing discrete logarithms, SIAM J. Comput.
28(5), pp. 1689-1721 (1999).

Exercise 2.6. Although key exchange is the more natural discrete logarithm based
cryptographic application, one can modify the above to obtain a protocol for pure
public key encryption (à la RSA). This is due to Elgamal (1985). Bob’s private key
is now an integer kB ∈ Z and the corresponding public key is kA = gkB . To send
a message M (considered as an element of G), Alice chooses a random y ∈ Z and
computes

(1) C1 = gy,
(2) C2 = Mky

A.

She then sends the pair (C1, C2) to Bob. How can Bob recover M?

Remark 2.7. The security of the Elgamal encryption scheme can be shown to de-
pend on the a priori weaker decisional Diffie-Hellman problem, which is about
finding an efficient method to decide whether h = gAB , from any given quartet
g, gA, gB , h.

Exercise 2.8. Give a computer-implementable version of the three-pass protocol
that was explained in Section 1.1.1. You are likely to come up with the Massey-
Omura cryptosystem. Look it up and compare.

2.2. Generic attacks. From now on, we will assume that G is finite and that its
group order n = #G is known, which will be the case in all practical situations.
Suppose as well that we have the factorization of n:

n =

k
∏

i=1

pri

i .

Exercise 2.9. Using the fact that there exist fast primality tests, show that we can
efficiently obtain this factorization if at most one pi exceeds a certain given small
bound β ∈ Z≥1.

Let p = max{p1, . . . , pk}. We will show that any discrete logarithm in G with
respect to any base g can be computed in O(

√
p · log n) steps. The attack consists

of two parts: Silver-Pohlig-Hellman reduction and Pollard’s ρ method.

2.2.1. Silver-Pohlig-Hellman reduction. The Silver-Pohlig-Hellman reduction redu-
ces the discrete logarithm problem in G to at most r1 discrete logarithm problems
in groups of size p1, plus at most r2 discrete logarithm problems in groups of size
p2, and so on.

Let g ∈ G and h = gA be given. We want to compute A mod ord(g).

(1) Computing ord(g). If

m = ord(g) =

k
∏

i=1

psi

i with si ≤ ri,



PART II. CRYPTOGRAPHY 11

then for i = 1, . . . , k we can compute si by trying whether

gn/pj
i = 1

holds for increasing values of j = 1, . . . , ri. If equality fails for some j, then
si = ri − j + 1. If equality holds for all j, then si = 0.

(2) Reducing the discrete logarithm problem to groups of size psi

i . Since h = gA,

hm/p
si
i =

(

gm/p
si
i

)A

.

Note that

ord
(

gm/p
si
i

)

= psi

i ,

so the above equation determines A mod psi

i . Solving this equation means
computing a discrete logarithm problem in a group of size psi

i . If we do this
for all psi

i , we can use the Chinese Remainder Theorem to recover A mod
m.

(3) Reducing the discrete logarithm problem to groups of size pi. Let g ∈ G be
an element of prime power order ps and let h = gA. Let A0 = A mod p,
then we have

hps−1

=
(

gps−1
)A0

,

so computing A0 boils down to computing a discrete logarithm in a group
of size p. Once we know A0, then we are left with

hg−A0 = (gp)
A−A0

p ,

which is a discrete logarithm problem with basis gp. This is an element of
order ps−1. Thus we can repeat the argument: A1 = (A − A0)/p mod p
can be obtained by computing a discrete logarithm in a group of size p.
Repeating this s times, we can read off A mod ps, since we have actually
computed the expansion

A mod ps = A0 + A1p + A2p
2 + · · ·+ As−1p

s−1.

2.2.2. Pollard’s ρ method. Let S be any finite set of n elements and let f : S → S
be a random function. Let x0 ∈ S be a random element and consider the infinite
random walk

x0, x1 = f(x0), x2 = f(x1), x3 = f(x2), . . .

Since S is finite, for some smallest j we must have that xj was already in the list,
say xj = xi for some i ≤ j. But then also xj+1 = xi+1, xj+2 = xi+2, . . . : the
sequence becomes periodic. The random walk can be pictured as follows:

x0

xi = xj

hence the name Pollard ρ (rho)! By the birthday paradox, such a collision is
expected to happen after

j =
√

πn/2

steps (a formula due to Ramanujan).
How can this be used to compute discrete logarithms? Suppose we are given

g ∈ G and h = gA as before. Without loss of generality, suppose that G is cyclic
and that g is a generator, thus #G = ord(g) = n. Partition G into three ‘random’



12 PART II. CRYPTOGRAPHY

(but easy to describe) sets G1, G2, G3, such that 1 6= G2. Define the following
function

f : G→ G : x 7→







xh if x ∈ G1

x2 if x ∈ G2

xg if x ∈ G3,

and consider the corresponding ‘random’ walk starting from x0 = 1. Along the
way, keep track of the expansion xi = gaihbi (starting from a0 = b0 = 0), where
the ai, bi only need to be remembered modulo n. Now suppose that at some point
we have a collision

xj = xi ⇔ gaj hbj = gaihbi ⇔ gaj−ai = hbi−bj .

Then A mod n can be recovered as (aj−ai)(bi−bj)
−1 (in Z/(n)). This is unless we

have bad luck and division fails. In that case, we try again with different G1, G2, G3.
As mentioned, we expect to find a collision after

√

πn/2 steps. However, this
method has heavy memory requirements, since we need to remember all xi to
check whether we have a collision or not. Here is a trick to get around this, due
to Floyd. Instead of computing x0, x1, x2, . . . and storing all results, we compute
the sequence of pairs (x1, x2), (x2, x4), (x3, x6), (x4, x8), . . . and forget about all
previous outcomes.

(xi+1, x2i+2) = (f(xi), f(f(x2i))).

Exercise 2.10. Prove that we expect to have xi = x2i for some i ≤
√

2πn.

Thus we can still find collisions in O(
√

n) time, using virtually no memory.

2.2.3. Consequences. Here are two important conclusions:

(1) Silver-Pohlig-Hellman: if the order of G splits into small prime factors,
then the Diffie-Hellman protocol is not secure. In any case, each non-
trivial factor reduces the security. The ideal situation is where #G is a
large prime number (and g 6= 1).

(2) Pollard ρ: in order to provide 128-bit security, we have to work in a group
of size at least 2256.

3. Elliptic curve cryptography (ECC)

The Diffie-Hellman protocol was initially formulated for multiplicative groups of
finite fields F×

q . Nowadays, the security of such systems is highly comparable to
that of RSA. In particular, to provide 128-bit security, one recommends the usage
of 3072-bit keys. The most famous attack is index calculus, see [2, Chapter 20].

In the mid 80’s, Miller and Koblitz independently proposed the usage of elliptic
curves over finite fields as the underlying group in the Diffie-Hellman protocol.
Elliptic curve cryptography was born. Gradually it convinced the cryptographic
community of its value, due to

(1) the large amount of effort that was put in improving its performance,
(2) the fact that nobody proved able to come up with an attack that works

substantially faster than Pollard’s ρ method, meaning that 128-bit security
is obtained using 256-bit keys,

(3) the discovery of certain cryptographic protocols that have no non-elliptic
alternatives (pairing-based cryptography).



PART II. CRYPTOGRAPHY 13

Property (2) is particularly attractive for small devices such as cell phones, bank
cards, ID cards, . . .

Note that, because we denote the group structure on an elliptic curve additively,
the discrete logarithm problem reads

given P ∈ E(Fq) and Q = k · P, find k mod ord(P).

3.1. Constructive aspects of ECC.

3.1.1. Finding a good elliptic curve. By the conclusions in Section 2.2.3, a first aim
is to find an elliptic curve E over a finite field Fq of size about q ≈ 2256, whose
number of elements is prime3. This can be done by trying random elliptic curves,
each time applying the SEA algorithm to compute the number of points. By the
following exercise, we can typically verify two curves at once.

Exercise 3.1. Let E : y2 = x3 + Ax + B be an elliptic curve over Fq, and suppose
it has trace of Frobenius t. Let d ∈ Fq be non-square. Then show that the curve
ET : y2 = x3 + Ad2x + Bd3 has trace of Frobenius −t. Hint: first prove that
the number of affine points on the latter curve equals the number of solutions to
dy2 = x3 +Ax+B. The curve ET is called a quadratic twist of E. Give a concrete
example of a quadratic twist ET that is equal to E.

The number of points is a ‘random’ integer in the Hasse interval [q+1−2
√

q, q+
1 + 2

√
q]. By the prime number theorem, we expect to find a good curve after a

couple of hundreds of steps. Although this seems to match with practice (in fact,
practice does a little worse, see (4) below), it is only heuristical:

(1) It is not even known whether each Hasse interval contains at least one prime
number.

(2) The above ‘randomness’ is not according to the uniform distribution. The
trace of Frobenius t roughly follows the semicircular distribution

1

2qπ

√

4q − t2dt :

(3) #E(Fq) strongly tends to avoid numbers that are congruent to 1 mod
p = char Fq (curves with such a number of points are supersingular – see
Theorem 3.9).

(4) #E(Fq) slightly favors small prime factors. E.g., the probability that
#E(Fq) ≡ 0 mod 2 tends to 2/3 as q → ∞. Note that #E(Fq) ≡ 1 mod 2
if and only if x3 + Ax + B is irreducible. Now prove the following:

Exercise 3.2. Show that the probability that a random monic cubic poly-
nomial is irreducible tends to 1/3 as q → ∞. Hint: observe that any such
polynomial is the minimal polynomial over Fq of three elements of Fq3 .

One can show that the same statistics apply to the less general family of
polynomials x3 + Ax + B.

3In practice, a small cofactor is tolerated.



14 PART II. CRYPTOGRAPHY

Alternatively, there exist efficient methods that construct an elliptic curve with a
given prime as number of rational points. However, for these methods, one cannot
fix the field in advance (which one usually prefers to do for reasons of fast field
arithmetic).

Further on, we will describe a number of additional obstructions for an elliptic
curve to be suitable for cryptography. This section will be updated accordingly in
Summary 3.10.

3.1.2. Finding a point P ∈ E(Fq). Finding a nontrivial Fq-rational point on E is
done as you would expect: one takes a random x ∈ Fq, computes x3 + Ax + B
and verifies whether it is a square or not by computing the quadratic character
(Legendre symbol if q is prime). If it is, compute a square root: there exist efficient
methods for doing this. If q ≡ 3 mod 4, computing square roots is even almost
trivial:

Exercise 3.3. If q ≡ 3 mod 4 and z ∈ Fq is a square, then prove that z(q+1)/4 is a
square root.

For the case q ≡ 1 mod 4, see [3, 6.1.8].

3.1.3. Fast arithmetic. During key generation, Alice and Bob have to compute sev-
eral times a large multiple k · P of a certain affine point P = (x1, y1) ∈ E(Fq). The
analog of the repeated squaring method is the double-and-add method. Let

1 b1 b2 b3 . . . bn

be the binary expansion of k. Then the routine

(1) Q := P
(2) for j = 1, . . . , n do

(a) if bj = 0 then Q := 2Q,
(b) if bj = 1 then Q := 2Q⊕P.

gives Q = kP (verify this!) using roughly log2 k doublings and, on average,
(log2 k) /2 additions.

Since subtracting a point P = (x1, y1) means just adding P = (x1,−y1), it may
be useful to allow -1’s in the binary expansion. For instance, it is better to write

31 = 1 0 0 0 0 -1 instead of 31 = 1 1 1 1 1.

This is called a NAF (non-adjacent form), which is non-unique. There exist quick
methods to compute an optimal NAF, i.e. one with the maximal number of zeroes.
On average, this reduces the number of additions to (log2 k) /3.

Another speed-up can be obtained using projective coordinates. Let us recall the
formulas

(x, y) 7→
(

(

3x2 + A

2y

)2

− 2x,−y +

(

3x2 + A

2y

)

(x− x3)

)

(where x3 is the first component) for doubling, and

(x1, y1), (x2, y2) 7→
(

(

y2 − y1

x2 − x1

)2

− x1 − x2,−y1 +

(

y2 − y1

x2 − x1

)

(x1 − x3)

)

(where x3 is the first component) for addition. Since in practice P will be a point of
large prime order, we don’t need to care about the exceptional case x1 = x2, y1 =



PART II. CRYPTOGRAPHY 15

−y2. Now a problem is that repeatedly applying these formulas involves a lot
of divisions in Fq, which becomes time costly. To solve this problem, one uses
projective coordinates. The above doubling formulas can be rewritten as follows
(substitute x← x/z, y ← y/z, x3 ← x3/z3):

(1) (x, y, z) 7→
(

2yzT,−8y4z2 + (3x2 + Az2)(4xy2z − T ), 8y3z3
)

with T = (3x4 + 6Ax2z2 + Az4 − 8xy2z).

Exercise 3.4. Do the same for the addition formulas.

The procedure for computing k ·P is then: start with (x1, y1, 1), compute projective
coordinates (xk, yk, zk) of k · P using the double-and-add method (or one of its
variants), and output (xk/zk, yk/zk). In this way O(log2 k) field inversions are
replaced by just 1 field inversion. This comes at the price of some additional field
multiplications and additions, but these have a much lower time-cost.

We remark that both the double-and-add method and the use of other coordinate
systems are still in full development. For a more up-to-date account, see [2]. See
also Section 4.1.3.

3.2. A digital signature algorithm. One can reverse the idea of public key
cryptography. Normally, Bob has a private key kB and a corresponding public key
kA. Alice can then freely use kA to encrypt a message. Decrypting however can
only be done using kB .

Conversely, suppose that Alice wants Bob to send her some contract. She wants
Bob to sign it, so that he can never deny having read the contract. For that,
Bob uses his private key kB . Verifying the signature is then done using the public
key kA. Here is how it works to sign a message M in the elliptic curve setting.
Both parties have publicly agreed on a curve E/Fq with #E(Fq) = ℓ prime and
a non-trivial point P ∈ E(Fq). Bob has a secret key kB ∈ {2, . . . , ℓ − 1}, and a
corresponding public key kA = Q = kB · P.

First, the message M is hashed into h(M) ∈ Fℓ.

Definition 3.5. A hash function is a publicly known, efficiently computable map
h : S → T , where usually #S > #T , such that it is computationally infeasible to
find two different s1, s2 ∈ S for which h(s1) = h(s2). It is allowed that #S = ∞
(e.g. the set of all binary strings).

The theory of hash functions is a branch on its own, we will just assume that such
maps exist. Note that there exist weaker definitions. Famous hash functions are
md5sum, SHA-1 and SHA-2.

We also use a function φ : Fq → F×
ℓ that is ‘almost’ 1-1. Note that ℓ ≈ q by

Hasse’s theorem. For instance, let q = pn. An element of x0 ∈ Fq can be seen as
the expansion to base p of an integer in the range {0, . . . , pn − 1}. Then we could
take φ(x0) = 1 + (x0 mod (ℓ− 1)).

Then the signing protocol is

(1) Bob chooses another random k ∈ F×
ℓ and computes k · P. Denote the

x-coordinate by x0. He also computes k−1 in F×
ℓ .

(2) Bob computes s = k−1(h(M) + kBφ(x0)) ∈ Fℓ. If s = 0, he goes back to
Step (1).

(3) The signature for M is (x0, s).

To verify the signature, Alice takes the following steps.



16 PART II. CRYPTOGRAPHY

(1) Alice computes w = s−1 ∈ F×
ℓ .

(2) She computes u1 = wh(M) and u2 = wφ(x0).
(3) She computes R = u1P ⊕ u2Q.
(4) Alice verifies that the x-coordinate of R is x0.

Exercise 3.6. Prove that, if everything went fine, the x-coordinate of R is indeed
x0.

Exercise 3.7. Use Definition 3.5 to show that neither Bob nor Alice can claim
afterwards that another message M was signed.

One can prove that if Eve plans to forge a signature, then she should either crack the
hash function, either solve a discrete logarithm problem. Thus under the assump-
tion that these tasks are infeasible, the elliptic curve digital signature algorithm
(ECDSA) is provably secure.

In a sense, the above instance of elliptic curve cryptography is even of greater
relevance than key exchange. This is because, in the typical domains of applicability
of digital signatures, short key lengths are highly desirable. For instance, as will
become reality in the near future, people will be expected to sign documents using
their personal ID card. Then ECDSA is the way to go.

3.3. Constructive and destructive aspects of the Weil pairing. Disclaimer:
although related to the Weil pairing, there exist other pairings on elliptic curves
(Tate pairing, ate pairing, eta pairing, . . . ) that are sometimes better suited for
the applications we will explain below.

Let m be coprime to q. Then recall that the Weil pairing of level m is a map

em : E[m]× E[m]→ µm = {mth roots of unity in Fq}
satisfying

(1) bilinearity, meaning that

em(P1⊕P2,Q) = em(P1,Q)em(P2,Q) and em(P,Q1⊕Q2) = em(P,Q1)em(P,Q2),

(2) alternation, in the sense that

em(P,Q) = em(Q,P)−1

(3) nondegeneracy : if em(P,Q) = 1 for all P ∈ E[m], then Q = O.

The Weil pairing is efficiently computable. This can be seen from its definition and
the constructive proof of Theorem I.3.12. The resulting routine is called Miller’s
algorithm.

Note that the Weil pairing is a priori defined over Fq only. But of course,
since E[m] is finite and em respects the field of definition (see the proof of Corol-
lary I.3.17), the whole story happens over some finite extension Fqk .

Definition 3.8 (not standard!). Let m be coprime to q. The embedding degree of
an elliptic curve E/Fq with respect to m is the smallest k such that E[m] ⊂ E(Fqk).

Now recall that if E[m] ⊂ E(Fqk), then qk ≡ 1 mod m by Corollary I.3.17.
Thus the order of q in Z/(m)× is a lower bound for the embedding degree. A
more standard definition of ‘embedding degree’ is simply the order of q in Z/(m)×,
because in fact:

(1) Both notions are typically equal. For instance, one can prove this to be
true if m is coprime to q − 1.



PART II. CRYPTOGRAPHY 17

(2) The similar notion for the Tate pairing always matches with this.

In any case, a lesson to be learned is that the embedding degree is usually at least
about ϕ(m).

3.3.1. Menezes-Okamoto-Vanstone attack (MOV). Now let E/Fq be an elliptic curve
of prime order ℓ and suppose that ℓ is coprime to q. Let k be the embedding degree
with respect to ℓ.

Let P ∈ E(Fq) be the generator Alice and Bob commonly agreed upon. Let kB

be Bob’s secret key, and let kA = Q = kBP be the corresponding public key. Now
evil Eve chooses a random point E ∈ E[ℓ] ⊂ E(Fqk) and she computes

eℓ(P, E) = g ∈ µℓ ⊂ Fqk .

If E was randomly chosen, then g is likely to be a generator of µℓ. Eve also computes

eℓ(Q, E) = h ∈ µℓ ⊂ Fqk .

But Eve knows about the properties of the Weil pairing, so she realizes that

h = eℓ(Q, E) = eℓ(kBP, E) = eℓ(P, E)kB = gkB .

Hence she can recover kB mod ℓ by solving a discrete logarithm problem in F×

qk , ·,
where better attacks exist (e.g. index calculus)!

However, as said, k is expected to be of size ϕ(ℓ) = ℓ− 1. So the field in which
these better attacks are about to be applied are mostly extremely large. However,
there exist elliptic curves with small embedding degree. For these curves, the above
attack truly reduces the safety of the system. An important class of curves are the
so-called supersingular curves. A definition was given below Theorem I.3.7; in our
case it can be shown equivalent to ℓ ≡ 1 mod p, where p is the field characteristic.

Theorem 3.9. If ℓ ≡ 1 mod p, then the embedding degree is at most 2.

Recall from Section 3.1.1 that such curves are rare. We omit the proof of Theo-
rem 3.9.

3.3.2. One-round three-party key exchange. Here is a constructive facet of Weil
pairings. Again we work with curves having small embedding degree. As explained
above, the discrete logarithm problem then transfers to the multiplicative group of
a finite field, where better attacks apply. In particular, we lose the benefit of having
short key lengths. But there come some advantages in place.

Suppose we have three people, Alice, Bob and Charlie, that want to agree upon
a common key. One way to do this would be

(1) Alice and Bob agree upon a key kAkBP using the Diffie-Hellman protocol.
(2) They interpret the x-coordinate as an element kAB ∈ Fℓ (e.g. using the

map φ from Section 3.2).
(3) Both now agree with Charlie upon a key kABkCP.

Using pairings, we can do this in one round, following an idea of Joux. Suppose
we have two points P,Q for which eℓ(P,Q) = g 6= 1. Alice, Bob and Charlie
respectively drop (kAP, kAQ), (kBP, kBQ) and (kCP, kCQ) in a public pool. Then
all can compute

gABC

as

eℓ(kBP, kCQ)kA , eℓ(kAP, kCQ)kB and eℓ(kAP, kBQ)kC



18 PART II. CRYPTOGRAPHY

respectively. Please be aware that the description is somewhat artificial, it works
better with other pairings. But the idea should be clear.

3.3.3. Identity-based cryptography. Let us have another look at public key encryp-
tion (RSA, Elgamal), from the following practical point of view. Suppose Alice
wants to send a message to Bob, but Bob did not generate a public key yet. Then
the following steps have to be undertaken:

(1) Alice publicly asks Bob: “Please give me a public key”;
(2) Bob generates a private key kB and an according public key kA; he sends

the public key kA to Alice;
(3) Alice uses kA to encrypt her message; she then sends it to Bob;
(4) Bob receives the message and decrypts it using kB .

Thus, Alice has to wait for Bob to send her a public key, before she can start writing
her message. This can be annoying: Bob could be on a holiday, or he could just be
an irregular internet user.

For this and other reasons, an attractive alternative would be that Alice chooses
the public key kA herself. This seems a stupid idea: for Bob it would be infeasible
to extract the corresponding private key kB since the underlying function is one-
way. But using a trusted third party (TTP), the following construction is in fact
possible:

Alice Bob

Eve

chooses public key kA

encrypts C = E(M, kA) receives C

TTP
sends kA to TTP

receives kA

generates according private key kB

receives kB

decrypts
M = D(C, kB)

Recall that we need a TTP anyway, to provide authentication certificates (see
Section 1.5.2 – we are not dealing with questions of this type here). The public key
kA could simply be Bob’s e-mail address, or anything that identifies him. Hence
the name identity-based cryptography.

The first practical realization of the above diagram was published in 2001 by
Boneh and Franklin. Their construction makes use of the Weil pairing. In partic-
ular, they work on an elliptic curve E/Fq with a prime number of rational points
#E(Fq) = ℓ. Suppose the embedding degree k (with respect to ℓ) is small. Again,
this means that we lose the benefit of having short key lengths. All parties publicly
agree upon a random point P ∈ E[ℓ] ⊂ E(Fqk). The TTP chooses a private master
key kTTP ∈ Z and publishes the corresponding public key kTTP · P. We also sup-
pose that there is a publicly known hash function h that sends arbitrary strings to
points in E[ℓ].

Here is what Alice does to encrypt her message M ∈ Fqk :

(1) She chooses for instance kA = bob@gmail.com .
(2) She chooses a random r ∈ Z and computes R = rP.
(3) She computes Q = h(kA).
(4) She computes S = eℓ(kTTPP,Q)r.
(5) Then C is the pair (R,M + S).



PART II. CRYPTOGRAPHY 19

Here is what the TTP does to generate Bob’s private key:

(1) He computes Q = h(kA).
(2) Then kB = kTTPQ.

Here is what Bob does to recover the message:

(1) He computes eℓ(R, kB) = eℓ(rP, kTTPQ) = eℓ(kTTPP,Q)r = S.
(2) He recovers M = (M + S)− S.

As in the case of Elgamal encryption (see Remark 2.7), the security of the Boneh-
Franklin protocol can be reduced to the hardness of a problem that is a priori weaker
than the discrete logarithm problem, namely the decisional bilinear Diffie-Hellman
problem, see [2, 24.1.1].

3.4. Other attacks and threats. Recapitulating, in order for an elliptic curve
E/Fq to suit for cryptographic purposes, we need that

(1) #E(Fq) is a prime number ℓ (perhaps modulo a small factor),
(2) E should have a large embedding degree with respect to ℓ (unless one allows

larger key lengths, see Sections 3.3.2 and 3.3.3 for why this might be useful)
– this is generically satisfied.

Are there other ‘weak’ curves to be avoided? The answer is yes. One class consists
of so-called anomalous curves, which are curves for which ℓ equals q (thus q should
be prime). Note that the Weil pairing is not even defined for such curves, so the
MOV attack does not apply at all. However, anomalous curves turn out to be
very weak. Whereas the MOV attack is about transferring the discrete logarithm
problem to the multiplicative group of a finite field, the discrete logarithm problem
on anomalous curves can be transferred to the additive group of a finite field. In
such groups, computing discrete logs is trivial. For a detailed description, see [1,
V.3].

A seemingly bigger threat, the extent of which is not so well understood, is the
Weil descent attack. The mathematics involved is more advanced. But very briefly,
and at the risk of just confusing the reader, the idea is that an elliptic curve E over a
finite field Fqd can in a natural way be given the structure of a d-dimensional variety

over Fq. Roughly, this goes as follows: suppose E is defined by y2 = x3 + Ax + B.
Let θ1, . . . , θd be an Fq-basis of Fqd (as a vector space) and expand

A = A1θ1 + · · ·+ Adθd and B = B1θ1 + · · ·+ Bdθd.

Rewriting

x = x1θ1 + · · ·+ xdθd and y = y1θ1 + · · ·+ ydθd

for new variables x1, . . . , xd, y1, . . . , yd, and substituting everything in y2 − (x3 +
Ax + B) eventually leads to an expression

f1(x1, . . . , xd, y1, . . . , yd)θ1 + · · ·+ fd(x1, . . . , xd, y1, . . . , yd)θd

with f1, . . . , fd ∈ Fq[x1, . . . , xd, y1, . . . , yd]. Then f1, . . . fd define a d-dimensional
variety in affine 2d-space, which is defined over Fq. The same construction can be
done on the projective level, and the resulting d-dimensional variety is called the
Weil descent WF

qd/Fq
(E) of E. The reference picture you should have in mind is

that of a complex elliptic curve E/C, which is topologically a torus. But this torus
can of course also be seen as a real surface. The Weil descent WC/R(E) is exactly
this real surface.



20 PART II. CRYPTOGRAPHY

curve over C

surface over R

Now there is a natural bijection

WF
qd/Fq

(E)(Fq)↔ E(Fqd).

In particular, the Weil descent is endowed with an algebraic group structure, turning
it into an abelian variety over Fq. This abelian variety might contain the Jacobian
variety of a curve of relatively high genus; we already dropped this notion at the end
of Section I.3.2. With some probability, the above bijection maps our two points
of interest P,Q = kP ∈ E(Fq) into this Jacobian variety. Now for curves of genus
g ≥ 3, the discrete logarithm problem on their Jacobian is known to be somewhat
easier than in the genus one (elliptic curves) case. For the details, we refer to [2].

The threat of Weil descent is reality: elliptic curves to which the above attack
applies have indeed been constructed. In practice, one therefore works either

(1) over prime fields Fp, where no Weil descent exists,
(2) over fields of large prime extension degree, e.g. F5113 , where the probability

of mapping the discrete logarithm problem into a Jacobian variety in the
(only possible) Weil descent becomes very small.

Let’s sum up:

Summary 3.10. Here is an update of Section 3.1.1 about finding good elliptic curves
for usage in key exchange protocols or digital signature schemes:

(1) Let Fq be a finite prime field, or a prime degree extension of a very small
finite field, where q ≈ 2256.

(eliminate the Weil descent attack
and ensure 128-bit security (Pollard ρ))

(2) Take a random elliptic curve E/Fq.
(3) Using the SEA algorithm, check whether #E(Fq) is a prime number ℓ

(possibly up to a small cofactor). If not, go back to (2).

(eliminate the Silver-Pohlig-Hellman attack)

(4) Compute the order of q in F×
ℓ . If it is small, go back to (2).

(eliminate the MOV attack)

(5) If q = ℓ, then go back to (2).

(eliminate the anomalous attack)

Failures at Steps (4) and (5) are highly unlikely.



PART II. CRYPTOGRAPHY 21

4. ECC in practice

4.1. A summary of ECC’s features.

4.1.1. Short key lengths. We mentioned this a couple of times already. ECC’s main
alternatives are either based on the hardness of integer factorization, or on the
hardness of discrete log computation in groups of the form F×

q . Due to certain
nontrivial attacks (elliptic curve factorization, number field sieve, index calculus),
such cryptosystems are thought to require a key of 3072 bits in order to provide
128-bit security. In ECC, a key of 256 bits currently suffices. For small devices
such as ID cards and cell phones, this makes a big difference. Moreover, looking
towards the future where higher security levels will become standard, the relative
difference will grow exponentially. To illustrate this: to provide 256-bit security,
NIST recommends an RSA key of 15360 bits. This should be compared with an
ECC key of 512 bits.

4.1.2. Pairing-based cryptography. In Section 3.3, we met two constructive appli-
cations of the Weil pairing: one-round three-party key exchange and identity-based
cryptography. Especially the latter application is currently a hot topic. Although
both constructions only depend on certain axiomatic properties of pairings (bilin-
earity, nondegeneracy), elliptic curves seem unavoidable. Remark that for pairing-
based applications, one needs elliptic curves having small embedding degree, hence
one loses the benefit of having short key lengths.

4.1.3. Flexibility. Another important advantage of ECC is its flexibility. Once the
finite field Fq has been fixed – which is often done in advance, since some fields allow
faster arithmetic than others – there is only one F×

q , but there are many elliptic
curves. This allows cryptographers to take into account other design parameters: a
small embedding degree (for pairing-based applications), a small curve parameter
A ∈ Fq to speed up arithmetic (cf. formula (1)), and so on. Remark that there is
no need to stick to Weierstrass curves y2 = x3 + Ax + B. In Exercise I.1.9, we
mentioned that any nonsingular cubic C and any choice of base point OC gives
rise to an algebraic group structure. Although this construction does not result
in new groups in the mathematical sense, the formulas for addition and doubling
may become more efficient. Two popular choices are Montgomery curves By2 =
x3 + Ax2 + x (where (A2 − 4)B 6= 0) with base point (0, 1, 0) and Hessian curves
x3 + y3 + 1 = 3Axy (where A3 6= 1) with base point (1,−1, 0). For more details on
these and other forms, see http://www.hyperelliptic.org/EFD.

What about non-elliptic curves, or higher-dimensional varieties? Since the Diffie-
Hellman protocol can be formulated in any group, it is natural to ask whether
algebraic geometry has more to offer.

(1) A theorem by Chevalley states that the only curves allowing an algebraic
group structure are the non-projective Fq,+ (affine line) and F×

q , · (hyper-
bola, verify this!), and elliptic curves. (This is up to Fq-isomorphism –
whatever this means.) So nothing new here.

(2) In higher dimensions, there is more lying around. However, apart from
whether such varieties are interesting for cryptographic purposes, very of-
ten there are constructive problems. Can we efficiently compute on such
varieties? Can we efficiently determine their number of rational points?



22 PART II. CRYPTOGRAPHY

A particular class has seen thorough analysis: Jacobians of curves. The
Jacobian of a projective curve is roughly defined as the ‘smallest’ projective
variety that contains the curve and that can be endowed with an algebraic
group structure. The Jacobian of an elliptic curve is the curve itself. The
Jacobian of a curve of higher genus g ≥ 2 is a variety of dimension g. An
attractive property of the Jacobian of a curve C is that its group structure
can be described as a divisor class group on C (see I.3 and in particular
the remark at the end of I.3.2). This can be exploited for efficient arith-
metic. Moreover, for certain curves, fast point counting on their Jacobian
is possible.

Already in the late 80’s, hyperelliptic curve cryptography (HECC) was
proposed as a valuable alternative to ECC. However, for large values of
g, HECC soon proved weaker than ECC, due to the applicability of index
calculus. Gradually, the bound on the genus was brought down to g ≥ 4,
and recently even to g ≥ 3 due to a trick by Smith. (These attacks are an
essential ingredient in the Weil descent threat described in Section 3.4.)

By now, HECC has lost some of its status. This is strengthened by a
wide-spread, somewhat fatalistic belief that any successful attack on ECC
would probably also apply to HECC. It seems safe to state that, in the near
future, HECC will not find its way to practice. Nevertheless, the genus 2
case remains completely unbroken and deserves further development. This
is not a matter of holding tight to the last piece of wood floating around.
First, the above attacks are fundamentally not applicable in the genus 2
case. Second, constructive aspects such as point counting and fast pub-
lic key generation can be dealt with particularly well, certainly over finite
fields of small characteristic. Third, it is certainly useful to have a compet-
itive alternative to ECC. For instance, the best algorithms for public key
generation on elliptic curves have benefited from the similar progress that
was made in the hyperelliptic curve case. In this context, note also that
many ECC protocols have been patented (mainly by Certicom). So one
could think of HECC as a freeware version of ECC, forcing the commercial
people to improve their product.

4.2. Side-channel attacks. This is an intriguing class of attacks that become
highly relevant when proceeding to a practical implementation of ECC (or any other
cryptosystem). Suppose Bob’s computer is generating a public key kA = kB ·P from
a private key kB . Then the power it consumes, the sound it makes, the radiation
emanating from it, the time it takes at certain steps, . . . all leak information about
kB . Here is a notorious example:

Recall from Section 3.1.3 that Bob computes kBP using the double-and-add
method or one of its variants. In its simplest form, this means that Bob’s computer
iterates through the binary digits of kB .

(1) If a 0 is processed then Q := 2Q is computed.
(2) If a 1 is processed then Q := 2Q⊕P is computed.

Thus, processing a 1 is somewhat harder than processing a 0, because of the extra
addition. This is reflected in the power consumption of Bob’s computer. Every
time a digit is processed, this will cause a small peak in the power consumption. If
the digit is a 1, this peak will be of a different kind than when a 0 is processed: it



PART II. CRYPTOGRAPHY 23

will probably be higher and last longer. So if the implementation is naive, Eve can
almost read Bob’s private key from the power consumption chart!

Side-channel attacks are typically countered by inserting noise. We won’t go
into further details on this.

4.3. Will ECC ever be broken? Although so far, no one seems to have found
an attack that run substantially faster than Pollard’s ρ method, this does not mean
that such attacks do not exist. All attempts to prove the hardness of the discrete
logarithm problem on elliptic curves ran into failure. This is not surprising: a
proof that one cannot compute discrete logarithms in polynomial running time
would solve the ‘P vs. NP’ problem, one of the most intriguing open problems in
mathematics and theoretical computer science4.

Exercise 4.1 (for those who know about P vs. NP). Why would such a proof solve
this problem?

The P vs. NP problem is believed to be extremely difficult – virtually no progress
has been made – and it is imaginable that none of the currently living people will
ever see a solution to it. This brings us to the following unpleasant observation: our
only security certificate is (and might still for a long while be) that a lot of people
have spent many years of their professional life to crack ECC, without success.

For the rigorous mathematician, this security certificate seems worthless. But
sometimes, in real life, an engineery attitude is appropriate. The fact that many
smart people found no efficient way of solving the discrete logarithm problem,
despite years of effort, does mean something. The designers of fully practical,
ready-to-use cryptosystems, have quite some trust in the hardness of the DLP on
elliptic curves. For them, the theoretical aspect of ECC is only one link in a long
chain. Some of the other links are a bigger concern.

4.4. ECC in daily life. Anno 2009, ECC gradually sneaks into real life. So far,
the most prominent step towards full acceptance is probably the inclusion of ECC-
based protocols in the US Government’s ‘Suite B’, which serves as the base for
sending both unclassified and highly classified information. More precisely, the
components of Suite B are

(1) AES for symmetric encryption,
(2) elliptic curve based Diffie-Hellman key exchange,
(3) ECDSA for digital signatures,
(4) a couple of hash functions (SHA-256 and SHA-384).

A number of ECC subprotocols are patented, mainly by Certicom Corp., a
Canadian company. These all have been licensed for US Government use.

Other companies currently using ECC are: Pitney Bowes (a digital postage
mark company), Nintendo (for game saves in the Wii), BlackBerry (the well-
known PDA), Microsoft (for managing digital rights in Windows Media Player),
and many others.

4It is one of the seven millennium problems. For each of these problems, the Clay Mathe-
matics Institute offers the first person to solve it a prize of 1, 000, 000 dollars. Also the Birch &

Swinnerton-Dyer conjecture, mentioned in I.1.4, is contained in the list.


