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[2], of which a second edition will appear in the near future. Reference [4] is mainly
about RSA instead of elliptic curve cryptography.

1



2 PART I. ELLIPTIC CURVES

1. Introduction to elliptic curves

1.1. Definition. Throughout, let k be a field of characteristic not equal to 2 or 3,
and let k be an algebraic closure. An elliptic curve E over k is a plane projective
curve of the form

y2z = x3 +Axz2 +Bz3,

where A,B ∈ k are such that 4A3 + 27B2 6= 0. By a point we always mean a point
with coordinates in k:

E = {(x0, y0, z0) ∈ P2
k
| y2

0z0 = x3
0 +Ax0z

2
0 +Bz3

0}.
A point that can be written as (x0, y0, z0) with x0, y0, z0 ∈ k is called a rational
point. The set of rational points is denoted by E(k). Similarly, for each intermediate
field k ⊂ k′ ⊂ k, we have the set of k′-rational points E(k′). The point (0, 1, 0) is
the only point on the line z = 0. It is called the point at infinity, and we denote it
by O.

When k = R, we can draw pictures. Two typical graphs are

depending on whether x3 +Ax+B has one resp. three real roots. The point O can
be thought of lying infinitely far up north. When k = C, the picture becomes two-
dimensional (topologically spoken): the curve then has the structure of a Riemann
surface. The topological picture is that of a torus (the surface of a donut), i.e. a
Riemann surface of genus one. (We will make a digression on this in Section 1.5.)

Exercise 1.1. Prove that an elliptic curve never has singular points, i.e. points at
which the three partial derivatives of f(x, y, z) = y2z − x3 − Axz2 − Bz3 vanish
simultaneously. Show that over a field of characteristic 2, a curve defined by such
an equation is always singular.

This implies that every point (x0, y0, z0) ∈ E has a well-defined tangent line

∂f

∂x
(x0, y0, z0) · x+

∂f

∂y
(x0, y0, z0) · y +

∂f

∂z
(x0, y0, z0) · z = 0.

The point at infinity is an inflection point : its tangent line (z = 0) intersects the
curve with multiplicity 3.

1.2. The group law. We will now endow E with a binary operator

⊕ : E × E → E,

whose construction is closely related to the geometry of E. For each pair of points
P1,P2 in E, the composition P1 ⊕ P2 is obtained as follows:
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(1) let ℓ be the line connecting P1 and P2 (tangent line if P1 = P2), then ℓ
intersects E in a third point R (counting multiplicities);

(2) let m be the line connecting R and O (tangent line if R = O), then m
intersects E in a third point Q (counting multiplicities);

(3) then P1 ⊕ P2 = Q.

Exercise 1.2. Prove that ⊕ is a commutative operator, with respect to which O
behaves as a neutral element, and with respect to which each point P has an inverse
−P.

It is less obvious that ⊕ is associative. The most down-to-earth proof is a long but
straightforward calculation, using the explicit formulas below. In Sections 1.3 and
3.11, we will sketch two more conceptual proofs.

Theorem 1.3. E,⊕ is an abelian group, with O as neutral element.

Note that if R is an affine point (x0, y0), then m is the line y = y0, whose third
point of intersection with E (besides R and O) is (x0,−y0). Thus, step (2) can be
thought of as reflection over the x-axis. Here are pictures visualizing the group law
for k = R, in case P1 and P2 are two affine points in E(R).

P1

P2

P1 ⊕ P2

P

2P

P1

P2

P1 ⊕ P2 = O

The same line of reasoning gives:

Lemma 1.4. The inverse of an affine point P = (x0, y0) is the affine point −P =
(x0,−y0).

One can compute the following explicit formulas (do the exercise!):

Exercise 1.5. Let P1 = (x1, y1) and P2 = (x2, y2) be two affine points of E. Then

(1) if x1 6= x2 then P1 ⊕ P2 = (x3, y3) with

x3 =
(

y2−y1

x2−x1

)2

− x1 − x2;

y3 = −y1 +
(

y2−y1

x2−x1

)

(x1 − x3).

(2) if x1 = x2 then
(a) if y1 = −y2 then P1 ⊕ P2 = O,
(b) if y1 6= −y2 then 2P1 = (x3, y3) with

x3 =
(

3x2

1
+A

2y1

)2

− 2x1;

y3 = −y1 +
(

3x2

1
+A

2y1

)

(x1 − x3).

Note that if P1,P2 ∈ E(k), then also P1 ⊕ P2 ∈ E(k). More generally, we have
the important fact:
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Theorem 1.6. For each intermediate field k ⊂ k′ ⊂ k, we have that E(k′) is a
subgroup of E = E(k).

Our main groups of interest will be the finite groups E(Fq), where E is an elliptic
curve over a finite field Fq (where q is coprime to 6).

Exercise 1.7. The whizzkids are invited to play around with Magma, a computer
algebra package. Unfortunately it is licensed, but for short computations (less
than 20 seconds) one can use the demo http://magma.maths.usyd.edu.au/calc/.
There is an online manual. The code
Fq := FiniteField(5^70);

A := Random(Fq); B := Random(Fq);

E := EllipticCurve([A,B]); #E;

outputs the number of rational points on a random elliptic curve over F570 . Note
that it goes very fast (increase the field size to push the limit)! The code
E := EllipticCurve([2,13]);

P := E ! [2,5,1];

for k in [1..12] do print Denominator((k*P)[1]); end for;

defines the elliptic curve E : y2 = x3 + 2x + 13 over Q along with the point
P = (2, 5, 1). It then computes P, 2P, . . . , 12P and prints the denominator of the
x-coordinate. What do you notice? Check your hypothesis for other pairs E,P.
For a few lines of comment on this phenomenon, see Exercise 1.11 and below.

1.3. A geometric explanation for associativity. Proving associativity using
the above explicit formulas is not very enlightening. With a little more machinery,
one can do better. A nice argument uses the ninth point lemma. Although it is
tedious to turn it into a rigorous proof (we will only give a sketch), it gives a first
idea about why associativity should hold.

Theorem 1.8 (ninth point lemma, generic case). Let two projective curves of
degree 3 (possibly reducible) have 9 distinct points P1, . . . ,P9 in common. Then
any other projective curve of degree 3 (possibly reducible) containing P1, . . . ,P8,
automatically contains P9.

Proof (rough idea): The space of homogeneous polynomials of degree 3 in
variables x, y, z is 10-dimensional (indeed, there are 10 monomials

x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3

to be equipped with a coefficient). This means that the space of plane projective
curves of degree 3 can be identified with P9

k
. Each of the 9 conditions ‘the curve

contains Pi’ corresponds to a hyperplane. These hyperplanes cannot intersect in a
single point, since there exist at least two distinct curves satisfying all nine condi-
tions. This already proves that at least one of the conditions must be a consequence
of the eight others. The complete proof is then about showing that 8 of these con-
ditions are always independent. �

Let P1,P2,P3 ∈ E and write P12 = P1 ⊕ P2, P23 = P2 ⊕ P3, P(12)3 = P12 ⊕ P3

and P1(23) = P1 ⊕ P23. Then the aim is to show that P(12)3 = P1(23). Here’s how
it goes (make a picture!). Let ℓ12 be the line connecting P1 and P2 and let m12 be
the line connecting −P12 and P12. Similarly, define lines ℓ23, m23, ℓ(12)3, m(12)3,
ℓ1(23) and m1(23). Our elliptic curve E and the (reducible) curve ℓ12 ∪m23 ∪ ℓ(12)3
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intersect in the nine points

P1,P2,−P12
︸ ︷︷ ︸

, O,−P23,P23
︸ ︷︷ ︸

, P12,P3,−P(12)3
︸ ︷︷ ︸

E ∩ ℓ12 E ∩m23 E ∩ ℓ(12)3
.

Suppose for ease that these are all distinct, to meet the hypotheses of Theorem 1.8.
Now E intersects ℓ23 ∪m12 ∪ ℓ1(23) in the nine points

P2,P3,−P23
︸ ︷︷ ︸

, O,−P12,P12
︸ ︷︷ ︸

, P1,P23,−P1(23)
︸ ︷︷ ︸

E ∩ ℓ23 E ∩m12 E ∩ ℓ1(23)
.

We have an overlap of at least 8 points. Therefore, also the ninth points must be
equal. Thus −P(12)3 = −P1(23), from which associativity follows.

Exercise 1.9. Verify that the construction of ⊕, and the proof (sketch in the case
of associativity) that E,⊕ is an abelian group, only uses that E is a nonsingular
cubic. Thus any nonsingular cubic C ⊂ P2

k
and any choice of O ∈ C give rise to

an abelian group C,⊕ in which O serves as neutral element (even if char k = 2, 3).
Give a geometric construction for the inverse of a point P ∈ C (in general it is no
longer the third point of intersection with C of the line connecting P and O).

One can prove that if char k 6= 2, 3 then for every nonsingular cubic C/k and
every point OC ∈ C(k), there is an elliptic curve E and a k-isomorphism C →
E such that OC is mapped to O. If you are not familiar with this notion: the
conclusion is that the above construction does not provide new groups.

1.4. Elliptic curves over Q. Elliptic curves are among the most enigmatic and
intriguing objects in the mathematical world. They have shown up in various,
sometimes truly surprising branches of pure and applied mathematics. In this
and the two next sections, we will make a cultural detour that is devoted to the
ubiquity of elliptic curves. I will mainly do some cheap statement-dropping, without
references (see google, wikipedia, and the references in front).

If E is an elliptic curve over Q then, due to a theorem of Mordell (1922),

E(Q) ∼= T × Zr, for some r ∈ Z≥0,

where T is the torsion subgroup of E(Q). A deep theorem by Mazur (1977) gives a
precise description of the possible structures of T , in particular one has #T ≤ 16.

Opposed to that, the algebraic rank r is a big question mark. For instance, it is
unknown whether r can be arbitrarily large or not. The current record is a rank
28 curve that was discovered by Elkies (2006). But the most famous open problem
concerning the rank is certainly the Birch & Swinnerton-Dyer conjecture. Namely,
there is also an analytic way of associating a rank to an elliptic curve over Q (this
is more complicated, it is the order of vanishing at s = 1 of a certain complex
meromorphic function). The conjecture states that this analytic rank is always
equal to the algebraic rank. The Clay Mathematics Institute offers $1, 000, 000 to
the first person proving it (at work!).

A surprising appearance of elliptic curves over Q was made in Wiles’ 1994 proof
of Fermat’s last theorem, the main line of thought being that a counterexample
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ap + bp = cp can be used to construct an elliptic curve1

y2 = x3 − 432(a2p + apbp + b2p)x− 432(8a3p + 12a2pbp − 12apb2p − 8b3p),

which has impossible properties (it cannot be modular, thereby violating the nowa-
days proven Taniyama-Weil conjecture).

Another remarkable role is played in partial breakthroughs concerning Hilberts
tenth problem, which is about finding an algorithm that decides whether a given
polynomial f ∈ R[x1, . . . , xn] has a zero in Rn or not (where R is a ring). This was
proven undecidable (i.e. no such algorithm can exist) for R = Z by Matijasevic in
1970, but it is still an open problem over R = Q.

Yet another application of elliptic curves over Q appears in the congruent number
problem: given a positive integer N , does there exist a right triangle with rational
sides whose area is N? For instance, 6 is a congruent number, due to the well-known
3-4-5 triangle.

Exercise 1.10. Show that N is a congruent number if and only if the elliptic curve

y2 = x3 −N2x

has a Q-rational point different from O, (0, 0, 1), (±N, 0, 1). For a hint, see this
footnote2.

Tunnell (1983) gave a fast algorithm to determine whether a given integer is con-
gruent or not, but the proof of correctness assumes the conjecture of Birch and
Swinnerton-Dyer.

We end this section with the following cannonball riddle. Is it possible to select n
cannonballs such that they can be arranged in a plane square, but also in a pyramid
with square base? For instance, 36 cannonballs can be arranged in a square, 30
cannonballs can be arranged in a pyramid (pictures are taken from Ed Eikenberg’s
webpage):

However, it’s easy to see that 30 cannonballs cannot be arranged in a square, and
neither can 36 cannonballs be arranged in a pyramid.

Exercise 1.11. Show that this boils down to finding integral solutions to

E : y2 =
1

6
x(x+ 1)(2x+ 1).

Although this does not meet our definition of an elliptic curve, the whole theory
works as well for this and more general types of cubics, see Exercise 1.9. But if you
wish, you can do an affine change of variables to obtain y2 = x3 − 1

36x, where now
we are looking for rational solutions whose denominators are divisors of 3.

1In fact, y2 = x(x − ap)(x + bp) is a much simpler and more well-known form. A horizontal
translation x← x− (bp

− ap)/3 then takes it to the form y2 = x3 + Ax + B.
2If a-b-c is a right triangle (where c is the length of the hypothenuse), then let x = (c/2)2 and

y = (b2 − a2)c/8.
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From Exercise 1.7, you may have experienced that points with small denominators
are rare; this can be made precise (Siegel’s theorem, 1929). In fact, one can prove
that apart from the trivial solutions n = 0, n = 1, the only solution is n = 4900,
corresponding to the point (24, 70) on E, which can be realized as (0, 0)⊕ 2(1, 1).

1.5. Elliptic curves over C. Over C, the group structure has a very explicit
description. Let ω1, ω2 be generators of C as an R-vector space, and let L =
Zω1 + Zω2 (this is called a lattice). The group C/L has the topological structure
of a parallelogram

ω1

ω2

of which the opposite sides are identified. By folding, one sees that C/L is home-
omorphic to a torus. Now there always exists a natural bijective map (called the
Weierstrass ℘-map) sending C/L to an elliptic curve E over C. This bijection is in
fact an isomorphism of groups! Conversely, every elliptic curve E over C arises as
the image of some C/L.

Exercise 1.12. Using the above, prove Theorem 2.7 for elliptic curves over C.

A 19th century definition for an elliptic curve over C is an equation of the form

y2 = h(x),

with h(x) ∈ C[x] squarefree of degree 3 or 4.

Exercise 1.13. Prove that such an equation is always algebraically transformable to
the form y2 = x3+Ax+B. By an algebraic transformation, we mean a substitution
of the form x← g1(x, y), y ← g2(x, y) that can be undone by a similar substitution.
Here, g1 and g2 are rational functions with coefficients in C.

An elliptic integral is an integral of the form

∫ b

a

R(x, y)dx

where R(x, y) is a rational function in x and y =
√

h(x). Such integrals appear in
a variety of applications, and are generally hard to compute symbolically.

Exercise 1.14. Consider an ellipse x2/a2 + y2/b2 = 1 (suppose a ≥ b). Prove that
the arc length of its upper half part is given by the elliptic integral

a

∫ 1

−1

1− k2x2

√

(1− x2)(1− k2x2)
dx,

where k2 = 1− b2/a2. Hence the name elliptic integral, hence the name elliptic

curve!
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Another appearance of elliptic integrals is in the computation of the arithmetic-
geometric mean of two numbers a, b ∈ R≥0, a ≥ b > 0. The arithmetic mean

a1 = (a + b)/2 and the geometric mean b1 =
√
ab may of course be different, but

one has 0 ≤ a1 − b1 ≤ (a − b)/2 (verify this!). Hence repeating this process over
and over again, one obtains two sequences a, a1, a2, . . . and b, b1, b2, . . . converging
to the same number. This is the arithmetic-geometric mean M(a, b) of a and b.
Remarkably enough, M(a, b) can be expressed in terms of a and b using an elliptic
integral. One instance of this is

π

2
M(
√

2, 1) =

∫ 1

0

1√
1− x4

dx,

a formula due to Gauss (1799).
Elliptic integrals also appear in classical physics, for instance in describing the

pendulum motion

θ

obeying d2θ/dt = −k2 sin θ (t is the time). One can verify that tan θ and t are
related through an elliptic integral. In school books, this is usually circumvented
by the approximation sin θ ≈ θ.

1.6. Elliptic curves over finite fields. This is the third kind of base fields over
which elliptic curves pop up in a variety of applications. The number one applica-
tion is of course elliptic curve cryptography: this course is devoted to it. Further on,
we will also spend some words on two other applications that have cryptographic
relevance:

(1) a method due to Lenstra for factoring integers (1987),
(2) a proof by Maurer & Wolf of the equivalence between the Diffie-Hellman

problem (DHP) and the discrete logarithm problem (DLP), modulo a plau-
sible conjecture (2000).

It should be emphasized that both applications are really surprising: although
connected with cryptography, these problems have a priori nothing to do with elliptic
curve cryptography.

There are also many fascinating open problems concerning elliptic curves over
finite fields. An important example is the Sato-Tate conjecture, although Taylor et
al. recently proved it in virtually all cases (2008). Take an equation

y2 = x3 +Ax+B

with A,B ∈ Z≥1. Then modulo any prime p 6= 2, 3 that does not divide 4A3+27B2,
this equation defines an elliptic curve over Fp. We will see below that its number
of rational points is contained in [p + 1 − 2

√
p, p + 1 + 2

√
p]. Hence subtracting

p + 1 and dividing by 2
√
p results in an element tp ∈ [−1, 1]. If p varies, then

how is tp distributed across this interval? The Sato-Tate conjecture states that,
modulo some well-understood exceptions, the tp are distributed according to the

semicircular measure 2
π

√
1− t2dt. Here is some experimental evidence for y2 =
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x3 + 314159x + 271828, namely a histogram for all primes < 227 (taken from a
paper by Kedlaya-Sutherland):

2. Torsion on elliptic curves

2.1. m-torsion subgroups. For any m ∈ Z≥1, define

E[m] = {P ∈ E |mP = O} .
Exercise 2.1. Prove that for coprime m,m′, one has E[mm′] ∼= E[m]× E[m′].

Exercise 2.2. Prove that #E[1] = 1, that #E[2] = 4 and that #E[3] = 9.

For the latter, you should make use of the following classical result:

Theorem 2.3 (Hessian criterion). Let f(x, y, z) ∈ k[x, y, z] define a nonsingular
curve C in P2

k
. A point P ∈ C is an inflection point if and only if

Hf = det






∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂x∂y

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂z2






vanishes at P.

Proof. The vanishing of Hf at P is not affected by projective transformations, so
we may assume that P = (0, 0, 1) and that the corresponding tangent line is y = 0.
Hence we may write

f(x, y, 1) = x2 · g(x) + y · h(x, y).
Write x2 · g(x) = a2x

2 + a3x
3 + . . . and h(x, y) = b00 + b10x+ b01y+ . . . Note that

b00 6= 0 (since C is nonsingular) and that a2 = 0 if and only if P is an inflection
point. Now Hf (P) is

det





2a2 b10 0
b10 2b01 b00
0 b00 0



 = −2b200a2

and the criterion follows. �

Note that the exercise implies E[2] ∼= Z/(2)× Z/(2) and E[3] ∼= Z/(3)× Z/(3).

2.2. Division polynomials. Let us have another look at the doubling formulas
from Exercise 1.5(2.b):

x3 =
(

3x2

1
+A

2y1

)2

− 2x1;

y3 = −y1 +
(

3x2

1
+A

2y1

)

(x1 − x3).

We cannot evaluate these formulas at points where y1 = 0. This is not surprising,
since the affine points for which y1 = 0 double to O. But it is nice that the formulas
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work everywhere else, i.e. the exceptional points are exactly those that double to
O. Also note that we can rewrite

x3 =
(

3x2

1
+A

2y1

)2

− 2x1 =
(3x2

1
+A)2

(4x3

1
+4Ax1+4B)

− 2x1 ∈ k(x1)

using the equation of the curve. That makes sense:

Exercise 2.4. Let P ∈ E and let m ∈ Z≥1 such that mP 6= O. Then the x-
coordinate of mP only depends on the x-coordinate of P.

General facts from commutative algebra then guarantee that one can write the
x-coordinate of mP as a rational function in the x-coordinate of P.

One can combine the doubling formulas with the addition formulas to obtain the
following tripling formulas (not an attractive job!):

x3 =
x(3x4

1
+6Ax2

1
+12Bx1−A2)2−8(x3

1
+Ax+B)(x6+5Ax4+20Bx3−5A2x2−4ABx−8B2−A3)

(3x4

1
+6Ax2

1
+12Bx1−A2)2

y3 = y1 · horrible degree 12 polynomial in x1

(3x4

1
+6Ax2

1
+12Bx1−A2)3

Note that again x3 ∈ k(x1). We cannot evaluate these formulas whenever 3x4
1 +

6Ax2
1+12Bx1−A2 = 0. If you did Exercise 2.2, you might recognize this polynomial:

its roots are the four x-coordinates of the eight affine 3-torsion points. Thus, the
affine points at which these tripling formulas cannot be evaluated are exactly those
that triple to O.

The story continues. One can compute formulas for (x3, y3) = m(x1, y1) for
m = 4, 5, . . . The formulas are excruciating, but at each step we end up with an
expression

x3 =
χm(x1)

φm(x1)
∈ k(x1)

whose denominator φm(x1) becomes zero exactly at the points whose m-uple is O.
Of course, there is a systematic way of proving this. A guideline can be found in
Silverman’s book [5, Cor.III.6.4(b),Ex.III.3.7].

Definition 2.5. The squarefree part ψm ∈ Z[A,B, x1] of φm is called the mth

division polynomial.

One can prove the following facts about ψm:

(1) if m is odd, then

ψm = mx
(m2−1)/2
1 + . . .

(2) if m is even, then

ψm = (x3
1 +Ax1 +B) ·

(

mx
(m2−4)/2
1 + . . .

)

.

(3) for each field k of characteristic (6= 2, 3) not dividing m, and each pair
A,B ∈ k such that 4A3 + 27B2 6= 0, the natural specialization of ψm to a
polynomial in k(x1) remains squarefree.

Moreover, there is an efficient recursive method for computing φm (and hence ψm).

Exercise 2.6. Using the above information, prove part (1) of the following theorem.

Theorem 2.7. (1) If m is not a multiple of the field characteristic, then

E[m] ∼= Z/(m)× Z/(m).
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(2) In characteristic p > 0, one has either E[pr] ∼= Z/(pr) (for all r ≥ 1) or
E[pr] = 0 (for all r ≥ 1).

If E[pr] = 0 holds (which is rare), then E is called supersingular.
Exercise 2.6 is not entirely honest, as one typically needs Theorem 2.7 to prove

the above results on division polynomials. In any case, an interesting corollary is:

Exercise 2.8. Prove that for an elliptic curve E over a finite field Fq (gcd(q, 6) = 1),
the group E(Fq) has at most two generators. More precisely:

E(Fq) ∼= Z/(k)× Z/(ℓ)

with ℓ | k.

Later on, we will see that additionally q ≡ 1 mod ℓ and kℓ ∈ [q + 1 − 2
√
q, q +

1 + 2
√
q].

Exercise 2.9. In Magma (see Exercise 1.7), experiment with the following code
Q<A,B> := FunctionField(Rationals(),2);

E := EllipticCurve([A,B]);
psi := DivisionPolynomial(E,4);

psi; Factorization(psi);

which first defines a universal elliptic curve y2 = x3 + Ax + B over Q(A,B) (this
allows us to work symbolically), and then prints ψ4 along with its factorization (the
latter omits leading coefficients). Try to see what happens with ψ5 in characteristic
5, and with ψ7 in characteristic 7.

3. Functions and divisors

3.1. Divisors of functions. The function field k(E) of an elliptic curve E : y2 =
x3 +Ax+B over k is the field of fractions of

k[x, y]

(y2 − x3 −Ax−B)
.

A function on E is an element of the function field. A divisor on E is an element
of the free abelian group generated by the points of E:

Div(E) =

{
∑

P∈E

nP [P]

∣
∣
∣
∣
∣
nP = 0 for all but a finite number of P

}

.

The degree of a divisor is the sum of the nP . If all nP ≥ 0, then the divisor is called
effective. The finite set of points P ∈ E for which nP 6= 0 is called the support of
the divisor. The divisors of degree 0 form a subgroup of Div(E), denoted Div0(E).

Now to a function ϕ ∈ k(E)×, one can associate a divisor as follows: write

ϕ =
g(x, y)

h(x, y)

as a quotient of two nonzero polynomials (nonzero modulo y2 − x3 − Ax − B,
that is). Homogenize this quotient with respect to a third variable z, such that
numerator and denominator have the same degree d (by adjoining additional factors
z if necessary). By Bezout’s theorem, the numerator defines a (possibly reducible)
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projective curve that intersects E in 3d points (counting multiplicities). This defines
an effective degree 3d divisor

D+ =
∑

P∈E

(intersection multiplicity at P)[P].

Similarly, the denominator defines an effective degree 3d divisor D−. Then the
divisor of ϕ is

divϕ = D+ −D−,

which is of degree 0. This is well-defined, i.e. it does not depend on the choice of
g(x, y) and h(x, y).

Remark 3.1. Filling in the details of the above exposure requires a good under-
standing of the notion intersection multiplicity, which is not entirely trivial. For
now, the intuitive idea suffices (in many cases, we will have d = 1 where the notion
is clear).

Write

divϕ = D0 −D∞

as a difference of effective divisors, such that D0 and D∞ have minimal degree (note
that not necessarily D0 = D+ and D∞ = D−: there might be some cancellation).
Points in the support of D0 are called zeroes of ϕ. Points in the support of D∞ are
called poles of ϕ.

Exercise 3.2. Consider the elliptic curve E : y2 = x3 + 2x + 1 over Q. Show that
div(x− 1) = [(1, 2)] + [(1,−2)]− 2[O].

If P is not a pole of ϕ, then we can consider the evaluation ϕ(P) ∈ k. Intuitively,
if

ϕ =
g(x, y)

h(x, y)

and P = (x0, y0), then ϕ(P) = f(x0, y0)/g(x0, y0). (You can take the homoge-
nized version to evaluate at O = (0, 1, 0).) But there are some subtleties due to
cancellation:

Example 3.3. Consider E : y2 = x3 − x over Q, and let ϕ = x
y . Then

divϕ = 2[(0, 0)]+[O]− [(0, 0)]− [(1, 0)]− [(−1, 0)] = [(0, 0)]+[O]− [(1, 0)]− [(−1, 0)].

In particular, ϕ has no pole at P = (0, 0), so it should be possible to compute ϕ(P),
although 0

0 makes no sense. But we can rewrite ϕ = y
x2−1 (verify this!), and now

we can indeed compute ϕ(P) = 0
−1 = 0. It can be proven that such a trick always

applies.

One can also evaluate ϕ at divisors whose support contains no zeroes or poles
of ϕ. Write

D =
∑

P∈E

nP [P],

then

ϕ(D) =
∏

P∈E

ϕ(P)nP (if D = 0 then ϕ(D) = 1).
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We will now formulate the most fundamental tool in dealing with functions and
divisors, namely the Riemann-Roch theorem (without proof). To each divisor D
on E, associate its Riemann-Roch space

L(D) =
{
ϕ ∈ k(E)× |divϕ+D is effective

}
∪ {0}.

This is a k-vector space (again, this is not surprising, but again, there are some
subtleties in proving this due to cancellation).

Theorem 3.4 (Riemann-Roch for elliptic curves). For each divisor D on E, the
Riemann-Roch space L(D) is finite-dimensional. Moreover,

dimL(D) = degD + dimL(−D).

Exercise 3.5. Use the Riemann-Roch theorem to prove the following facts:

(1) if degD < 0, then L(D) = 0,
(2) if degD > 0, then dimL(D) = degD,
(3) if degD = 0, then dimL(D) ∈ {0, 1},
(4) if D = 0, then dimL(D) = 1.

For this, the following obvious property can be useful: for any D ∈ Div(E) and any
P ∈ E, one has L(D) ⊂ L(D + [P]).

Exercise 3.6. Prove that if divϕ = divϕ′, then ϕ = cϕ′ for some c ∈ k×.

Exercise 3.7. Prove that if D ∈ Div0(E), then ϕ(D) only depends on divϕ and D.

3.2. The divisor class group of degree 0. We begin with the following obser-
vation.

Exercise 3.8. Show that the map div : k(E)× → Div0(E) : ϕ 7→ divϕ is a morphism
of groups.

The image of this map is called the subgroup of principal divisors, denoted
Prin(E). Two divisors are called linearly equivalent if their difference is a principal
divisor.

Exercise 3.9. Let P1,P2 ∈ E, not necessarily distinct. Prove that [P1] + [P2] is
linearly equivalent to [P1 ⊕ P2] + [O].

Exercise 3.10. Use the foregoing exercise to prove that every divisor D ∈ Div0(E)
is linearly equivalent with a divisor of the form [P]− [O]. To this end, first reduce
D to a divisor of the form D′ − (degD′)[O], where D′ is an effective divisor.

Consider the quotient group

Pic0(E) =
Div0(E)

Prin(E)

of equivalence classes of divisors of degree 0.

Theorem 3.11. The map

E → Pic0(E) : P 7→ [P]− [O]

is an isomorphism of groups.
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Proof. Exercise 3.9 can be rephrased as

[P1]− [O] + [P2]− [O] ∼ [P1 ⊕ P2]− [O],

which implies that the map is a group homomorphism. By Exercise 3.10, it is sur-
jective. So it remains to prove injectivity. Therefore, we need to show that a divisor
of the form [P]− [O] is never the divisor of a function, unless P = O. This follows
immediately from the Riemann-Roch theorem: such a function would be contained
in L([O]) which is 1-dimensional and hence generated by the constant function 1.
In particular, the divisor of this function would be 0, hence P = O. �

In fact, one can alter the point of view and define our binary operator ⊕ as the
operator corresponding to + on Pic0(E) under the above bijection. As such, one
gets associativity for free!

The description of E,⊕ as a divisor class group is the modern way to go. It is
very flexible. For instance, we no longer need to restrict to cubics: it makes sense to
consider Pic0(C) for nonsingular curves C of higher degree. In that case, Pic0(C)
will no longer be in a natural bijection with C itself, but with a higher-dimensional
object called the Jacobian variety of C (the dimension will be the genus of C).

3.3. The Weil pairing. We have the following result.

Lemma 3.12. Let E/k be an elliptic curve and let P ∈ E. Then for any m ∈ Z≥1

there exists a function ϕm,P on E such that divϕm,P = m[P]− [mP]− (m− 1)[O].

Proof. This is obvious from Theorem 3.11, which implies that m([P] − [O]) and
[mP]− [O] are linearly equivalent. We will give a more constructive proof.

We may assume that P 6= O, otherwise one can take ϕ = 1. Similarly, if m = 1
then ϕ = 1 will do. Now note that if m,n ∈ Z≥1, and ϕm,P and ϕn,P are functions
with divisors

m[P]− [mP]− (m− 1)[O] and n[P]− [nP]− (n− 1)[O]

respectively, then

(1) div

(

ϕm,P · ϕn,P ·
ℓmP,nP

m(m+n)P

)

= (m+ n)[P]− [(m+ n)P]− (m+ n− 1)[O].

Here, ℓmP,nP is the line connecting mP and nP, and m(m+n)P is

(1) the vertical line through (m+ n)P if (m+ n)P 6= O,
(2) the line z = 0 if (m+ n)P = O.

(It is straightforward how the quotient can be considered as an element of k(E)×.)
The theorem follows by applying (1) inductively. �

Corollary 3.13. If P is an m-torsion point, then divϕm,P = m[P]−m[O].

For any m ∈ Z≥0, not divisible by char k, the Weil pairing of level m on E is
then defined as the map

em : E[m]× E[m]→ k
×

: (P,Q) 7→
{

1 if P = Q, P = O or Q = O,
ϕm,P([Q]−[O])
ϕm,Q([P]−[O]) if P 6= Q.

Note that, by Exercise 3.7, this does not depend on the choice of ϕm,P and ϕm,Q.
One can prove the following facts about the Weil pairing:
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Theorem 3.14. (1) em takes values in the mth roots of unity of k,
(2) it is bilinear, meaning that

em(P1⊕P2,Q) = em(P1,Q)em(P2,Q) and em(P,Q1⊕Q2) = em(P,Q1)em(P,Q2),

(3) it is alternating, in the sense that

em(P,Q) = em(Q,P)−1

(4) it is nondegenerate: if em(P,Q) = 1 for all P ∈ E[m], then Q = O.

The proof is not so straightforward, and we will omit it; see Silverman [5,
III.§8,Ex.3.16]. Note however that (3) is immediate from the definition, and that
(1) is a consequence of (2). Instead, we will verify the theorem for e2: although
somewhat trivial, it is already enlightening.

Example 3.15. The affine 2-torsion points are of the form (x1, 0), (x2, 0), (x3, 0). It
is obvious that we can take ϕ2,(xi,0) = x− xi. Hence for i 6= j we have

e2((xi, 0), (xj , 0)) =
xj − xi

xi − xj
.

So two different affine 2-torsion points pair to −1. In all other cases, the pairing
gives 1. The fact that we indeed obtain a 2nd root of unity comes from the obvious
fact that plugging in xj in x−xi or plugging in xi in x−xj are closely related. This
close connection exists in general, due to a phenomenon called Weil reciprocity : if
ϕ and ϕ′ are functions whose divisors have disjoint supports, then

ϕ(divϕ′) = ϕ′(divϕ).

See [5, Ex.2.11] for guidelines towards proving Weil reciprocity.

Lemma 3.16. em is surjective on the set of mth roots of unity.

Proof. Let Q ∈ E[m] be a point of order m, which exists due to Theorem 2.7. By
bilinearity, the set

{em(P,Q) | Q ∈ E[m]}
is a subgroup of µm, hence of the form µd for d | m. But then for all P in E[m] we
have

em(P, dQ) = em(P,Q)d = 1,

so by nondegeneracy one has dQ = O. Thus m = d and em is surjective. �

A surprising corollary is:

Corollary 3.17. Let E be an elliptic curve over a finite field Fq (gcd(q, 6) = 1)
and let m ∈ Z≥1 be coprime to q. If E[m] ⊂ E(Fq), then q ≡ 1 mod m.

Proof. From the constructive proof of Lemma 3.12, one sees that if E[m] ⊂ E(Fq)
then em takes values in Fq. On the other hand, by the above lemma it maps onto
µm. Hence µm ⊂ F×

q , ·. Thus there is a g ∈ F×
q of order m. So m | q − 1 or

q ≡ 1 mod m. �

Exercise 3.18. Refine the statement in Exercise 2.8 and prove that q ≡ 1 mod ℓ.

4. Elliptic curves over finite fields

Throughout, let Fq be a fixed finite field of characteristic 6= 2, 3.
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4.1. Hasse’s theorem. If E is an elliptic curve over a Fq, we obtain a finite group
E(Fq).

Exercise 4.1. Prove that 1 ≤ #E(Fq) ≤ 2q + 1.

Exercise 4.2. Suppose q ≡ 3 mod 4, then show that the elliptic curve y2 = x3 + x
over Fq has q + 1 rational points.

One can do better than the bound in Exercise 4.1: a theorem by Hasse states
that #E(Fq) is contained in

[q + 1− 2
√
q, q + 1 + 2

√
q] ,

which is called the Hasse interval.
We can now formulate

Theorem 4.3 (structure theorem). Any elliptic curve E over a finite field Fq

satisfies

E(Fq) = Z/(k)× Z/(ℓ)

with ℓ|k, q ≡ 1 mod ℓ and kℓ ∈ [q + 1− 2
√
q, q + 1 + 2

√
q].

Proof. Exercise 2.8, Exercise 3.18 and Hasse’s theorem. �

The proof of Hasse’s theorem is beautiful, but would lead us too far. It builds
on a thorough analysis of the Frobenius endomorphism

Fq : E → E : (x, y) 7→ (xq, yq) and O 7→ O,
which is well defined because E is defined over Fq. Note that

P ∈ E(Fq) if and only if Fq(P) = P.
Hence #E(Fq) is the number of elements in the kernel of

1−Fq : E → E : P 7→ P ⊕−Fq(P).

Now there is a natural notion of degree deg σ one can associate to an endomorphism
σ (it is the index inside k(E) of the pull-back of k(E) along σ), which generically
matches with the cardinality of its kernel. In particular, it turns out to match
for 1 − Fq. Hasse’s theorem then follows from a version of the Cauchy-Schwartz
inequality connecting the degrees of 1, Fq, and 1−Fq:

|deg(1−Fq)− deg 1− degFq| ≤ 2
√

degFq · deg 1

(along with degFq = q and deg 1 = 1).
An amusing, though rarely useful property is:

Exercise 4.4. Let Fp be a prime field and let E be an elliptic curve over Fp. Let
c ∈ Fp be the coefficient of xp−1 in the expansion of

(
x3 +Ax+B

)(p−1)/2
.

Then show that #E(Fp) ≡ −c mod p. Hint: first show that

#E(Fp) =
∑

x∈Fp

(

1 +
(
x3 +Ax+B

)(p−1)/2
)

.
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4.2. The Frobenius action on E[m]. In this section, we will justify the following
definition (without proof):

Definition 4.5. t = #E(Fq)− (q + 1) is called the trace of Frobenius of E.

Exercise 4.6. For any m ∈ Z≥1, prove that Fq(mP) = mFq(P). In particular, if
P ∈ E[m], then Fq(P) ∈ E[m].

Recall that, if m is coprime to q, we have

E[m] ∼= Z/(m)× Z/(m),

which is a module over Z/(m). This module has a basis P,Q. By the above exercise,
there exist expressions

Fq(P) = αP ⊕ βQ, Fq(Q) = γP ⊕ δQ
for α, β, γ, δ ∈ Z/(m). The matrix

M =

(
α β
γ δ

)

is called the matrix of Frobenius with respect to the basis P,Q. A very strong
result is:

Theorem 4.7. M has determinant q and trace t (modulo m, that is).

Exercise 4.8. Use this to give an alternative proof of Corollary 3.17.

Exercise 4.9. Suppose that E(Fq) has a point of order m. Then prove that ‘deter-
minant q’ and ‘trace t’ imply each other.

The characteristic polynomial of Frobenius mod m is then the characteristic poly-
nomial of M :

X2 − tX + q ∈ Z/(m)[X].

By Cayley-Hamilton, we have that for any point P ∈ E[m]

(2) Fq(Fq((P))⊕−tFq(P)⊕ qP = O,
which is a crucial ingredient in Schoof’s point counting algorithm.

The parental polynomial X2 − tX + q ∈ Z[X] is simply called the characteristic
polynomial of Frobenius. One can show that this is again a characteristic polynomial
in the true mathematical sense, but now the underlying space is somewhat more
complicated (we omit it). Note that an alternative formulation of Hasse’s theorem
is then: the characteristic polynomial of Frobenius has negative discriminant (verify
this).

Write χ(X) = X2 − tX + q = (X − α1)(X − α2), then α1, α2 are called the
eigenvalues of Frobenius. Note that they are complex conjugates. Hence |α1|C =
|α2|C =

√
q, a statement which is called the Riemann hypothesis for elliptic curves.

One motivation for this taxonomy is that it is equivalent to s 7→ χ(qs) having its
zeroes on the line Re(s) = 1/2 (verify this), but the analogy goes further than that.

Now, as can be expected from decent eigenvalues, one can prove that the eigen-
values corresponding to (Fq)

r
= Fqr are given by αr

1 and αr
2, respectively. In other

words,

(3) if #E(Fq) = q + 1− α1 − α2, then #E(Fqr ) = q + 1− αr
1 − αr

2,

i.e. the number of Fqr -rational points (for any r ∈ Z≥1) is completely determined
by the number of Fq-rational points.
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Exercise 4.10. Prove (3) directly from Theorem 4.7 and Hasse’s theorem (or the
naive bound from Exercise 4.1).

4.3. Schoof’s point counting algorithm. We end Part I with the following
problem. Given an elliptic curve y2 = x3 + Ax + B over Fq, can we efficiently
compute #E(Fq)? As we will see in Part II, an affirmative answer is desirable from
a cryptographic point of view.

The most naive approach is to check for all (x, y) ∈ F2
q whether they satisfy

y2 = x3 + Ax + B or not. In cryptography, q is typically a prime power of about
256 binary digits. This means we would need 2512 verifications, which we would
not be able to complete before the end of the universe. With a little more effort,
one can reduce this to 2128 verifications, but still this is absolutely hopeless.

In 1985, Schoof (S) presented an algorithm that, also due to non-trivial improve-
ments by Elkies (E) and Atkin (A), performs much better. Optimized versions
of this so-called SEA algorithm have now been implemented in various computer
algebra packages. Try for instance
p := NextPrime(2^256);

Fp := FiniteField(p);

A := Random(Fp); B := Random(Fp);

E := EllipticCurve([A,B]);

time #E;

in the Magma calculator: this invokes the SEA algorithm. Compare this with the
time needed for point counting over finite fields of comparable size, but small char-
acteristic (e.g. char Fq = 5): for such fields, even much faster methods exist.

Here are the main ideas of Schoof’s original algorithm:

(1) It suffices to compute the trace of Frobenius t, since #E(Fq) = q + 1− t.
(2) By Hasse’s theorem, |t| ≤ 2

√
q. Hence it suffices to compute t mod M for

some M > 4
√
q.

(3) By the Chinese Remainder Theorem, it suffices to compute t mod ℓ for the
first primes ℓ = 2, 3, . . . (omitting p = char k) so that

∏

ℓ

ℓ > 4
√
q.

By the prime number theorem, this concerns a small number of small
primes. For instance, for q ≈ 2256, it suffices check all 28 primes up to
ℓ = 103 (even if p is among these).

(4) As an introductory example, let us first show how to compute t mod 2. We
know that t mod 2 = 0 if and only if #E(Fq) is even (since q is odd), thus
if and only if there is a rational point of order 2. Thus, t mod 2 = 0 if and
only if x3 +Ax+B has a root in Fq, which is equivalent to

gcd(xq − x, x3 +Ax+B) 6= 1 in Fq[x].

Naively verifying this would take a huge amount of time, since xq − x is of
degree ≈ 2256. But the condition can be rewritten as

gcd(xq − x mod (x3 +Ax+B), x3 +Ax+B) 6= 1.

So it is all about computing xq modulo x3 + Ax + B, which can be done
quickly by repeated squaring and/or multiplying (depending on the binary
expansion of q).



PART I. ELLIPTIC CURVES 19

(5) Remark that x3 +Ax+B is the 2nd division polynomial ψ2!
(6) Generalizing the above to arbitrary ℓ works by working modulo the ℓth

division polynomial ψℓ. Recall that it vanishes exactly at the affine ℓ-torsion
points. Also recall that there is an efficient recursive way of computing the
polynomials ψℓ. Now by Cayley-Hamilton (2) we know that for all affine
points (x, y) ∈ E[ℓ],

(xq2

, yq2

)⊕ q(x, y) = t(xq, yq).

This statement cannot be true for some other value of t mod ℓ (why?).
Thus if we find the t mod ℓ for which this relation holds, we are done.

Then it is all about computing xq, xq2

, yq, yq2

, computing q(x, y) using the
explicit formulas (1.5), and similarly consecutively computing t(xq, yq) until
equality is found. All computations are to be done modulo y2−x3−Ax−B
and ψℓ(x), since these characterize E[ℓ].

The speed-ups by Elkies and Atkin, which we don’t discuss here, are necessary to
turn the above into a practical algorithm. One problem is that, although the primes
ℓ are small, the ψℓ nevertheless become considerably large (recall that they are of
degree (ℓ2 − 1)/2).


