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1 Introduction

This is part of the course “Applicable algebra and coding theory” in the Summer School
on Applied Computational Algebraic Geometric Modelling (ACAGM) 13–24 July 2009
at Soria, Spain.

We treat error-correcting codes and several measures of error probability. In particular
the weight enumerator and its generalization and extension will be considered from
several points of view:
1) The theory of arrangements of hyperplanes,
2) The theory of posets with the Möbius function and characteristic polynomial,
3) The theory of matroids with the Tutte polynomial.
All these polynomials are intimately connected. The MacWilliams identities are con-
sidered that relate the polynomials of an object and its dual.

These notes are based on a book in preparation [31], the Master’s thesis [18] and
ongoing research [19, 20].

2 Error-correcting codes

The basics of the theory of error-correcting codes one can find for instance in [26].

2.1 Codes and Hamming distance

The idea of redundant information is a well known phenomenon in reading a newspa-
per. Misspellings go usually unnoticed for a casual reader, while the meaning is still
grasped. In Semitic languages such as Hebrew, and even older in the hieroglyphics in
the tombs of the pharaohs of Egypt, only the consonants are written while the vowels
are left out, so that we do not know for sure how to pronounce these words nowa-
days. The letter “e” is the most frequent occurring symbol in the English language,
and leaving out all these letters would still give in almost all cases an understandable
text to the expense of greater attention of the reader. The art and science of deleting
redundant information in a clever way such that it can be stored in less memory or
space and still can be expanded to the original message, is called data compression or
source coding. It is not the topic of this paper. So we can compress data but an error
made in a compressed text would give a different message that is most of the time
completely meaningless. The idea in error-correcting codes is the converse. One adds
redundant information in such a way that it is possible to detect or even correct errors
after transmission.

Legend goes that Hamming was so frustrated the computer halted every time it de-
tected an error after he handed in a stack of punch cards, he thought about a way
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the computer would be able not only to detect the error but also to correct it auto-
matically. He came with his nowadays famous code named after him. Whereas the
theory of Hamming is about the actual construction, the encoding and decoding of
codes and uses tools from combinatorics and algebra, the approach of Shannon lead
to information theory and his theorems tell us what is and what is not possible in a
probabilistic sense.
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According to Shannon we have a message m in a certain alphabet and of a certain
length, we encode m to c by expanding the length of the message and adding redun-
dant information. One can define the information rate R that measures the slowing
down of the transmission of the data. The encoded message c is sent over a noisy
channel such that the symbols are changed, according to certain probabilities that are
characteristic of the channel. The received word r is decoded to m′. Now given the
characteristics of the channel one can define the capacity C of the channel and it has
the property that for every R < C it is possible to find an encoding and decoding
scheme such that the error probability that m′ 6= m is arbitrarily small. For R > C
such a scheme is not possible. The capacity is explicitly known as a function of the
characteristic probability for quite a number of channels.

The notion of a channel must be taken in a broad sense. Not only the transmission of
data via satellite or telephone but also the storage of information on a hard disk of a
computer or a compact disc for music and film can be modeled by a channel.

The theorem of Shannon tells us the existence of certain encoding and decoding schemes
and one can even say that they exist in abundance and that almost all schemes satisfy
the required conditions, but it does not tell us how to construct a specific efficient
scheme.

Example 2.1 Replacing every symbol by a threefold repetition gives the possibility
of correcting one error in every 3-tuple of symbols in a received word by a majority
vote. The price one has to pay is that the transmission is three times slower. We
see here the two conflicting demands of error-correction: to correct as many errors as
possible and to transmit as fast a possible. Notice furthermore that in case two errors
are introduced by transmission the majority decoding rule will introduce an decoding
error.

Example 2.2 An improvement of the repetition code of rate 1/3 is given by Hamming.
Suppose we have a message (m1,m2,m3,m4) of 4 bits. Put them in the middle of the
following Venn-diagram of three intersecting circles. Complete the three empty areas
of the circles according to the rule that the number of ones in every circle is even. In
this way we get 3 redundant bits (r1, r2, r3) that we add to the message and which we
transmit over the channel.
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In every block of 7 bits the receiver can correct one error. Since the parity in every
circle should be even. So if the parity is even we declare the circle correct, if the parity
is odd we declare the circle incorrect. The error is in the incorrect circles and in the
complement of the correct circles. We see that every pattern of at most one error can be
corrected in this way. For instance, if m = (1, 1, 0, 1) is the message, then r = (0, 0, 1)
is the redundant information added and c = (1, 1, 0, 1, 0, 0, 1) the codeword sent. If
after transmission one symbol is flipped and y = (1, 0, 0, 1, 0, 0, 1) is the received word.
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Then we conclude that the error is in the left and upper circle, but not in the right one.
And we conclude that the error is at m2. But in case of 2 errors and for instance the
word y′ = (1, 0, 0, 1, 1, 0, 1) is received, then the receiver would assume that the error
occurred in the upper circle and not in the two lower circles, and would therefore con-
clude that the transmitted codeword was (1, 0, 0, 1, 1, 0, 0). Hence the decoding scheme
creates an extra error.

The redundant information r can be obtained from the message m by means of three
linear equations or parity checks modulo two

r1 = m2 + m3 + m4

r2 = m1 + m3 + m4

r3 = m1 + m2 + m4

Let c = (m, r) be the codeword. Then c is a codeword if and only if HcT = 0, where

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

The transmission rate is improved from 1/3 for the repetition code to 4/7 for the Ham-
ming code.
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In general the alphabets of the message word and the encoded word might be distinct.
Furthermore the length of both the message word and the encoded word might vary
such as in a convolutional code. We restrict ourselves to [n, k] block codes that is the
message words have a fixed length of k symbols and the encoded words have a fixed
length of n symbols both from the same alphabet Q. For the purpose of error control,
before transmission, we add redundant symbols to the message in a clever way.

Definition 2.3 Let Q be a set of q symbols called the alphabet. Let Qn be the set of
all n-tuples x = (x1, . . . , xn), with entries xi ∈ Q. A block code C of length n over Q
is a non-empty subset of Qn. The elements of C are called codewords. If C contains
M codewords, then M is called the size of the code. We call a code with length n and
size M an (n,M) code. If M = qk, then C is called an [n, k] code. For an (n,M) code
defined over Q, the value n− logq(M) is called the redundancy. The information rate
is defined as R = logq(M)/n.

Example 2.4 The repetition code has length 3 and 2 codewords, so its information
rate is 1/3. The Hamming code has length 7 and 24 codewords, therefore its rate is
4/7.

Example 2.5 Let C be the binary block code of length n consisting of all words with
exactly two ones. This is an (n, n(n − 1)/2) code. In this example the number of
codewords is not a power of the size of the alphabet.

Definition 2.6 Let C be an [n, k] block code over Q. An encoder of C is a one-to-one
map

E : Qk −→ Qn

such that C = E(Qk). Let c ∈ C be a codeword. Then there exists a unique m ∈ Qk

with c = E(m). This m is called the message or source word of c.

In order to measure the difference between two distinct words and to evaluate the
error-correcting capability of the code, we need to introduce an appropriate metric to
Qn. A natural metric used in Coding Theory is the Hamming distance.

Definition 2.7 For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Qn, the Hamming distance
d(x,y) is defined as the number of places where they differ, that is

d(x,y) = |{i | xi 6= yi}|.
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Proposition 2.8 The Hamming distance is a metric on Qn, that means that it has
the following properties:
1) d(x, y) ≥ 0 and equality hods if and only if x = y,
2) d(x, y) = d(y,x) (symmetry),
3) d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality),
for all x,y, z ∈ Qn.
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Proof. Properties 1) and 2) are trivial from the definition. We leave 3) to the reader
as an exercise. �

Definition 2.9 The minimum (Hamming) distance of a code C of length n is defined
as

d = d(C) = min{ d(x,y) | x,y ∈ C, x 6= y }
if C consists of more than one element, and is by definition n + 1 if C consists of one
word. We denote by (n,M, d) a code C with length n, size M and minimum distance
d.

The main problem of error-correcting codes from “Hamming’s point view” is to con-
struct for a given length and number of codewords a code with the largest possible
minimum distance, and to find efficient encoding and decoding algorithms for such a
code.

Example 2.10 The triple repetition code consists of two codewords: (0, 0, 0) and
(1, 1, 1), so its minimum distance is 3. The Hamming code corrects one error. So the
minimum distance is at least 3, by the triangle inequality. The Hamming code has
minimum distance 3. Notice that both codes have the property that x + y is again a
codeword if x and y are codewords.

Definition 2.11 Let x ∈ Qn. The ball of radius r around x, denoted by Br(x), is
defined by Br(x) = { y ∈ Qn | d(x,y) ≤ r }. The sphere of radius r around x is
denoted by Sr(x) and defined by Sr(x) = { y ∈ Qn | d(x,y) = r }.

The following picture shows the ball in the Euclidean plane. This is misleading in some
respects, but gives an indication what we should have in mind.
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The following picture shows Q2, where the alphabet Q consists of 5 elements. The ball
B0(x) consists of the points in the circle, B1(x) is depicted by the points inside the
cross, and B2(x) consists of all 25 dots.
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Proposition 2.12 Let Q be an alphabet of q elements and x ∈ Qn. Then

|Si(x)| =
(
n

i

)
(q − 1)i and |Br(x)| =

r∑
i=0

(
n

i

)
(q − 1)i.

Proof. Let y ∈ Si(x). Let I be the subset of {1, . . . , n} consisting of all positions j
such that yj 6= xj. Then the number of elements of I is equal to i. And (q − 1)i is the
number of words y ∈ Si(x) that have the same fixed I. The number of possibilities to
choose the subset I with a fixed number of elements i is equal to

(
n
i

)
. This shows the

formula for the number of elements of Si(x).
Furthermore Br(x) is the disjoint union of the subsets Si(x) for i = 0, . . . , r. This
proves the statement about the number of elements of Br(x). �

2.2 Linear codes

If the alphabet Q is a finite field, which is the case for instance when Q = {0, 1} = F2,
then Qn is a vector space. Therefore it is natural to look at codes in Qn that have
more structure, in particular that are linear subspaces.

Definition 2.13 A linear code C is a linear subspace of Fn
q , where Fq stands for the

finite field with q elements. The dimension of a linear code is its dimension as a linear
space over Fq. We denote a linear code C over Fq of length n and dimension k by
[n, k]q, or simply by [n, k]. If furthermore the minimum distance of the code is d, then
we call by [n, k, d]q or [n, k, d] the parameters of the code.

It is clear that for a linear [n, k] code over Fq, its size M = qk. The information rate is
R = k/n and the redundancy is n− k.

Definition 2.14 For a word x ∈ Fn
q , its support, supp(x), is defined as the set of

nonzero coordinate positions, so supp(x) = {i | xi 6= 0}. The weight of x is defined
as the number of elements of its support, which is denoted by wt(x). The minimum
weight of a code C, denoted by wt(C), is defined as the minimal value of the weights
of the nonzero codewords, that is

wt(C) = min{ wt(c) | c ∈ C, c 6= 0 },

in case there is a c ∈ C not equal to 0, and n+ 1 otherwise.

Proposition 2.15 The minimum distance of a linear code C is equal to its minimum
weight.

Proof. Since C is a linear code, we have that 0 ∈ C and for any c1, c2 ∈ C,
c1 − c2 ∈ C. Then the conclusion follows from the fact that wt(c) = d(0, c) and
d(c1, c2) = wt(c1 − c2). �
Now let us see some examples of linear codes.

Example 2.16 The repetition code over Fq of length n consists of all words c =
(c, c, . . . , c) with c ∈ Fq. This is a linear code of dimension 1 and minimum distance n.

Example 2.17 Let n be an integer with n ≥ 2. The even weight code C of length n
over Fq consists of all words in Fn

q of even weight. The minimum weight of C is by
definition 2, the minimum distance of C is 2 if q = 2 and 1 otherwise. The code C
linear if and only if q = 2.
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Example 2.18 The Hamming code C of Example 2.2 consists of all the words c ∈ F7
2

satisfying HcT = 0, where

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

This code is linear of dimension 4, since it is given by the solutions of three independent
homogeneous linear equations. The minimum weight is 3 as shown in Example 2.10.
So it is a [7, 4, 3] code.

2.3 Generator matrix and systematic encoding

Let C be an [n, k] linear code over Fq. Since C is a k-dimensional linear subspace of Fn
q ,

there exists a basis that consists of k linearly independent codewords, say g1, . . . ,gk.
Suppose gi = (gi1, . . . , gin) for i = 1, . . . , k. Denote

G =


g1

g2
...

gk

 =


g11 g12 · · · g1n

g21 g22 · · · g2n
...

...
...

...
gk1 gk2 · · · gkn

 .

Every codeword c can be written uniquely as a linear combination of the basis elements,
so c = m1g1 + · · ·+mkgk where m1, . . . ,mk ∈ Fq. Let m = (m1, . . . ,mk) ∈ Fk

q . Then
c = mG. The encoding

E : Fk
q −→ Fn

q ,

from the message word m ∈ Fk
q to the codeword c ∈ Fn

q can be done efficiently by a
matrix multiplication.

c = E(m) := mG.

Definition 2.19 A k × n matrix G with entries in Fq is called a generator matrix of
an Fq-linear code C if the rows of G are a basis of C.

A given [n, k] code C can have more than one generator matrix, however every generator
matrix of C is a k × n matrix of rank k. Conversely every k × n matrix of rank k is
the generator matrix of an Fq-linear [n, k] code.

Example 2.20 The linear codes with parameters [n, 0, n+1] and [n, n, 1] are the trivial
codes {0} and Fn

q , and they have the empty matrix and the n× n indentity matrix In
as generator matrix, respectively.

Example 2.21 The repetition code of length n has generator matrix

G = ( 1 1 · · · 1 ).

Example 2.22 The binary even-weight code of length n has generator matrices
1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 0
0 0 0 . . . 0 1 1

 and


1 0 . . . 0 0 1
0 1 . . . 0 0 1
...

...
. . .

...
...

...
0 0 . . . 1 0 1
0 0 . . . 0 1 1

 .
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Example 2.23 The Hamming code C of Example 2.2 is a [7, 4] code. The message
symbols mi for i = 1, . . . , 4 are free to choose. If we take mi = 1 and the remaining
mj = 0 for j 6= i we get the codeword gi. In this way we get the basis g1,g2,g3,g4.
Therefore, C has the following generator matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

2.4 Parity check matrix

There are two standard ways to describe a subspace, explicitly by giving a basis, or
implicitly by the solution space of a set of homogeneous linear equations. Therefore
there are two ways to describe a linear code. That is explicitly as we have seen by a
generator matrix, or implicitly by a set of homogeneous linear equations that is by the
null space of a matrix.

Let C be an Fq-linear [n, k] code. Suppose that H is an m× n matrix with entries in
Fq. Let C be the null space of H. So C is the set of all c ∈ Fn

q such that HcT = 0.
These m homogeneous linear equations are called parity check equations, or simply
parity checks. The dimension k of C is at least n−m. If there are dependent rows in
the matrix H, that is if k > n−m, then we can delete a few rows until we obtain an
(n− k)× n matrix H ′ with independent rows and with the same null space as H. So
H ′ has rank n− k.

Definition 2.24 An (n− k)× n matrix of rank n− k is called a parity check matrix
of an [n, k] code C if C is the null space of this matrix.

Remark 2.25 The parity check matrix of a code can be used for error detection. This
is useful in a communication channel where one asks for retransmission in case more
than a certain number of errors occurred. Suppose that C is a linear code of minimum
distance d and H is a parity check matrix of C. Suppose that the codeword c is
transmitted and r = c + e is received. Then e is called the error vector and wt(e)
the number of errors. Now HrT = 0 if there is no error and HrT 6= 0 for all e such
that 0 < wt(e) < d. Therefore we can detect any pattern of t errors with t < d. But
not more, since if the error vector is equal to a nonzero codeword of minimal weight
d, then the receiver would assume that no errors have been made. The vector HrT is
called the syndrome of the received word.

We show that every linear code has a parity check matrix and we give a method to
obtain such a matrix in case we have a generator matrix G of the code.

Proposition 2.26 Suppose C is an [n, k] code. Let Ik be the k × k identity matrix.
Let P be a k × (n− k) matrix. Then, (Ik|P ) is a generator matrix of C if and only if
(−P T |In−k) is a parity check matrix of C.

Proof. Every codeword c is of the form mG with m ∈ Fk
q . Suppose that the generator

matrix G is systematic at the first k positions. So c = (m, r) with r ∈ Fn−k
q and

r = mP . Hence for a word of the form c = (m, r) with m ∈ Fk
q and r ∈ Fn−k

q the
following statements are equivalent:

c is a codeword ,
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−mP + r = 0,

−P T mT + rT = 0,(
−P T |In−k

)
(m, r)T = 0,(

−P T |In−k

)
cT = 0.

Hence
(
−P T |In−k

)
is a parity check matrix of C. The converse is proved similarly. �

Example 2.27 The trivial codes {0} and Fn
q have In and the empty matrix as parity

check matrix, respectively.

Example 2.28 As a consequence of Proposition 2.26 we see that a parity check matrix
of the binary even weight code is equal to the generator matrix ( 1 1 · · · 1 ) of the
repetition code, and the generator matrix G2 of the binary even weight code of Example
2.22 is a parity check matrix of the repetition code.

Example 2.29 The generator matrix G of the Hamming code C in Example 2.23 is
of the form (I4|P ) and in Example 2.18 we see that the parity check matrix is equal to
(P T |I3).

2.5 Inner product and dual codes

Definition 2.30 The inner product on Fn
q is defined by

x · y = x1y1 + · · ·+ xnyn

for x,y ∈ Fn
q .

This inner product is bilinear, symmetric and nondegenerate, but the notion of “posi-
tive definite” makes no sense over a finite field as it does over the real numbers. For
instance for a binary word x ∈ Fn

2 we have that x · x = 0 if and only if the weight of x
is even.

Definition 2.31 For an [n, k] code C we define the dual or orthogonal code C⊥ as

C⊥ = {x ∈ Fn
q | c · x = 0 for all c ∈ C}.

Proposition 2.32 Let C be an [n, k] code with generator matrix G. Then C⊥ is an
[n, n− k] code with parity check matrix G.

Proof. From the definition of dual codes, the following statements are equivalent:

x ∈ C⊥,

c · x = 0 for all c ∈ C,
mGxT = 0 for all m ∈ Fk

q ,

GxT = 0.

This means that C⊥ is the null space of G. Because G is a k× n matrix of rank k, the
linear space C⊥ has dimension n− k and G is a parity check matrix of C⊥. �
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Example 2.33 The trivial codes {0} and Fn
q are dual codes.

Example 2.34 The binary even weight code and the repetition code of the same
length are dual codes.

A subspace C of a real vector space Rn has the property that C ∩ C⊥ = {0}, since
the standard inner product is positive definite. Over finite fields this is not always the
case.

Definition 2.35 Two codes C1 and C2 in Fn
q are called orthogonal if x · y = 0 for all

x ∈ C1 and y ∈ C2, and they are called dual if C2 = C⊥1 .
If C ⊆ C⊥, we call C weakly self-dual or self-orthogonal. If C = C⊥, we call C self-dual.

Example 2.36 The binary repetition code of length n is self-orthogonal if and only if
n is even. This code is self-dual if and only if n = 2.

Proposition 2.37 Let C be an [n, k] code. Then
1) (C⊥)⊥ = C.
2) C is self-dual if and only C is self-orthogonal and n = 2k.

Proof.
1) Let c ∈ C. Then c · x = 0 for all x ∈ C⊥. So C ⊆ (C⊥)⊥. Moreover, applying
Proposition 2.32 twice, we see that C and (C⊥)⊥ have the same finite dimension.
Therefore equality holds.
2) Suppose C is self-orthogonal, then C ⊆ C⊥. Now C = C⊥ if and only if k = n− k,
by Proposition 2.32. So C is self-dual if and only if n = 2k. �

Example 2.38 Consider

G =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

 .

Let G be the generator matrix of the binary [8,4] code C. Notice that GGT = 0. So
x · y = 0 for all x,y ∈ C. Hence C is self-orthogonal. Furthermore n = 2k. Therefore
C is self-dual. Notice that all rows of G have even weight 4, therefore all codewords
have even weight. Every nonzero codeword has weight at least 4, since it is even and it
is at least 3 by looking at the first 7 columns that generate the [7, 4, 3] Hamming code.
Hence C has parameters [8,4,4].

Remark 2.39 Notice that x · x ≡ wt(x) mod 2 if x ∈ Fn
2 and x · x ≡ wt(x) mod 3 if

x ∈ Fn
3 . Therefore all weights are even for a binary self-orthogonal code and all weights

are divisible by 3 for a ternary self-orthogonal code.

Corollary 2.40 Let C be a linear code. Then,
1) G is generator matrix of C if and only if G is a parity check matrix of C⊥,
2) H is parity check matrix of C if and only if H is a generator matrix of C⊥.

Proof. The first statement is Proposition 2.32 and the second statement is a conse-
quence of the first applied to the code C⊥ using Proposition 2.37(1). �
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Proposition 2.41 Let C be an [n, k] code. Let G be a generator matrix of C and let
H be an (n − k) × n matrix of rank n − k. Then H is a parity check matrix of C if
and only if GHT = O, where O is the k × (n− k) zero matrix.

Proof. Suppose H is a parity check matrix. For any m ∈ Fk
q , mG is a codeword of

C. So, HGT mT = H(mG)T = 0. This implies that mGHT = 0. Since m can be any
vector in Fk

q . We have GHT = 0.

Conversely, suppose GHT = 0. We assumed that G is a k × n matrix of rank k and
H is an (n− k)× n matrix of rank n− k. So H is the parity check matrix of an [n, k]
code C ′. For any c ∈ C, we have c = mG for some m ∈ Fk

q . Now

HcT = (mGHT )T = 0.

So c ∈ C ′. This implies that C ⊆ C ′. Hence C ′ = C, since both C and C ′ have
dimension k. Therefore H is a parity check matrix of C. �

Remark 2.42 A consequence of Proposition 2.41 is another proof of Proposition 2.26
Because, let G = (Ik|P ) be a generator matrix of C. Let H = (−P T |In−k). Then G
has rank k and H has rank n− k and GHT = 0. Therefore H is a parity check matrix
of C.

2.6 The Hamming and simplex codes

The following proposition gives a method to determine the minimum distance of a code
in terms of the number of dependent columns of the parity check matrix.

Proposition 2.43 Let H be a parity check matrix of a code C. Then the minimum
distance d of C is the smallest integer d such that d columns of H are linearly dependent.

Proof. Let h1, . . . ,hn be the columns of H. Let c be a nonzero codeword of weight
w. Let supp(c) = {j1, . . . , jw} with 1 ≤ j1 < · · · < jw ≤ n. Then HcT = 0, so
cj1hj1 + · · · + cjwhjw = 0 with cji

6= 0 for all i = 1, . . . , w. Therefore the columns
hj1 , . . . ,hjw are dependent. Conversely if hj1 , . . . ,hjw are dependent, then there exist
constants a1, . . . , aw, not all zero, such that a1hj1 + · · ·+awhjw = 0. Let c be the word
defined by cj = 0 if j 6= ji for all i, and cj = ai if j = ji for some i. Then HcT = 0.
Hence c is a nonzero codeword of weight at most w. �

Remark 2.44 Let H be a parity check matrix of a code C. As a consequence of
Proposition 2.43 we have the following special cases. The minimum distance of code is
1 if and only if H has a zero column. Now suppose that H has no zero column, then
the minimum distance of C is at least 2. The minimum distance is equal to 2 if and
only if H has two columns say hj1 ,hj2 that are dependent. In the binary case that
means hj1 = hj2 . In other words the minimum distance of a binary code is at least 3
if and only if H has no zero columns and all columns are mutually distinct. This is
the case for the Hamming code of Example 2.18. For a given redundancy r the length
of a binary linear code C of minimum distance 3 is at most 2r − 1, the number of all
nonzero binary columns of length r. For arbitrary Fq, the number of nonzero columns
with entries in Fq is qr − 1. Two such columns are dependent if and only if one is
a nonzero multiple of the other. Hence the length of an Fq-linear code code C with
d(C) ≥ 3 and redundancy r is at most (qr − 1)/(q − 1).
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Definition 2.45 Let n = (qr − 1)/(q − 1). Let Hr(q) be a r × n matrix over Fq

with nonzero columns, such that no two columns are dependent. The code Hr(q) with
Hr(q) as parity check matrix is called a q-ary Hamming code. The code with Hr(q) as
generator matrix is called a q-ary simplex code and is denoted by Sr(q).

Remark 2.46 The simplex code Sr(q) and the Hamming code Hr(q) are dual codes,
and Hr(q) is a parity check matrix of Hr(q) and a generator matrix of Sr(q)

Proposition 2.47 Let r ≥ 2. Then the q-ary Hamming code Hr(q) has parameters
[(qr − 1)/(q − 1), (qr − 1)/(q − 1)− r, 3].

Proof. The rank of the matrix Hr(q) is r, since the r standard basis vectors of weight
1 are among the columns of the matrix. So indeed Hr(q) is a parity check matrix of
a code with redundancy r. Any 2 columns are independent by construction. And a
column of weight 2 is a linear combination of two columns of weight 1, and such a
triple of columns exists, since r ≥ 2. Hence the minimum distance is 3 by Proposition
2.43. �

Example 2.48 Consider the following ternary Hamming H3(3) code of redundancy 3
of length 13 with parity check matrix

H3(3) =

 1 1 1 1 1 1 1 1 1 0 0 0 0
2 2 2 1 1 1 0 0 0 1 1 1 0
2 1 0 2 1 0 2 1 0 2 1 0 1

 .

By Proposition 2.47 the code H3(3) has parameters [13, 10, 3]. Notice that all rows of
H3(3) have weight 9. In fact every linear combination xH3(3) with x ∈ F3

3 and x 6= 0
has weight 9. So all nonzero codewords of the ternary simplex code of dimension 3
have weight 9. Hence S3(3) is a constant weight code. This is a general fact of simplex
codes as is stated in the following proposition.

Proposition 2.49 The q-ary simplex code Sr(q) is a constant weight code with param-
eters [(qr − 1)/(q − 1), r, qr−1].

Proof. We have seen already in Proposition 2.47 that Hr(q) has rank r, so it is indeed
a generator matrix of a code of dimension r. Let c be a nonzero codeword of the
simplex code. Then c = mHr(q) for some nonzero m ∈ Fr

q. Let hT
j be the j-th column

of Hr(q). Then cj = 0 if and only if m · hj = 0. Now m · x = 0 is a nontrivial
homogeneous linear equation. This equation has qr−1 solutions x ∈ Fr

q, it has qr−1 − 1

nonzero solutions. It has (qr−1 − 1)/(q − 1) solutions x such that xT is a column of
Hr(q), since for every nonzero x ∈ Fr

q there is exactly one column in Hr(q) that is a

nonzero multiple of xT . So the number of zeros of c is (qr−1 − 1)/(q − 1). Hence the
weight of c is the number of nonzeros which is qr−1. �

2.7 Singleton bound and MDS codes

The following bound gives us the maximal minimum distance of a code with a given
length and dimension. This bound is called the Singleton bound.

Theorem 2.50 (The Singleton Bound) If C is an [n, k, d] code, then

d ≤ n− k + 1.
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Proof. Let H be a parity check matrix of C. This is an (n − k) × n matrix of row
rank n − k. The minimum distance of C is the smallest integer d such that H has d
linearly dependent columns, by Proposition 2.43. This means that every d−1 columns
of H are linearly independent. Hence, the column rank of H is at least d− 1. By the
fact that the column rank of a matrix is equal to the row rank, we have n− k ≥ d− 1.
This implies the Singleton bound. �

Definition 2.51 Let C be an [n, k, d] code. If d = n − k + 1, then C is called a
maximum distance separable code or an MDS code, for short.

Remark 2.52 From the Singleton bound, a maximum distance separable code achieves
the maximum possible value for the minimum distance given the code length and di-
mension.

Example 2.53 The minimum distance of the the zero code of length n is n + 1, by
definition. Hence the zero code has parameters [n, 0, n+ 1] and is MDS. Its dual is the
whole space Fn

q with parameters [n, n, 1] and is also MDS. The n-fold repetition code
has parameters [n, 1, n] and its dual is an [n, n− 1, 2] code and both are MDS.

Proposition 2.54 For an [n, k, d] code over Fq, the following statements are equiva-
lent:
(1) C is an MDS code,
(2) every n− k columns of a parity check matrix H are linearly independent,
(3) every k columns of a generator matrix G are linearly independent.

Proof. Let H be a parity check matrix of an [n, k, d] code C. As the minimum
distance of C is d any d − 1 columns of H are linearly independent, by Proposition
2.43. Now d ≤ n− k+ 1 by the Singleton bound. So d = n− k+ 1 if and only if every
n− k columns of H are independent. Hence (1) and (2) are equivalent.
Now let us assume (3). Let c be an element of C which is zero at k given coördinates.
Let c = xG for some x ∈ Fk

q . Let G′ be the square matrix consisting of the k columns
of G corresponding to the k given zero coördinates of c. Then xG′ = 0. Hence x = 0,
since the k columns of G′ are independent by assumption. So c = 0. This implies that
the minimum distance of C is at least n − (k − 1) = n − k + 1. Therefore C is an
[n, k, n− k + 1] MDS code, by the Singleton bound.
Assume that C is MDS. Let G be a generator matrix of C. Let G′ be the square matrix
consisting of k chosen columns of G. Let x ∈ Fk

q such that xG′ = 0. Then c = xG
is codeword and its weight is at most n − k. So c = 0, since the minimum distance
is n − k + 1. Hence x = 0, since the rank of G is k. Therefore the k columns are
independent. �

Proposition 2.55 Let n ≤ q. Let a = (a1, . . . , an) be an n-tuple of mutually distinct
elements of Fq. Let k be an integer such that 0 ≤ k ≤ n. Define the matrices G(a) and
G′(a) by

G(a) =


1 · · · 1
a1 · · · an
...

. . .
...

ak−1
1 · · · ak−1

n

 and G′(a) =


1 · · · 1 0
a1 · · · an 0
...

. . .
...

...
ak−1

1 · · · ak−1
n 1

 .

The codes with generator matrix G(a) and G′(a) are MDS.

Proof. This is left as an exercise. �
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2.8 Exercises

2.1 Let x and y be binary words of the same length. Show that

wt(x + y) = wt(x) + wt(y)− 2|supp(x) ∩ supp(y)|.

2.2 Let C be an Fq-linear code with generator matrix G. Let q = 2. Show that every
codeword of C has even weight if and only if every row of a G has even weight. Show
by means of a counter example that the above statement is not true if q 6= 2.

2.3 Consider the following matrix with entries in F5

G =

 1 1 1 1 1 0
0 1 2 3 4 0
0 1 4 4 1 1

 .

Show that G is a generator matrix of a code with parameters [5, 3, 3].

2.4 Give a parity check matrix of the C of Exercise 2.3. Show that C is self-dual.

2.5 Show that there exists a [2k, k] self-dual code over Fq if and only if there is a k×k
matrix P with entries in Fq such that PP T = −Ik.

2.6 Show that a binary code is self-orthogonal if the weights of all codewords are
divisible by 4. Hint: use Exercise 2.1.

2.7 Give a proof of Proposition 2.55.

3 Weight enumerators and error probability

3.1 Weight spectrum

The weight spectrum of a code is an important invariant, which provides useful infor-
mation for both the code structure and practical applications of the code.

Definition 3.1 Let C be a code of length n. The weight spectrum, also called the
weight distribution is the following set

{(w,Aw) | w = 0, 1, . . . , n}

where Aw denotes the number of codewords in C of weight w.

The so-called weight enumerator is a convenient representation of the weight spectrum.

Definition 3.2 The weight enumerator of C is defined as the following polynomial

WC(Z) =
n∑

w=0

AwZ
w.

The homogeneous weight enumerator of C is defined as

WC(X, Y ) =
n∑

w=0

AwX
n−wY w.
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Remark 3.3 Note that WC(Z) and WC(X, Y ) are equivalent in representing the
weight spectrum. They determine each other uniquely by the following equations

WC(Z) = WC(1, Z)

and
WC(X, Y ) = XnWC(X−1Y ).

Given the weight enumerator or the homogeneous weight enumerator, the weight spec-
trum is determined completely by the coefficients.

Clearly, the weight enumerator and homogeneous weight enumerator can be written in
another form, that is

WC(Z) =
∑
c∈C

Zwt(c) (1)

and
WC(X, Y ) =

∑
c∈C

Xn−wt(c)Y wt(c). (2)

Example 3.4 The zero code has one codeword, and its weight is zero. Hence the
homogeneous weight enumerator of this code is W{0}(X, Y ) = Xn. The number of

words of weight w in the trivial code Fn
q is Aw =

(
n
w

)
(q − 1)w. So

WFn
q
(X, Y ) =

n∑
w=0

(
n

w

)
(q − 1)wXn−wY w = (X + (q − 1)Y )n.

Example 3.5 The n-fold repetition code C has homogeneous weight enumerator

WC(X, Y ) = Xn + (q − 1)Y n.

In the binary case its dual is the even weight code. Hence it has homogeneous weight
enumerator

WC⊥(X, Y ) =

bn/2c∑
t=0

(
n

2t

)
Xn−2tY 2t =

1

2
((X + Y )n + (X − Y )n) .

Example 3.6 The nonzero entries of the weight distribution of the [7,4,3] binary Ham-
ming code are given by A0 = 1, A3 = 7, A4 = 7, A7 = 1, as is seen by inspecting the
weights of all 16 codewords. Hence its homogeneous weight enumerator is

X7 + 7X4Y 3 + 7X3Y 4 + Y 7.

Example 3.7 The simplex code Sr(q) is a constant weight code by Proposition 2.49
with parameters [(qr − 1)/(q − 1), r, qr−1]. Hence its homogeneous weight enumerator
is

WSr(q)(X, Y ) = Xn + (qr − 1)Xn−qr−1

Y qr−1

.

Remark 3.8 Let C be a linear code. Then A0 = 1 and the minimum distance d(C)
which is equal to the minimum weight, is determined by the weight enumerator as
follows:

d(C) = min{ i | Ai 6= 0, i > 0 }.
It also determines the dimension k(C), since

WC(1, 1) =
n∑

w=0

Aw = qk(C).
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Although there is no apparent relation between the minimum distances of a code and
its dual, the weight enumerators satisfy the MacWilliams identity.

Theorem 3.9 (MacWilliams) Let C be an [n, k] code over Fq. Then

WC⊥(X, Y ) = q−kWC(X + (q − 1)Y,X − Y ).

Proof. See [26, Ch.5. §2. Theorem 1] for a proof of binary codes. A general proof will
be given via matroids in Theorem 9.2. �
The computation of the minimum distance and the weight enumerator of a code is
NP-hard [3, 4, 43].

Example 3.10 The zero code C has homogeneous weight enumerator Xn and its dual
Fn

q has homogeneous weight enumerator (X + (q − 1)Y )n, by Example 3.4, which is

indeed equal to q0WC(X + (q − 1)Y,X − Y ) and confirms MacWilliams identity.

Example 3.11 The n-fold repetition code C has homogeneous weight enumerator
Xn + (q− 1)Y n and the homogeneous weight enumerator of its dual code in the binary
case is 1

2
((X + Y )n + (X − Y )n), by Example 3.5, which is equal to 2−1WC(X+Y,X−

Y ), confirming the MacWilliams identity for q = 2. For arbitrary q we have

WC⊥(X, Y ) = q−1WC(X + (q − 1)Y,X − Y ) =

q−1((X + (q − 1)Y )n + (q − 1)(X − Y )n) =
n∑

w=0

(
n

w

)
(q − 1)w + (q − 1)(−1)w

q
Xn−wY w.

3.2 The decoding problem

Definition 3.12 Let C be a linear code in Fn
q of minimum distance d. If c is a

transmitted codeword and r is the received word, then {i|ri 6= ci} is the set of error
positions and the number of error positions is called the number of errors of the
received word. Let e = r− c. Then e is called the error vector and r = c + e. Hence
supp(e) is the set of error positions and wt(e) the number of errors. The ei’s are called
the error values.
If t′ = d(C, r) is the distance of r to the code C, then there exists a nearest codeword
c′ such that t′ = d(c′, r). So there exists an error vector e′ such that r = c′ + e′ and
wt(e′) = t′. If the number of errors t is at most (d− 1)/2, then we are sure that c = c′

and e = e′. In other words, the nearest codeword to r is unique when r has distance
at most (d− 1)/2 to C.

Definition 3.13 e(C) = b(d(C) − 1)/2c is called the error-correcting capacity of the
code C.

Definition 3.14 A decoder D for the code C is a map

D : Fn
q −→ Fn

q ∪ {∗}

such that D(c) = c for all c ∈ C.
If E : Fk

q → Fn
q is an encoder of C and D : Fn

q → Fk
q ∪ {∗} is a map such that

D(E(m)) = m for all m ∈ Fk
q , then D is called a decoder with respect to the encoder E .

Then E ◦ D is a decoder of C.
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Remark 3.15 It is allowed that the decoder gives as outcome the symbol ∗ in case
it fails to find a codeword. This is called a decoding failure. If c is the codeword sent
and r is the received word and D(r) = c′ 6= c, then this is called a decoding error. If
D(r) = c, then r is decoded correctly. Notice that a decoding failure is noted on the
receiving end, whereas there is no way that the decoder can detect a decoding error.

Definition 3.16 A complete decoder is a decoder that always gives a codeword in C
as outcome. A nearest neighbor decoder, also called a minimum distance decoder, is a
complete decoder with the property that D(r) is a nearest codeword. A decoder D for a
code C is called a t-bounded distance decoder or a decoder that corrects t errors if D(r)
is a nearest codeword for all received words r with d(C, r) ≤ t errors. A decoder for
a code C with error-correcting capacity e(C) decodes up to half the minimum distance
if it is an e(C)-bounded distance decoder, where e(C) = b(d(C) − 1)/2c is the error-
correcting capacity of C.

Remark 3.17 If D is a t-bounded distance decoder, then it is not required that D
gives a decoding failure as outcome for a received word r if the distance of r to the
code is strictly larger than t. In other words: D is also a t′-bounded distance decoder
for all t′ ≤ t.
The covering radius ρ(C) is of a code C is the smallest ρ such that d(C,y) ≤ ρ for all
y. A nearest neighbor decoder is a t-bounded distance decoder for all t ≤ ρ(C). A
ρ(C)-bounded distance decoder is a nearest neighbor decoder, since d(C, r) ≤ ρ(C) for
all received words r.

Definition 3.18 Let r be a received word with respect to a code C. A coset leader
of r + C is a choice of an element of minimal weight in the coset r + C. Let αi be the
number of cosets of C that are of weight i. Then αC(X, Y ), the coset leader weight
enumerator of C is the polynomial defined by

αC(X, Y ) =
n∑

i=0

αiX
n−iY i.

Remark 3.19 The choice of a coset leader of the coset r + C is unique if d(C, r) ≤
(d− 1)/2, and αi =

(
n
i

)
(q − 1)i for all i ≤ (d− 1)/2, where d is the minimum distance

of C. Let ρ(C) be the covering radius of the code, then there is at least one codeword
c such that d(c, r) ≤ ρ(C). Hence the weight of a coset leader is at most ρ(C) and
αi = 0 for i > ρ(C).

Definition 3.20 Let r be a received word. Let e be the chosen coset leader of the
coset r + C. The coset leader decoder gives r− e as output.

Remark 3.21 The coset leader decoder is a nearest neighbor decoder.

Definition 3.22 A list decoder gives as output the collection of all nearest codewords.

Knowing the existence of a decoder is nice to know from a theoretical point of view,
in practice the problem is to find an efficient algorithm that computes the outcome of
the decoder. Whereas finding the closest vector of a given vector to a linear subspace
in Euclidean n-space can be computed efficiently by an orthogonal projection to the
subspace, the corresponding problem for linear codes is in general not such an easy
task. In fact it is an NP-hard problem [3].
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3.3 The q-ary symmetric channel

Definition 3.23 The q-ary symmetric channel (qSC) is a channel where q-ary words
are sent with independent errors with the same cross-over probability p at each coor-
dinate, with 0 ≤ p ≤ 1

2
, such that all the q − 1 wrong symbols occur with the same

probability p/(q− 1). So a symbol is transmitted correctly with probability 1− p. The
special case q = 2 is called the binary symmetric channel (BSC).

Remark 3.24 Let P (x) be the probability that the codeword x is sent. Then this
probability is assumed to be the same for all codewords. Hence P (x) = 1

|C| for all

x ∈ C. Let P (y|x) be the probability that y is received given that x is sent. Then

P (y|x) =

(
p

q − 1

)d(x,y)

(1− p)n−d(x,y)

for a q-ary symmetric channel.

Definition 3.25 Let C be a code of minimum distance d. Consider the decoder that
corrects up to t errors with 2t + 1 ≤ d. Let c be the codeword that is sent. Let r be
the received word. In case the distance of r to the code is at most t, then the decoder
will produce a unique closest codeword c′. If c = c′, then this is called correct decoding
which is the case if d(r, c) ≤ t. If c 6= c′ then it is called a decoding error. If d(r, C) > t
the decoding algorithm fails to produce a codeword and such an instance is called a
decoding failure.

Definition 3.26 For every decoding scheme and channel one defines three probabil-
ities Pcd(p), Pde(p) and Pdf (p), that is the probability of correct decoding, decoding
error and decoding failure, respectively. Then

Pcd(p) + Pde(p) + Pdf (p) = 1 for all p.

So it suffices to find formulas for two of these three probabilities. The error probability
is defined by Perr(p) = 1− Pcd(p). Hence Perr(p) = Pde(p) + Pdf (p).

Proposition 3.27 The probability of correct decoding of a decoder that corrects up to
t errors with 2t + 1 ≤ d of a code C of minimum distance d on a q-ary symmetric
channel with cross-over probability p is given by

Pcd(p) =
t∑

w=0

(
n

w

)
pw(1− p)n−w.

Proof. Every codeword has the same probability of transmission. So

Pcd(p) =
∑
x∈C

P (x)
∑

d(x,y)≤t

P (y|x) =
1

|C|
∑
x∈C

∑
d(x,y)≤t

P (y|x),

Hence

Pcd(p) =
t∑

w=0

(
n

w

)
(q − 1)w

(
p

q − 1

)w

(1− p)n−w

by Proposition 2.12 and Remark 3.24. Clearing the factor (q − 1)w in the numerator
and the denominator gives the desired result. �
In Proposition 3.36 a formula will be derived for the probability of decoding error for
a decoding algorithm that corrects errors up to half the minimum distance.
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Example 3.28 Consider the binary triple repetition code. Assume that (0, 0, 0) is
transmitted. In case the received word has weight 0 or 1, then it is correctly decoded
to (0, 0, 0). If the received word has weight 2 or 3, then it is decoded to (1, 1, 1) which
is a decoding error. Hence there are no decoding failures and

Pcd(p) = (1− p)3 + 3p(1− p)2 = 1− 3p2 + 2p3 and Perr(p) = Pde(p) = 3p2 − 2p3.

If the Hamming code is used, then there are no decoding failures and

Pcd(p) = (1− p)7 + 7p(1− p)6 and

Perr(p) = Pde(p) = 21p2 − 70p3 + 105p4 − 84p5 + 35p6 − 6p7.

This shows that the error probabilities of the repetition code is smaller than the one
for the Hamming code. This comparison is not fair, since only one bit of information
is transmitted with the repetition code and 4 bits with the Hamming code. One could
transmit 4 bits of information by using the repetition code four times. This would give
the error probability

1− (1− 3p2 + 2p3)4 = 12p2 − 8p3 − 54p4 + 72p5 + 84p6 − 216p7 + · · ·

Suppose that four bits of information are transmitted uncoded, by the Hamming code
and the triple repetition code, respectively. Then the error probabilities are 0.04, 0.002
and 0.001, respectively if the cross-over probability is 0.01. The error probability for
the repetition code is in fact smaller than that of the Hamming code for all p ≤ 1

2
, but

the transmission by the Hamming code is almost twice as fast as the repetition code.

Example 3.29 Consider the binary n-fold repetition code. Let t = (n − 1)/2. Use
the decoding algorithm correcting all patterns of t errors. Then

Perr(p) =
n∑

i=t+1

(
n

i

)
pi(1− p)n−i.

Hence the error probability becomes arbitrarily small for increasing n. The price one
has to pay is that the information rate R = 1/n tends to 0. The remarkable result of
Shannon states that for a fixed rate R < C(p), where

C(p) = 1 + p log2(p) + (1− p) log2(1− p)

is the capacity of the binary symmetric channel, one can devise encoding and decoding
schemes such that Perr(p) becomes arbitrarily small.

The main problem of error-correcting codes from “Shannon’s point view” is to construct
efficient encoding and decoding algorithms of codes with the smallest error probability
for a given information rate and cross-over probability.

3.4 Error probability

Definition 3.30 Consider the q-ary symmetric channel where the receiver checks
whether the received word r is a codeword or not, for instance by computing wether
HrT is zero or not for a chosen parity check matrix H, and asks for retransmission in
case r is not a codeword as explained in Remark 2.25. Now it may occur that r is again
a codeword but not equal to the codeword that was sent. This is called an undetected
error . See [24].

19



Proposition 3.31 Let WC(X, Y ) be the weight enumerator of C. Then the probability
of undetected error on a q-ary symmetric channel with cross-over probability p is given
by

Pue(p) = WC

(
1− p, p

q − 1

)
− (1− p)n.

Proof. Every codeword has the same probability of transmission and the code is linear.
So without loss of generality we may assume that the zero word is sent. Hence

Pue(p) =
1

|C|
∑
x∈C

∑
x 6=y∈C

P (y|x) =
∑

06=y∈C

P (y|0).

If the received codeword y has weight w, then w symbols are changed and the remaining

n − w symbols remained the same. So P (y|0) = (1 − p)n−w
(

p
q−1

)w

by Remark 3.24.

So

Pue(p) =
n∑

w=1

Aw(1− p)n−w

(
p

q − 1

)w

.

Substituting X = 1− p and Y = p/(q − 1) in WC(X, Y ) gives the desired result, since
A0 = 1. �

Remark 3.32 Now Pretr(p) = 1− Pue(p) is the probability of retransmission.

Example 3.33 Let C be the binary triple repetition code. Then Pue(p) = p3, since
WC(X, Y ) = X3 + Y 3 by Example 3.5.

Example 3.34 Let C be the [7, 4, 3] Hamming code. Then

Pue(p) = 7(1− p)4p3 + 7(1− p)3p4 + p7 = 7p3 − 21p4 + 21p5 − 7p6 + p7

by Example 3.6.

Proposition 3.35 Let N(v, w, s) be the number of error patterns in Fn
q of weight w

that are at distance s from a given word of weight v. Then

N(v, w, s) =
∑

0≤i,j≤n;i+2j+w=s+v

(
n− v

j + w − v

)(
v

i

)(
v − i
j

)
(q − 1)j+w−v(q − 2)i.

Proof. Consider a given word x of weight v. Let y be a word of weight w and distance
s to x. Suppose that y has k nonzero coordinates in the complement of the support
of x, j zero coordinates in the support of x, and i nonzero coordinates in the support
of x that are distinct form the coordinates of x. Then s = d(x,y) = i + j + k and
wt(y) = w = v+k−j. There are

(
n−v

k

)
possible subsets of k elements in the complement

of the support of x and there are (q−1)k possible choices for the nonzero symbols at the
corresponding coordinates. There are

(
v
i

)
possible subsets of i elements in the support

of x and there are (q − 2)i possible choices of the symbols at those positions that are
distinct form the coordinates of x. There are

(
v−i
j

)
possible subsets of j elements in

the support of x that are zero at those positions. Hence

N(v, w, s) =
∑

i+j+k=s,v+k−j=w

[(
n− v
k

)
(q − 1)k

] [(
v

i

)
(q − 2)i

](
v − i
j

)
.

Rewriting this formula using k = j + w − v gives the desired result. �
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Proposition 3.36 The probability of decoding error of a decoder that corrects up to
t errors with 2t + 1 ≤ d of a code C of minimum distance d on a q-ary symmetric
channel with cross-over probability p is given by

Pde(p) =
n∑

w=0

(
p

q − 1

)w

(1− p)n−w

t∑
s=0

n∑
v=1

AvN(v, w, s).

Proof. This is left as an exercise. �

Proposition 3.37 The probability of correct decoding of the coset leader decoder on a
q-ary symmetric channel with cross-over probability p is given by

Pcd(p) = αC

(
1− p, p

q − 1

)
.

Proof. This is left as an exercise or see [26]. �
Another application of the coset leader weight enumerator is given in steganography,
where messages are secretly hidden in a content such as a picture. See [27].

3.5 Exercises

3.1 Give a proof of Proposition 3.36.

3.2 Give a proof of Proposition 3.37.

4 Codes, projective systems and arrangements

Let F be a field. A projective system P = (P1, . . . , Pn) in Pr(F), the projective space
over F of dimension r is an n-tuple of points Pj in this projective space, such that
not all these points lie in a hyperplane. See [36, §1.1.2]. Let Pj be given by the
homogeneous coordinates (p0j : p1j : . . . : prj). Let GP be the (r + 1)× n matrix with
(p0j, p1j, . . . , prj)

T as j-th column. Then GP has rank r + 1, since not all points lie in
a hyperplane. If F is a finite field, then GP is the generator matrix of a nondegenerate
code over F of length n and dimension r + 1. Conversely, let G be a generator matrix
of a nondegenerate code C of dimension k over Fq. Then G has no zero columns. Take
the columns of G as homogeneous coordinates of points in Pk−1(Fq). This gives the
projective system PG over Fq of G.

Proposition 4.1 Let C be a nondegenerate code over Fq of length n and dimension k
with generator matrix G. Let PG be the projective system of G. The code has minimum
distance d if and only if n− d is the maximal number of points of PG in a hyperplane
of Pk−1(F).

Proof. See [37]. �
An n-tuple (H1, . . . , Hn) of hyperplanes in Fk is called an arrangement in Fk. The
arrangement is called central if all the hyperplanes contain {0}. A central arrangement
is called essential if the intersection of all its hyperplanes is equal to {0}. In case of an
essential arrangement one considers the hyperplanes in Pk−1(F). Note that projective
systems and arrangements are dual notions and that there is a one-to-one correspon-
dence between generalized equivalence classes of non-degenerate [n, k, d] codes over Fq,
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equivalence classes of projective systems over Fq of n points in Pk−1(Fq) and equiva-
lence classes of essential arrangements of n hyperplanes in Pk−1(Fq).

The translation for an arrangement of Proposition 4.1 gives for the minimum distance
d.

Proposition 4.2 Let C be a nondegenerate code over Fq with generator matrix G. Let
c be a codeword c = xG for some x ∈ Fk

q . Then n − wt(c) is equal to the number of
hyperplanes in AG through x.

Proof. [21, 36]. �
A code C is called projective if d(C⊥) ≥ 3. Let G be generator matrix C. Then C is
projective if and only if C is nondegenerate and any two columns of G are independent.
So C is projective if and only if C is nondegenerate and the hyperplanes of AG are
mutually distinct.

5 The extended and generalized weight enumerator

The number Aw of codewords of weight w equals the number of points that are on
exactly n− w of the hyperplanes in AG, by Proposition 4.2. In particular An is equal
to the number of points that is in the complement of the union of these hyperplanes
in Fk

q . This number can be computed by the principle of inclusion/exclusion:

An = qk − |H1 ∪ · · · ∪Hn| =

qk +
n∑

w=1

(−1)w
∑

i1<···<iw

|Hi1 ∩ · · · ∩Hiw |.

The following notations are introduced to find a formalism as above for the computation
of the weight enumerator. This method is based on Katsman and Tsfasman [21]. Later
we will encounter two more methods: by geometric lattices and the characteristic
polynomial in Section 6 and by matroids and the Tutte polynomial in Section 7.

Definition 5.1 For a subset J of [n] := {1, 2, . . . , n} define

C(J) = {c ∈ C | cj = 0 for all j ∈ J}
l(J) = dimC(J)

BJ = ql(J) − 1

Bt =
∑
|J |=t

BJ .

The encoding map x 7→ xG = c from vectors x ∈ Fk
q to codewords gives the following

isomorphism of vector spaces ⋂
j∈J

Hj
∼= C(J)

by Proposition 4.2. Furthermore BJ is equal to the number of nonzero codewords c
that are zero at al j in J , and this is equal to the number of nonzero elements of the
intersection

⋂
j∈J Hj.
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Proposition 5.2 We have the following connection between the Bt and the weight
distribution of a code:

Bt =
n∑

w=0

(
n− w
t

)
Aw .

Proof. Count in two ways the number of elements of the set

{(J, c) : J ⊆ [n], |J | = t, c ∈ C, c 6= 0}.

�
We will generalize this idea to the determine the generalized weight enumerators.

5.1 Generalized weight enumerators

We first generalize the weight distribution in the following way, see [22, 44]. Instead
of looking at words of C, we consider all the subcodes of C of a certain dimension r.
We say that the weight of a subcode (also called the effective length or support weight)
is equal to n minus the number of coordinates which are zero for every word in the
subcode. The smallest weight for which a subcode of dimension r exists, is called the
r-th generalized Hamming weight of C. To summarize:

Definition 5.3 Let D be an r-dimensional subcode of the [n, k] code C. Then we
define

supp(D) = {i ∈ [n] : there is an x ∈ D : xi 6= 0},
wt(D) = |supp(D)| and dr = min{wt(D) : D ⊆ C subcode, dimD = r}.

Note that d0 = 0 and d1 = d, the minimum distance of the code. The number of
subcodes with a given weight w and dimension r is denoted by Ar

w. Together they
form the r-th generalized weight distribution of the code. Just as with the ordinary
weight distribution, we can make a polynomial with the distribution as coefficients:
the generalized weight enumerator.

Definition 5.4 The r-th generalized weight enumerator is given by

W r
C(X, Y ) =

n∑
w=0

Ar
wX

n−wY w,

where Ar
w = |{D ⊆ C : dimD = r,wt(D) = w}|.

We can see from this definition that A0
0 = 1 and Ar

0 = 0 for all 0 < r ≤ k. Fur-
thermore, every 1-dimensional subspace of C contains q − 1 non-zero codewords, so
(q − 1)A1

w = Aw for 0 < w ≤ n. This means we can find back the original weight
enumerator by using WC(X, Y ) = W 0

C(X, Y ) + (q − 1)W 1
C(X, Y ).

We will give a way to determine the generalized weight enumerator of a linear [n, k]
code C over Fq. We give two lemmas about the determination of l(J), which will
become useful later.

Lemma 5.5 Let C be a linear code with generator matrix G. Let J ⊆ [n] and |J | = t.
Let GJ be the k × t submatrix of G existing of the columns of G indexed by J , and let
r(J) be the rank of GJ . Then the dimension l(J) is equal to k − r(J).
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Proof. Let CJ be the code generated by GJ . Consider CJ as a subcode of C, so a word
of CJ has zeros on the coordinates not indexed by J . Then we have CJ

∼= C/C(J). It
follows that dimCJ = dimC − dimC(J) so l(J) = k − r(J). �

Lemma 5.6 Let d and d⊥ be the minimum distance of C and C⊥, respectively. Let
J ⊆ [n] and |J | = t. Then we have

l(J) =

{
k − t for all t < d⊥

0 for all t > n− d

Proof. Let |J | = t, t > n−d and let c ∈ C(J). Then J is contained in the complement
of supp(c), so t ≤ n − wt(c). It follows that wt(c) ≤ n − t < d, so c is the zero word
and therefore l(J)=0.
Let G be a generator matrix for C, then G is also a parity check matrix for C⊥. We
saw in lemma 5.5 that l(J) = k − r(J), where r(J) is the rank of the matrix formed
by the columns of G indexed by J . Let t < d⊥, then every t-tuple of columns of G is
linearly independent by Proposition 2.43, so r(J) = t and l(J) = k − t. �
Note that by the Singleton bound, we have d⊥ ≤ n−(n−k)+1 = k+1 and n−d ≥ k−1,
so for t = k both of the above cases apply. This is no problem, because if t = k then
k − t = 0.

Definition 5.7 We introduce the following notations:

[m, r]q =
r−1∏
i=0

(qm − qi)

〈r〉q = [r, r]q[
k

r

]
q

=
[k, r]q
〈r〉q

.

Remark 5.8 The first number is equal to the number of m × r matrices of rank r
over Fq. The second is the number of bases of Fr

q. The third number is the Gaussian

binomial, and it represents the number of r-dimensional subspaces of Fk
q .

Definition 5.9 For J ⊆ [n] and r ≥ 0 an integer we define:

Br
J = |{D ⊆ C(J) : D subspace of dimension r}|

Br
t =

∑
|J |=t

Br
J

Note that Br
J =

[
l(J)
r

]
q
. For r = 0 this gives B0

t =
(

n
t

)
. So we see that in general

l(J) = 0 does not imply Br
J = 0, because

[
0
0

]
q

= 1. But if r 6= 0, we do have that

l(J) = 0 implies Br
J = 0 and Br

t = 0.

Proposition 5.10 Let dr be the r-th generalized Hamming weight of C, and d⊥ the
minimum distance of the dual code C⊥. Then we have

Br
t =

{ (n
t

) [
k−t
r

]
q

for all t < d⊥

0 for all t > n− dr
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Proof. The first case is is a direct corollary of lemma 5.6, since there are
(

n
t

)
subsets

J ⊆ [n] with |J | = t. The proof of the second case goes analogous to the proof of the
same lemma: let |J | = t, t > n − dr and suppose there is a subspace D ⊆ C(J) of
dimension r. Then J is contained in the complement of supp(D), so t ≤ n−wt(D). It
follows that wt(D) ≤ n − t < dr, which is impossible, so such a D does not exist. So
Br

J = 0 for all J with |J | = t and t > n− dr, and therefore Br
t = 0 for t > n− dr. �

We can check that the formula is well-defined: if t < d⊥ then l(J) = k − t. If also
t > n − dr, we have t > n − dr ≥ k − r by the generalized Singleton bound. This
implies r > k − t = l(J), so

[
k−t
r

]
q

= 0.

The relation between Br
t and Ar

w becomes clear in the next proposition.

Proposition 5.11 The following formula holds:

Br
t =

n∑
w=0

(
n− w
t

)
Ar

w.

Proof. We will count the elements of the set

Br
t = {(D, J) : J ⊆ [n], |J | = t,D ⊆ C(J) subspace of dimension r}

in two different ways. For each J with |J | = t there are Br
J pairs (D, J) in Br

t , so the
total number of elements in this set is

∑
|J |=tB

r
J = Br

t . On the other hand, let D be

an r-dimensional subcode of C with wt(D) = w. There are Ar
w possibilities for such a

D. If we want to find a J such that D ⊆ C(J), we have to pick t coordinates from the
n− w all-zero coordinates of D. Summation over all w proves the given formula. �
Note that because Ar

w = 0 for all w < dr, we can start summation at w = dr. We can
end summation at w = n− t because for t > n−w we have

(
n−w

t

)
= 0. So the formula

can be rewritten as

Br
t =

n−t∑
w=dr

(
n− w
t

)
Ar

w.

In practice, we will often prefer the summation given in the proposition.

Theorem 5.12 The generalized weight enumerator is given by the following formula:

W r
C(X, Y ) =

n∑
t=0

Br
t (X − Y )tY n−t.

Proof. By using the previous proposition, changing the order of summation and using
the binomial expansion of Xn−w = ((X − Y ) + Y )n−w we have

n∑
t=0

Br
t (X − Y )tY n−t =

n∑
t=0

n∑
w=0

(
n− w
t

)
Ar

w(X − Y )tY n−t

=
n∑

w=0

Ar
w

(
n−w∑
t=0

(
n− w
t

)
(X − Y )tY n−w−t

)
Y w

=
n∑

w=0

Ar
wX

n−wY w

= W r
C(X, Y ).
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In the second step, we can let the summation over t run to n−w instead of n because(
n−w

t

)
= 0 for t > n− w. �

It is possible to determine the Ar
w directly from the Br

t , by using the next proposition.

Proposition 5.13 The following formula holds:

Ar
w =

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Br

t .

There are several ways to prove this proposition. One is to reverse the argument from
Theorem 5.12, which we will not use here. Instead, we first prove the following general
lemma:

Lemma 5.14 Let V be a vector space of dimension n+ 1 and let a = (a0, . . . , an) and
b = (b0, . . . , bn) be vectors in V . Then the following formulas are equivalent:

aj =
n∑

i=0

(
i

j

)
bi, bj =

n∑
i=j

(−1)i+j

(
i

j

)
ai.

Proof. We can view the relations between a and b as linear transformations, given

by the matrices
((

i
j

))
i,j=0,...,n

and
(

(−1)i+j
(

i
j

))
i,j=0,...,n

. So it is sufficient to prove that

these matrices are each other’s inverse. We calculate the entry on the i-th row and
j-th column. Note that we can start the summation at l = j, because for l < j we
have

(
l
j

)
= 0.

i∑
l=j

(−1)j+l

(
i

l

)(
l

j

)
=

i∑
l=j

(−1)l−j

(
i

j

)(
i− j
l − j

)

=

i−j∑
l=0

(−1)l

(
i

j

)(
i− j
l

)
=

(
i

j

)
(1− 1)i−j

= δij.

Here δij is the Kronecker-delta. So the product matrix is exactly the (n+ 1)× (n+ 1)
identity matrix, and therefore the matrices are each other’s inverse. �
Proof. (Proposition 5.13) The proposition is now a direct consequence of Proposi-
tion 5.11 and Lemma 5.14. �

5.2 Extended weight enumerator

Let C be an [n, k] code over Fq with generator matrix G. Then we can form the [n, k]
code C ⊗ Fqm over Fqm by taking all Fqm-linear combinations of the codewords in C.
We call this the extension code of C over Fqm . We denote the number of codewords in
C ⊗ F of weight w by AC⊗Fq ,w. We can determine the weight enumerator of such an
extension code by using only the code C.
By embedding its entries in Fqm , we find that G is also a generator matrix for the
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extension code C ⊗ Fqm . In Lemma 5.5 we saw that l(J) = k − r(J). Because r(J)
is independent of the extension field Fqm , we have dimFq C(J) = dimFqm (C ⊗ Fqm)(J).
This motivates the usage of T as a variable for qm in the next definition, which is an
extention of Definition 5.1.

Definition 5.15 Let C be a linear code over Fq. Then we define

BJ(T ) = T l(J) − 1

Bt(T ) =
∑
|J |=t

BJ(T )

The extended weight enumerator is given by

WC(X, Y, T ) = Xn +
n∑

t=0

Bt(T )(X − Y )tY n−t.

Note that BJ(qm) is the number of nonzero codewords in (C ⊗ Fqm)(J).

Proposition 5.16 Let d and d⊥ be the minimum distance of C and C⊥ respectively.
Then we have

Bt(T ) =

{ (
n
t

)
(T k−t − 1) for all t < d⊥

0 for all t > n− d

Proof. This is a direct consequence of Lemma 5.6. For t < d⊥ we have l(J) = k − t,
so BJ(T ) = T k−t − 1 and Bt(T ) =

(
n
t

)
(T k−t − 1). For t > n − d we have l(J) = 0, so

BJ(T ) = 0 and Bt(T ) = 0. �

Theorem 5.17 The following holds:

WC(X, Y, T ) =
n∑

w=0

Aw(T )Xn−wY w

with Aw(T ) ∈ Z[T ] given by A0(T ) = 1 and

Aw(T ) =
n∑

t=n−w

(−1)n+w+t

(
t

n− w

)
Bt(T )

for 0 < w ≤ n.

Proof. Note that Aw(T ) = 0 for 0 < w < d because the summation is empty. By
substituting w = n− t+ j and reversing the order of summation, we have

WC(X, Y, T ) = Xn +
n∑

t=0

Bt(T )(X − Y )tY n−t

= Xn +
n∑

t=0

Bt(T )

(
t∑

j=0

(
t

j

)
(−1)jX t−jY j

)
Y n−t
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= Xn +
n∑

t=0

t∑
j=0

(−1)j

(
t

j

)
Bt(T )X t−jY n−t+j

= Xn +
n∑

t=0

n∑
w=n−t

(−1)t−n+w

(
t

t− n+ w

)
Bt(T )Xn−wY w

= Xn +
n∑

w=0

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Bt(T )Xn−wY w

Hence WC(X, Y, T ) is of the form
∑n

w=0Aw(T )Xn−wY w with Aw(T ) of the form given
in the theorem. �
Note that in the definition of Aw(T ) we can let the summation over t run to n − d
instead of n, because Bt(T ) = 0 for t > n− d.

Proposition 5.18 The following formula holds:

Bt(T ) =
n−t∑
w=d

(
n− w
t

)
Aw(T ).

Proof. The statement is a direct consequence of Lemma 5.14 and Theorem 5.17. �
As we said before, the motivation for looking at the extended weight enumerator comes
from the extension codes. In the next proposition we show that the extended weight
enumerator for T = qm is indeed the weight enumerator of the extensioncode C ⊗Fqm .

Proposition 5.19 Let C be a linear [n, k] code over Fq. Then we have

WC(X, Y, qm) = WC⊗Fqm (X, Y ).

Proof. For w = 0 it is clear that A0(qm) = A0(C ⊗ Fqm) = 1, so assume w 6= 0. It is
enough to show that Aw(qm) = (qm − 1)A1

w(C ⊗ Fqm). First we have

Bt(q
m) =

∑
|J |=t

BJ(qm)

=
∑
|J |=t

|{c ∈ (C ⊗ Fqm)(J) : c 6= 0}|

= (qm − 1)
∑
|J |=t

|{D ⊆ (C ⊗ Fqm)(J) : dimD = 1}

= (qm − 1)B1
t (C ⊗ Fqm).

We also know that Aw(T ) and Bt(T ) are related the same way as A1
w and B1

t . Com-
bining this proves the statement. �
Therefore we can view WC(X, Y, T ) as the weight enumerator of the extension code
over the algebraic closure of Fq. This means we can find a relation with the two vari-
able zeta-function of a code, see Duursma [14]. The notion of the extended weight
enumerator was first introduced by Helleseth, Kløve and Mykkeltveit [17, 22] and later
studied by by [44]. This notion has applications in the wire-tap channel II [30] and
trellis complexity [15].

For further applications, the next way of writing the extended weight enumerator will
be useful:
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Proposition 5.20 The extended weight enumerator of a linear code C can be written
as

WC(X, Y, T ) =
n∑

t=0

∑
|J |=t

T l(J)(X − Y )tY n−t.

Proof. By rewriting and using the binomial expansion of ((X − Y ) + Y )n, we get

n∑
t=0

∑
|J |=t

T l(J)(X − Y )tY n−t

=
n∑

t=0

(X − Y )tY n−t
∑
|J |=t

(
(T l(J) − 1) + 1

)

=
n∑

t=0

(X − Y )tY n−t

∑
|J |=t

(T l(J) − 1) +

(
n

t

)
=

n∑
t=0

Bt(T )(X − Y )tY n−t +
n∑

t=0

(
n

t

)
(X − Y )tY n−t

=
n∑

t=0

Bt(T )(X − Y )tY n−t +Xn

= WC(X, Y, T )

�

5.3 Connections

There is a connection between the extended weight enumerator and the generalized
weight enumerators. We first proof the next proposition.

Proposition 5.21 Let C be a linear [n, k] code over Fq, and let Cm be the linear
subspace consisting of the m× n matrices over Fq whose rows are in C. Then there is
an isomorphism of Fq-vector spaces between C ⊗ Fqm and Cm.

Proof. Let α be a primitive m-th root of unity in Fqm . Then we can write an element
of Fqm in an unique way on the basis (1, α, α2, . . . , αm−1) with coefficients in Fq. If we
do this for all the coordinates of a word in C⊗Fqm , we get an m×n matrix over Fq. The
rows of this matrix are words of C, because C and C ⊗ Fqm have the same generator
matrix. This map is clearly injective. There are (qm)k = qkm words in C ⊗ Fqm , and
the number of elements of Cm is (qk)m = qkm, so our map is a bijection. It is given by(

m−1∑
i=0

ci1α
i,

m−1∑
i=0

ci2α
i, . . . ,

m−1∑
i=0

cinα
i

)
7→


c01 c02 c03 . . . c0n

c11 c12 c13 . . . c1n
...

...
...

. . .
...

c(m−1)1 c(m−1)2 c(m−1)3 . . . c(m−1)n

 .
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We see that the map is Fq-linear, so it gives an isomorphism C ⊗ Fqm → Cm. �
Note that this isomorphism depends on the choice of a primitive element α. The use
of this isomorphism for the proof of Theorem 5.24 was suggested in [34] by Simonis.
We also need the next subresult.

Lemma 5.22 Let c ∈ C ⊗ Fqm and M ∈ Cm the corresponding m × n matrix under
a given isomorphism. Let D ⊆ C be the subcode generated by the rows of M . Then
wt(c) = wt(D).

Proof. If the j-th coordinate cj of c is zero, then the j-th column of M consists of
only zero’s, because the representation of cj on the basis (1, α, α2, . . . , αm−1) is unique.
On the other hand, if the j-th column of M consists of all zeros, then cj is also zero.
Therefore wt(c) = wt(D). �

Proposition 5.23 Let C be a linear code over Fq. Then the weight numerator of an
extension code and the generalized weight enumerators are connected via

Aw(qm) =
m∑

r=0

[m, r]qA
r
w.

Proof. We count the number of words in C ⊗Fqm of weight w in two ways, using the
bijection of Proposition 5.21. The first way is just by substituting T = qm in Aw(T ):
this gives the left side of the equation. For the second way, note that every M ∈ Cm

generates a subcode of C whose weight is equal to the weight of the corresponding
word in C ⊗ Fqm . Fix this weight w and a dimension r: there are Ar

w subcodes of C
of dimension r and weight w. Every such subcode is generated by an r × n matrix
whose rows are words of C. Left multiplication by an m× r matrix of rank r gives an
element of Cm which generates the same subcode of C, and all such elements of Cm

are obtained this way. The number of m×r matrices of rank r is [m, r]q, so summation
over all dimensions r gives

Aw(qm) =
k∑

r=0

[m, r]qA
r
w.

We can let the summation run to m, because Ar
w = 0 for r > k and [m, r]q = 0 for

r > m. This proves the given formula. �
This result first appears in [17, Theorem 3.2], although the term “generalized weight
enumerator” was yet to be invented. In general, we have the following theorem.

Theorem 5.24 Let C be a linear code over Fq. Then the extended weight numerator
and the generalized weight enumerator are connected via

WC(X, Y, T ) =
k∑

r=0

(
r−1∏
j=0

(T − qj)

)
W r

C(X, Y ).

Proof. If we know Ar
w for all r, we can determine Aw(qm) for every m. If we have

k + 1 values of m for which Aw(qm) is known, we can use Lagrange interpolation to
find Aw(T ), for this is a polynomial in T of degree at most k. In fact, we have

Aw(T ) =
k∑

r=0

(
r−1∏
j=0

(T − qj)

)
Ar

w.
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This formula has the right degree and is correct for T = qm for all integer values m ≥ 0,
so we know it must be the correct polynomial. Therefore the theorem follows. �
The converse of the theorem is also true: we can write the generalized weight enumer-
ator in terms of the extendend weight enumerator.

Theorem 5.25 Let C be a linear code over Fq. Then the generalized weight enumer-
ator and the extended weight enumerator are connected via

W r
C(X, Y ) =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 ) WC(X, Y, qj).

Proof. We consider the generalized weight enumerator in terms of Proposition 5.20.
Then rewriting gives the following:

W r
C(X, Y ) =

n∑
t=0

Br
t (X − Y )tY n−t

=
n∑

t=0

∑
|J |=t

[
l(J)

r

]
q

(X − Y )tY n−t

=
n∑

t=0

∑
|J |=t

(
r−1∏
j=0

ql(J) − qj

qr − qj

)
(X − Y )tY n−t

=
1∏r−1

v=0(qr − qv)

n∑
t=0

∑
|J |=t

(
r−1∏
j=0

(ql(J) − qj)

)
(X − Y )tY n−t

=
1

〈r〉q

n∑
t=0

∑
|J |=t

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )qj·l(J)(X − Y )tY n−t

=
1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )

n∑
t=0

∑
|J |=t

(qj)l(J)(X − Y )tY n−t

=
1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 ) WC(X, Y, qj)

In the fourth step, we use the following identity (see [22]), which can be proven by
induction:

r−1∏
j=0

(Z − qj) =
r∑

j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )Zj.

�

5.4 MDS-codes

We can use the theory in the second chapter to calculate the weight distribution,
generalized weight distribution, and extended weight distribution of a linear [n, k] code
C. This is done by determining the values l(J) for each J ⊆ [n]. In general, we have
to look at the 2n different subcodes of C to find the l(J), but for the special case of
MDS codes we can find the weight distributions much faster.
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Proposition 5.26 Let C be a linear [n, k] MDS code, and let J ⊆ [n]. Then we have

l(J) =

{
0 for t > k

k − t for t ≤ k

so for a given t the value of l(J) is independent of the choice of J .

Proof. We know that the dual of a MDS code is also MDS, so d⊥ = k + 1. Now use
d = n− k + 1 in lemma 5.6. �
Now that we know all the l(J) for an MDS code, it is easy to find the weight distribution.
We will give the construction for the generalized weight enumerator here: the case of
the extended weight enumerator goes similar.

Theorem 5.27 Let C be a MDS code with parameters [n, k]. Then the generalized
weight distribution is given by

Ar
w =

(
n

w

) w−d∑
j=0

(−1)j

(
w

j

)[
w − d+ 1− j

r

]
q

.

Proof. We know from the proposition that for a MDS code, Br
t depends only on

the size of J , so Br
t =

(
n
t

) [
k−t
r

]
q
. Using this in the formula for Ar

w and substituting

j = t− n+ w, we have

Ar
w =

n−dr∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Br

t

=
n−dr∑

t=n−w

(−1)t−n+w

(
t

n− w

)(
n

t

)[
k − t
r

]
q

=
w−dr∑
j=0

(−1)j

(
n

w

)(
w

j

)[
k + w − n− j

r

]
q

=

(
n

w

) w−dr∑
j=0

(−1)j

(
w

j

)[
w − d+ 1− j

r

]
q

.

In the second step, we are using the binomial equivalence(
n

t

)(
t

n− w

)
=

(
n

n− w

)(
n− (n− w)

t− (n− w)

)
=

(
n

w

)(
w

n− t

)
.

�
So, for all MDS-codes with given parameters [n, k] the extended and generalized weight
distributions are the same. But not all such codes are equivalent. We can conclude
from this, that the generalized extended weight enumerator is not enough to distinguish
between codes with the same parameters.

6 Lattices and the characteristic polynomial

In this section we consider the characteristic polynomial of codes and arrangemetns of
hyperplanes using the the theory of posets and lattices and the Möbius function. See
[12, 28, 33].

32



6.1 Posets, the Möbius function and lattices

Definition 6.1 Let L be a set and ≤ a relation on L that is reflexive, anti-symmetric
and transitive. Then the pair (L,≤) or just L is called a poset with partial order ≤
on the set L. Define x < y if x ≤ y and x 6= y. The elements x and y in L are
comparable if x ≤ y or y ≤ x. A poset L is called a linear order if every two elements
are comparable. Define Lx = {y ∈ L|x ≤ y} and Lx = {y ∈ L|y ≤ x} and the the
interval between x and y by [x, y] = {z ∈ L|x ≤ z ≤ y}. Notice that [x, y] = Lx ∩ Ly.

Definition 6.2 Let (L,≤) be a poset. A chain of length r from x to y in L is a
sequence of elements x0, x1, . . . , xr in L such that

x = x0 < x1 < · · · < xr = y.

Let r be a number. Let x, y in L. Then cr(x, y) denotes the number of chains of length
r from x to y. Now cr(x, y) is finite if L is finite. The poset is called locally finite if
cr(x, y) is finite for all x, y ∈ L and every number r.

Proposition 6.3 Let L be a locally finite poset. Let x, y in L and x ≤ y. Then

(C.1) c0(x, x) = 1 and c0(x, y) = 0 if x < y.

(C.2) cr+1(x, y) =
∑

x≤z<y cr(x, z) =
∑

x<z≤y cr(z, y).

Proof. The statement (C.1) is trivial. Let z < y and x = x0 < x1 < · · · < xr = z
a chain of length r from x to z, then x = x0 < x1 < · · · < xr < xr+1 = y is a chain
of length r + 1 from x to y, and every chain of length r + 1 from x to y is obtained
uniquely in this way. Hence cr+1(x, y) =

∑
x≤z<y cr(x, z). The last equality is proved

similarly. �

Definition 6.4 The Möbius function of L, denoted by µL or µ is defined by

µ(x, y) =
∞∑

r=0

(−1)rcr(x, y).

Proposition 6.5 Let L be a locally finite poset. Then for all x, y in L:

(M.1) µ(x, x) = 1.

(M.2) If x < y, then
∑

x≤z≤y µ(x, z) =
∑

x≤z≤y µ(z, y) = 0.

Proof. This is left as an exercise. �

Remark 6.6 Proposition 6.5 can be used as an alternative to compute µ(x, y) by
induction:

µ(x, y) = −
∑

x≤z<y

µ(x, z).

Definition 6.7 Let L be a poset. If L has an element 0L such that 0L is the unique
minimal element of L, then 0L is called the minimum of L. Similarly 1L is called the
maximum of L if 1L is the unique maximal element of L. If x, y in L and x ≤ y, then
the interval [x, y] has x as minimum and y as maximum. Suppose that L has 0L and
1L as minimum and maximum also denoted by 0 and 1, respectively. Then 0 ≤ x ≤ 1
for all x ∈ L. Define µ(x) = µ(0, x) and µ(L) = µ(0, 1) if L is finite.
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Definition 6.8 Let L be a locally finite poset with minimum element 0. Let A be an
abelian group and f : L→ A a map from L to A. The sum function f̃ of f is defined
by

f̃(x) =
∑
y≤x

f(y).

Proposition 6.9 Let L be a locally finite poset with minimum element 0. Then the
Möbius inversion formula holds:

f(x) =
∑
y≤x

µ(y, x) · f̃(y).

Proof. This is left as an exercise. �

Example 6.10 Let f(x) = 1 if x = 0 and f(x) = 0 otherwise. Then the sum function

f̃(x) =
∑

y≤x f(y) is constant 1 for all x. The Möbius inversion formula gives that

∑
y≤x

µ(x) =

{
1 if x = 0,
0 if x > 0,

which is a special case of Proposition 6.5.

Remark 6.11 Let (L,≤) be a poset. Let ≤R be the reverse relation on L defined by
x ≤R y if and only if y ≤ x. Then (L,≤R) is a poset. Let (L,≤) be locally finite with
Möbius function µ. Then the number of chains of length r from x to y in (L,≤R) is
the same as the number of chains of length r from y to x in (L,≤). Hence (L,≤R) is
locally finite with Möbius function µR such that µR(x, y) = µ(y, x).

Definition 6.12 Let L be a poset. Let x, y ∈ L. Then y is called a cover of x if x < y,
and there is no z such that x < z < y. The Hasse diagram of L is a directed graph
that has the elements of L as vertices, and there is a directed edge from y to x if and
only if y is a cover of x.

Example 6.13 Let L = Z be the set of integers with the usual linear order. Let
x, y ∈ L and x ≤ y. Then c0(x, x) = 1, c0(x, y) = 0 if x < y, and cr(x, y) =

(
y−x−1

r−1

)
for

all r ≥ 1. So L infinite and locally finite. Furthermore µ(x, x) = 1, µ(x, x + 1) = −1
and µ(x, y) = 0 if y > x+ 1.

Definition 6.14 Let L be a poset. Let x, y in L. Then x and y have a least upper
bound if there is a z ∈ L such that x ≤ z and y ≤ z, and if x ≤ w and y ≤ w, then
z ≤ w for all w ∈ L. If x and y have a least upper bound, then such an element is
unique and it is called the join of x and y and denoted by x∨ y. Similarly the greatest
lower bound of x and y is defined. If it exists, then it is unique and it is called the meet
of x and y and denoted by x ∧ y. A poset L is called a lattice if x ∨ y and x ∧ y exist
for all x, y in L.

Remark 6.15 Let (L,≤) be a finite poset with maximum 1 such that x∧ y exists for
all x, y ∈ L. The collection {z|x ≤ z, y ≤ z} is finite and not empty, since it contains
1. Hence the meet of all the elements in this collection is well defined and is equal to
x ∨ y. Hence L is a lattice. Similarly L is a lattice if L is a finite poset with minimum
0 such that x ∨ y exists for all x, y ∈ L, since x ∧ y =

∨
{ z | z ≤ x, z ≤ y}.
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Example 6.16 Let L be the collection of all finite subsets of a given set X . Let ≤
be defined by the inclusion, that means x ≤ y if and only if x ⊆ y. Then 0L = ∅, and
L has a maximum if and only if X is finite in which case 1L = X . Let x, y ∈ L and
x ≤ y. Then |x| ≤ |y| <∞. Let m = |y| − |x|. Then

cr(x, y) =
∑

m1<m2<···<mr−1<m

(
m2

m1

)
· · ·
(

m

mr−1

)
.

Hence L is locally finite. L is finite if and only if X is finite. Furthermore x∨ y = x∪ y
and x∧ y = x∩ y. So L is a lattice. Using Remark 6.6 we see that µ(x, y) = (−1)|y|−|x|

if x ≤ y. This is much easier than computing µ(x, y) by means of Definition 6.4.

Example 6.17 Now suppose that X = {1, . . . , n}. Let L be the poset of subsets of
X . Let A1, . . . , An be a collection of subsets of a finite set A. Define for a subset x ∈ L

Ax =
⋂
j∈x

Aj and f(x) = |Ax \

(⋃
y<x

Ay

)
|.

Then Ax is the disjoint union of the subsets Ay \ (
⋃

z<y Az) for all y ≤ x. Hence the
sum function

f̃(x) =
∑
y≤x

f(y) =
∑
y≤x

|Ay \

(⋃
z<y

Az

)
| = |Ax|.

Möbius inversion gives that

|Ax \

(⋃
y<x

Ay

)
| =

∑
y≤x

(−1)|x|−|y||Ay|

which is called the principle of inclusion/exclusion.

Example 6.18 A variant of the principle of inclusion/exclusion is given as follows.
Let A1, . . . , An be a collection of subsets of a finite set A. Let L be the poset of all
intersections of the Aj with the inclusion as partial order. Let x ∈ L. Define

f(x) = |x \

(⋃
y<x

y

)
|.

Then

f̃(x) =
∑
y≤x

f(y) =
∑
y≤x

|y \

(⋃
z<y

z

)
| = |x|.

Hence

|x \

(⋃
y<x

y

)
| =

∑
y≤x

µ(y)|y|.

Example 6.19 Let L = N be the set of positive integers with the divisibility relation
as partial order. Then 0L = 1 is the minimum of L, it is locally finite and it has no
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maximum. Now m ∨ n = lcm(m,n) and m ∧ n = gcd(m,n). Hence L is a lattice. By
Remark 6.6 we see that

µ(n) =


1 if n = 1,

(−1)r if n is the product of r mutually distinct primes,
0 if n is divisible by the square of a prime.

Hence µ(n) is the classical Möbius function. Furthermore µ(d, n) = µ(n
d
) if d|n.

Let ϕ(n) = |{i ∈ N| gcd(i, n) = 1}| be Euler’s ϕ function. Let [n] = {1, . . . , n}. Then
[n] is the disjoint union of the subsets Vd = {i ∈ [n]| gcd(i, n) = n/d} for all d|n, and
{i ∈ [d]| gcd(i, d) = 1} · n

d
= Vd, so |Vd| = ϕ(d). Hence the sum function of ϕ(n) is

given by

ϕ̃(n) =
∑
d|n

ϕ(d) = n.

Therefore
ϕ(n) =

∑
d|n

µ(d)
n

d
,

by Möbius inversion.

Definition 6.20 Let (L1,≤1) and (L2,≤2) be posets. A map ϕ : L1 → L2 is called
monotone if ϕ(x) ≤2 ϕ(y) for all x ≤1 y in L1. The map ϕ is called strictly monotone
if ϕ(x) <2 ϕ(y) for all x <1 y in L1. The map is called an isomorphism of posets if
it is strictly monotone and there exists a strictly monotone map ψ : L2 → L1 that is
the inverse of ϕ. The posets are called isomorphic if there is an isomorphism of posets
between them.

Remark 6.21 If (L1,≤1) and (L2,≤2) are isomorphic posets and L1 is a lattice, then
L2 is also a lattice.

Example 6.22 Let n be a positive integer that is the product of r mutually distinct
primes p1, . . . , pr. Let L1 be the set of all positive integers that divide n with divisibility
as partial order ≤1 as in Example 6.19. Let L2 be the collection of all subsets of
{1, . . . , r} with the inclusion as partial order ≤2 as in Example 6.16. Define the maps
ϕ : L1 → L2 and ψ : L2 → L1 by ϕ(d) = {i|pi divides n} and ψ(x) =

∏
i∈x pi. Then ϕ

and ψ are strictly monotone and they are inverses of each other. Hence L1 and L2 are
isomorphic lattices.

Remark 6.23 Let (L,≤) be a lattice without infinite chains. Then L has a minimum
and a maximum.

Definition 6.24 Let L be a lattice with minimum 0. An atom is an element a ∈ L
that is a cover of 0. A lattice is called atomic if every x > 0 in L there exist atoms
a1, . . . , ar such that x = a1 ∨ · · · ∨ ar, and the minimum possible r is called the rank of
x and is denoted by rL(x) or r(x) for short. A lattice is called semimodular if for all
mutually distinct x, y in L, x ∨ y covers x and y if there exists a z such that x and y
cover z. A lattice is called modular if x∨ (y∧z) = (x∨y)∧z for all x, y and z in L such
that x ≤ z. A lattice L is called a geometric lattice if it is atomic and semimodular
and has no infinite chains. If L is a geometric lattice L, then it has a minimum and a
maximum and r(1) is called the rank of L and is denoted by r(L).
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Example 6.25 Let L be the collection of all subsets of a given finite set X as in
Example 6.16. The atoms are the singleton sets, that is subsets consisting of exactly
one element of X . Every x ∈ L is the finite union of its singleton subsets. So L is
atomic and r(x) = |x|. Now y covers x if and only if there is an element Q not in x such
that y = x ∪ {Q}. If x 6= y and x and y both cover z, then there is an element P not
in z such that x = z ∪ {P}, and there is an element Q not in z such that y = z ∪ {Q}.
Now P 6= Q, since x 6= y. Hence x ∨ y = z ∪ {P,Q} covers x and y. Hence L is
semimodular. In fact L is modular. L is locally finite. L is a geometric lattice if and
only if X is finite.

Example 6.26 Let L be the set of positive integers with the divisibility relation as in
Example 6.19. The atoms of L are the primes. But L is not atomic, since a square is
not the join of finitely many elements. L is semimodular. The interval [1, n] in L is a
geometric lattice if and only if n is square free. If n is square free and m ≤ n, then
r(m) = r if and only if m is the product of r mutually distinct primes.

Proposition 6.27 Let L be a geometric lattice. Then for all x, y ∈ L:

(GL.1) If x < y, then r(x) < r(y). (strictly monotone)

(GL.2) r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y). (semimodular inequality)

(GL.3) All maximal chains from 0 to x have the same length r(x).

Proof. This is left as an exercise. �

Remark 6.28 Let L be an atomic lattice. Then L is semimodular if and only if the
semimodular inequality (GL.2) holds for all x, y ∈ L. And L is modular if and only if
the modular equality: r(x ∨ y) + r(x ∧ y) = r(x) + r(y) holds for all x, y ∈ L.

Remark 6.29 Let L be a geometric lattice. Let x, y ∈ L and x ≤ y. Then every chain
from x to y can be completed by a maximal chain with the same end points, and all
such maximal chains have the same length r(y)−r(x). This is called the Jordan-Hölder
property.

Remark 6.30 Let L be a geometric lattice. Let Lj = {x ∈ L|r(x) = j}. Then Lj is
called the level of L. Then the Hasse diagram of L is a graph that has the elements of
L as vertices. If x, y ∈ L, x < y and r(y) = r(x) + 1, then x and y are connected by
an edge. So only elements between two consecutive levels Lj and Lj+1 are connected
by an edge. The Hasse diagram of L considered as a poset as in Definition 6.12 is the
directed graph with an arrow from y to x if x, y ∈ L, x < y and r(y) = r(x) + 1.

Remark 6.31 Let L be a geometric lattice. Then Lx is a geometric lattice of rank
rL(1) − rL(x), and µLx(y) = µ(x, y) and rLx(y) = rL(y) − rL(x) for all x ∈ L and
y ∈ Lx. Similar remarks hold for Lx and [x, y].

Example 6.32 Let L be the collection of all linear subspaces of a given finite dimen-
sional vector space V over a field F with the inclusion as partial order. Then 0L = {0}
is the minimum and 1L = V is the maximum of L. The partial order L is locally finite if
and only if L is finite if and only if the field F is finite. Now x∨y = x+y and x∧y = x∩y.
So L is a lattice. The atoms are the one dimensional linear subspaces. Let x be a sub-
space of dimension r over F. So x is generated by a basis g1, . . . ,gr. Let ai be the one
dimensional subspace generated by gi. Then x = a1 ∨ · · · ∨ ar. Hence L is atomic and
r(x) = dim(x). Moreover L is modular, since dim(x∩y)+dim(x+y) = dim(x)+dim(y)
for all x, y ∈ L. Furthermore L has no infinite chains, since V is finite dimensional.
Therefore L is a modular geometric lattice. F is finite if and only if L is finite if and
only if L is locally finite.
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Example 6.33 Let F be a field. Let V = (v1, . . . ,vn) be an n-tuple of nonzero vectors
in Fk. Let L = L(V) be the collection of all linear subspaces of Fk that are generated
by subsets of V with inclusion as partial order. So L is finite and a fortiori locally
finite. By definition {0} is the linear subspace space generated by the empty set. Then
0L = {0} and 1L is the subspace generated by all v1, . . . ,vn. Furthermore L is a lattice
with x ∨ y = x+ y and

x ∧ y =
∨
{ z | z ≤ x, z ≤ y}

by Remark 6.15. Let aj be the linear subspace generated by vj. Then a1, . . . , an are
the atoms of L. Let x be the subspace generated by {vj|j ∈ J}. Then x =

∨
j∈J aj. If

x has dimension r, then there exists a subset I of J such that |I| = r and x =
∨

i∈I ai.
Hence L is atomic and r(x) = dim(x). Now x ∧ y ⊆ x ∩ y, so

r(x ∨ y) + r(x ∧ y) ≤ dim(x+ y) + dim(x ∩ y) = r(x) + r(y).

Hence the semimodular inequality holds and L is a geometric lattice. In most cases L
is not modular.

Example 6.34 Let F be a field. Let A = (H1, . . . , Hn) be an arrangement over F
of hyperplanes in the vector space V = Fk. Let L = L(A) be the collection of all
nonempty intersections of elements of A. By definition Fk is the empty intersection.
Define the partial order ≤ by

x ≤ y if and only if y ⊆ x.

Then V is the minimum denoted by 0, and {0} is the maximum denoted by 1, and

x ∨ y = x ∩ y if x ∩ y 6= ∅, and x ∧ y =
⋂
{ z | x ∪ y ⊆ z }.

Suppose that A is a central arrangement. Then x ∩ y is nonempty for all x, y in L.
So x ∨ y and x ∧ y exist for all x, y in L, and L is a lattice. Let vj = (v1j, . . . , vkj)

be a nonzero vector such that
∑k

i=1 vijXi = 0 is a homogeneous equation of Hj. Let
V = (v1, . . . ,vn). Consider the map ϕ : L(V)→ L(A) defined by

ϕ(x) =
⋂
j∈J

Hj if x is the subspace generated by {vj|j ∈ J}.

Now x ⊂ y if and only if ϕ(y) ⊂ ϕ(x) for all x, y ∈ L(V). So ϕ is a strictly monotone
map. Furthermore ϕ is a bijection and its inverse map is also strictly monotone. Hence
L(V) and L(A) are isomorphic lattices. Therefore L(A) is also a geometric lattice.

6.2 The characteristic polynomial of a geometric lattice

Definition 6.35 Let L be a finite geometric lattice. The characteristic polynomial
χL(T ) and the Poincaré polynomial πL of L are defined by:

χL(T ) =
∑
x∈L

µL(x)T r(L)−r(x), and πL(T ) =
∑
x∈L

µL(x)(−T )r(x).

Remark 6.36 So µ(L) = χL(0), and χL(1) = 0 if and only if L consists of one element
0 = 1. Furthermore χL(T ) = T r(L)πL(−T−1).
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Remark 6.37 The Whitney polynomial ωL in the two variables S and T is defined by

ωL(S, T ) =
∑
x≤y

µ(x, y)Sr(x)T r(L)−r(y).

It is also called the Möbius polynomial by [48, Section 1] and [49, Section 2]. Remember
that Lx = {y ∈ L|x ≤ y} from Definition 6.1. The following relation holds for the
Whitney polynomial in terms of characteristic polynomials

ωL(S, T ) =
∑
x∈L

Sr(x)χLx(T ),

by Remark 6.31. Hence ωL(0, T ) = χL(T ). Define

χL,i(T ) =
∑
x∈Li

χLx(T ).

Abbreviate χL,i(T ) by χi(T ). Then ωL(S, T ) =
∑r(L)

i=0 S
iχi(T ).

Example 6.38 Let L be the lattice of all subsets of a given finite set of r elements as
in Example 6.16. Then r(x) = |x| and µ(x, y) = (−1)|y|−|x| if x ≤ y. Hence

χL(T ) =
r∑

j=0

(
r

j

)
(−1)jT r−j = (T − 1)r and χi(T ) =

(
r

i

)
(T − 1)r−i.

Therefore ωL(S, T ) = (S + T − 1)r.

Example 6.39 Let L be the lattice of all linear subspaces of a given vector space of
dimension r over the finite field Fq as in Example 6.32. Then r(x) is the dimension
of x over Fq. The number of subspaces of dimension i is counted in Remark 5.1. It is
left as an exercise to show that µ(x, y) = (−1)iq(j−i)(j−i−1)/2 if r(x) = i, r(y) = j and
x ≤ y, and

χL(T ) =
r∑

i=0

[
r
i

]
q

(−1)iq(
i
2)T r−i = (T − 1)(T − q) · · · (T − qr−1) and

χi(T ) =

[
r
i

]
q

(T − 1)(T − q) · · · (T − qr−i−1).

See [22].

Remark 6.40 Every polynomial in one variable with coefficients in a field F factorizes
in linear factors over the algebraic closure A. In Examples 6.38 and 6.39 we see that
χL(T ) factorizes in linear factors over Z. This is always the case for so called super
solvable geometric lattices and lattices from free central arrangements. See [28].
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6.3 The characteristic polynomial of an arrangement

An arrangement A gives rise to a geometric lattice L(A) and characteristic polynomial
χL(A), that will be denoted by χA. Similarly πA denotes the Poincaré polynomial of
A. If A is an arrangement over the real numbers, then πA(1) counts the number of
connected components of the complement of the arrangement. See [48].

Proposition 6.41 Let q be a prime power, and let A = (H1, . . . , Hn) be an arrange-
ment in Fk

q . Then

χA(qm) = |Fk
qm \ (H1 ∪ · · · ∪Hn)|.

Proof. See [13, Sect. 16] [28, Theorem 2.69], [1, Theorem 2.2], [5, Proposition 3.2].
Let A = Fk

qm and Aj = Hj(Fm
q ). Let L be the poset of all intersections of the Aj. The

principle of inclusion/exclusion as formulated in Example 6.18 gives that

|Fk
qm \ (H1 ∪ · · · ∪Hn)| =

∑
x∈L

µ(x)|x| =
∑
x∈L

µ(x)qm dim(x).

The expression on the right hand side is equal to χA(qm), since L is isomorphic with
the reverse of the geometric lattice L(A) of the arrangement A = (H1, . . . , Hn), so
dim(x) = µL(A) − µL(A)(x) and µL(x) = µL(A)(x) by Remark 6.11. �
A nondegenerate code C over Fq in Fn

q with generator matrix G gives rise to the
arrangement AG, and this to the characteristic polynomial χAG

, that does not depend
on the chosen generator matrix G for C. So χAG

will be denoted by χC .

Proposition 6.42 Let C be a nondegenerate Fq-linear code. Then

An(T ) = χC(T ).

Proof. The elements in Fk
qm \ (H1 ∪ · · · ∪Hn) correspond one-to-one to codewords of

weight n in C ⊗ Fqm by Proposition 4.2. So An(qm) = χC(qm) for all positive integers
m by Proposition 6.41. Now An(T ) and χC(T ) are both polynomials that have the
same value at qm for all positive integers m. Hence An(T ) = χC(T ). �

Definition 6.43 Let A = (H1, . . . , Hn) be an arrangement in Fk over the field F. Let
H = Hi. Then the deletion A\H is the arrangement in Fk obtained from (H1, . . . , Hn)
by deleting all the Hj such that Hj = H. Let x = ∩i∈IHi be an intersection of
hyperplanes of A. Let l be the dimension of x. The restriction Ax is the arrangement
in Fl of all hyperplanes x∩Hj in x such that x∩Hj 6= ∅ and x∩Hj 6= x, for a chosen
isomorphism of x with Fl.

Proposition 6.44 Let A = (H1, . . . , Hn) be an arrangement in Fk over the field F.
Let H = Hi. Then the following deletion-restriction formula holds:

χA(T ) = χA\H(T )− χAH
(T ).

Proof. A proof for an arbitrary field can be found in [28, Theorem 2.56]. Here the
special case of a central arrangement over the finite field Fq will be treated. Without
loss of generality we may assume that H = H1 and A is simple. Denote Hj(Fqm) by
Hj and Fk

qm by V . Then

V \ (H2 ∪ · · · ∪Hn) = (V \ (H1 ∪H2 ∪ · · · ∪Hn)) ∪ (H1 \ (H2 ∪ · · · ∪Hn)) .
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The number of elements of the left hand side is equal to χA\H(qm), and the number
of elements of the two sets on the right hand side are equal to χA(qm) and χAH

(qm),
respectively by Proposition 6.41. Hence

χA\H(qm) = χA(qm) + χAH
(qm)

for all positive integers m, since the union is disjoint. Therefore the identity of the
polynomial holds. �

Definition 6.45 Let A = (H1, . . . , Hn) be an essential arrangement over Fq in Fk
q .

Consider the stratification of the affine space Ak of dimension k by:

Yk ⊂ Y1 ⊂ · · · ⊂ Y1 ⊂ Y0,

where Y0 = Ak, Y1 = ∪n
j=1Hj and Yk = {0}, and more generally

Yt =
⋃

r(∩t
i=1Hji

)=t

Hj1 ∩ · · · ∩Hjt .

Then Yt is a union of linear subspaces of Ak of dimension k− t. Define Xi = (Yi \Yi+1)
for all 0 ≤ i < k.

Proposition 6.46 Let A be an essential arrangement. Let L = L(A) be the geometric
lattice of A. Then

χi(q
m) = |Xi(Fqm)|.

Proof. Remember that χL,i(T ) =
∑

r(x)=i χLx(T ) as defined in Remark 6.37. Let

L = L(A) and x ∈ L. Then L(Ax) = Lx. Let ∪Ax be the union of the hyperplanes of
Ax. Then |(x \ (∪Ax))(Fqm)| = χLx(qm) by Proposition 6.41. Now Xi is the disjoint
union of complements of the arrangements Ax for all x ∈ L such that r(x) = i. Hence

|Xi(Fqm)| =
∑

x∈L,r(x)=i

|(x \ (∪Ax))(Fqm)| =
∑

x∈L,r(x)=i

χLx(qm).

�

6.4 Arrangement of lines in the projective plane

Let C be a nondegenerate code of length n and dimension 3 over Fq with generator
matrix G. Let Aw(qm) be the number of codewords in C ⊗ Fqm of weight w. Then
Aw(q) = Aw. The arrangement AG = (H1, . . . , Hn) of planes in F3

q is essential, and the

corresponding arrangement of lines in P2(Fq) is also denoted by AG. Define

Mi(Fqm) = {P ∈ P2(Fqm) | P is in exactly i lines of AG }

and µi(q
m) = |Mi(Fqm)|.

Proposition 6.47 If 0 < w ≤ n, then Aw(qm) = (qm − 1)µn−w(qm).

Proof. Every P ∈ P2(Fqm) corresponds one-to-one to qm − 1 codewords of C ⊗ Fqm .
If P is in exactly i lines of AG, then the codewords that correspond to P have weight
n− i by Proposition 4.2. �
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Remark 6.48 Notice that Mi(Fqm) = Mi(Fq) for all nonnegative integers m and i ≥ 2
if the code is projective. Abbreviate µi(q

m) = µi for i ≥ 2 in case the code is projective.

Consider the following stratification of the affine space A3 by:

Y3 ⊂ Y2 ⊂ Y1 ⊂ Y0,

where Y0 = A3, Y1 = H1 ∪ · · · ∪Hn,

Y2 =
⋃
{ Hi ∩Hj | 1 ≤ i < j ≤ n,Hi 6= Hj },

and Y3 = {0}. Now Xi = (Yi \ Yi+1) for 0 ≤ i < 3.

Definition 6.49 Let X (F) denote the set of F-rational points of X , that is the set of
points of X that have coordinates in F.

Proposition 6.50 If the code is projective, then

An(qm) = |X0(Fqm)| and An−1(qm) = |X1(Fqm)|.

Proof. The Hj are mutually distinct, since the code is projective. Proposition 6.47
implies that An(qm) = (qm − 1)µ0(qm) and An−1(qm) = (qm − 1)µ1(qm). So codewords
of weight n over Fqm correspond one to one to points in F3

qm that are not in any of the
Hj, that is in X0(Fqm). And codewords of weight n− 1 over Fqm correspond one to one
to Fqm-rational points that are on exactly one Hj, that is in X1(Fqm). �

Proposition 6.51 Let C be a projective code of length n and dimension 3 over Fq.
Then 

|X0(Fqm)| = (qm − 1)
(
q2m − (n− 1)qm +

∑
i≥2(i− 1)µi − n+ 1

)
,

|X1(Fqm)| = (qm − 1)
(
nqm + n−

∑
i≥2 iµi

)
,

|X2(Fqm)| = (qm − 1)
(∑

i≥2 µi

)
.

Proof. Let P̄ be the corresponding point in P2(Fqm) for P ∈ F3
qm and P 6= 0. Abbre-

viate Xi(Fqm) by Xi. Define X̄i = {P̄ | P ∈ Xi}. Then |Xi| = (qm− 1)|X̄i| for all i < 3.
(1) If P̄ ∈ X̄2, then P̄ ∈ Hj ∩Hk for some j 6= k. Hence P̄ ∈ Mi(Fq) for some i ≥ 2,
since the code is projective. Therefore X̄2 is the disjoint union of the Mi(Fq), i ≥ 2,
and |X̄2| =

∑
i≥2 µi.

(2) P̄ ∈ X̄1 if and only if P is on exactly one line Hj. There are n lines, and every line
has qm + 1 points that are defined over Fqm . If i ≥ 2, then every P̄ ∈ Mi(Fq) is on i
lines Hj. Hence |X̄1| = n(qm + 1)−

∑
i≥2 iµi.

(3) P2 is the disjoint union of X̄1, X̄2 and X̄0. The numbers |X̄2| and |X̄1| are computed
in (1) and (2), and |P2(Fqm)| = q2m + qm + 1. From this we derive the number of
elements of X̄0. �

Remark 6.52 The polynomials χi(T ) are given by
χ0(T ) = (T − 1)

(
T 2 − (n− 1)T +

∑
i≥2(i− 1)µi − n+ 1

)
,

χ1(T ) = (T − 1)
(
nT + n−

∑
i≥2 iµi

)
,

χ2(T ) = (T − 1)
(∑

i≥2 µi

)
,

since χi(q
m) is the number of elements of Xi(Fqm) by Propositions 6.46 and 6.51.
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Theorem 6.53 Let C be a projective code of length n and dimension 3 over Fq. Then
A0(T ) = 1 and Aw(T ) = (T − 1)µn−w for 0 < w < n− 1, and

An−1(T ) = (T − 1)

(
nT + n−

∑
i≥2

iµi

)
and

An(T ) = (T − 1)

(
T 2 − (n− 1)T +

∑
i≥2

(i− 1)µi − n+ 1

)
.

Proof. This is a consequence of Propositions 6.47, 6.50 and 6.51. �

Remark 6.54 The polynomials Ai(T ) and χi(T ) are divisible by T − 1. Hence there
are polynomials Āi(T ) and χ̄i(T ) such that Ai(T ) = (T − 1)Āi(T ) for all i > 0, and
χi(T ) = (T − 1)χ̄i(T ) for all i < 3.

Example 6.55 Consider the matrices G and P given by

G =

 1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 and

P =

 1 0 0 0 1 1 −1 1 1
0 1 0 1 0 −1 1 −1 1
0 0 1 −1 −1 0 1 1 −1

 .

Let C be the code over Fq with generator matrix G. The columns of G represent also
the coefficients of the lines of AG. The j-th column of P represents the homogenous
coordinates of the points Pj in the projective plane that occur as intersections of two
lines of AG. In case q is even, the points P7, P8 and P9 coincide.
If q is even, then µ3 = 7. If q is odd, then µ2 = 3.

i 1 2 3 4 5 6 7

µi 0 7 0 0 0 0
q even Āi 0 0 0 7 0 7T − 14 T 2 − 6T + 8

χ̄3−i 7 7T − 14 T 2 − 6T + 8
µi 3 6 0 0 0 0

q odd Āi 0 0 0 6 3 7T − 17 T 2 − 6T + 9
χ̄3−i 9 7T − 17 T 2 − 6T + 9

Notice that there is a codeword of weight 7 in case q is even and q > 4 or q is odd and
q > 3, since Ā7(T ) = (T − 2)(T − 4) or Ā7(T ) = (T − 3)2, respectively.

Example 6.56 Let G be a 3× n generator matrix of an MDS code. The lines of the
arrangement AG are in general position. That means that every two distinct lines meet
in one point, and every three mutually distinct lines have an empty intersection. So
µ2 =

(
n
2

)
and µi = 0 for all i > 2. Hence Ān−2(T ) = χ̄2(T ) =

(
n
2

)
and Ān−1(T ) =

χ̄1(T ) = nT + 2n − n2 and Ān(T ) = χ̄0(T ) = T 2 − (n − 1)T +
(

n−1
2

)
, by Proposition

6.46 and Theorem 6.53 which is in agreement with Theorem 5.27.
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Example 6.57 Let a and b positive integers such that 2 < a < b. Let n = a+ b. Let
G be a 3 × n generator matrix of a nondegenerate code. Suppose that there are two
points P and Q in the projective plane over Fq such that the lines of the projective
arrangement of AG consists of a distinct lines incident with P and b distinct lines
incident with Q. Then µ2 = ab, µa = 1 and µb = 1. Hence χ̄1(T ) = ab + 2 and
Āa = Āb = 1 and Ān−2 = ab. Furthermore

Ān−1(T ) = χ̄1(T ) = (a+ b)T − 2ab,

Ān(T ) = χ̄0(T ) = T 2 − (a+ b− 1)T + ab− 1

and Āi(T ) = 0 for all i 6= a, b, n− 2, n− 1, n.

Remark 6.58 In the Appendix A a table is given of the weight enumerator and char-
acteristic polynomials χi(C) of all codes C of dimension 3 and length at most 6. One
sees that the codes 5.1c and 5.2a have the same characteristic polynomials χi for all i,
but their weight enumerators are distinct. But these codes are not projective.

6.5 Graphs, arrangments and codes

Definition 6.59 A graph Γ is a pair (V,E) where V is a non-empty set and E is a
set disjoint from V . The elements of V are called vertices, and members of E are
called edges. Edges are incident to one or two vertices, which are called the ends of the
edge. If an edge is incident with exactly one vertex, then it is called a loop. If u and v
are vertices that are incident with an edge, then they are called neighbors or adjacent,
Two edges are called parallel if they are incident with the same vertices. The graph is
called simple if it has no loops and no parallel edges. A graph Γ′ = (V ′, E ′) is called
a subgraph of Γ if V ′ ⊆ V and E ′ ⊆ E. Two vertices u to v are connected by path
from u to v if there is a t-tuple of mutually distinct vertices (v1, . . . , vt) with u = v1

and v = vt, and an t− 1-tuple of mutually distinct edges (e1, . . . , et−1) such that ei is
incident with vi and vi+1 for all 1 ≤ i < t. If moreover et is an edge that is incident
with u and v and distinct from ei for all i < t, then (e1, . . . , et−1, et) is called a cycle.
The length of the smallest cycle is called the girth of the graph and is denoted by γ(Γ).

Definition 6.60 The graph is called connected if every two vertices are connected by
a path. A maximal connected subgraph of Γ is called a connected component of Γ. The
vertex set V of Γ is a disjoint union of subsets Vi such that Γi = (Vi, Ei) is a connected
component of Γ. The number of connected components of Γ is denoted by c(Γ).

Definition 6.61 Let Γ = (V,E) be a finite graph. Suppose that V consists of m
elements enumerated by v1, . . . , vm. Suppose that E consists of n elements enumerated
by e1, . . . , en. The incidence matrix I(Γ) is an m×n matrix with entries aij defined by

aij =


1 if ej is incident with vi and vk for some i < k,
−1 if ej is incident with vi and vk for some i > k,
0 otherwise.

Suppose moreover that Γ is simple. Then A(Γ) is the arrangement (H1, . . . , H)n) of
hyperplanes where HJ = Xi −Xk if ej is incident with vi and vk for i and j such that
i < k. An arrangement A is called graphic if A is isomorphic with A(Γ) for some graph
Γ.

Definition 6.62 Let Γ = (V,E) be a graph. Let K be a finite set and k = |K|. The
elements of K are called colors. A k-coloring of Γ is an a map γ : Γ → K such that
γ(u) 6= γ(v) for all adjacent vertices u and v in V . So vertex u has color γ(u) and
adjacent vertices have distinct colors. Let PΓ(k) be the number of k-colorings of Γ.
Then PΓ is called the chromatic polynomial of Γ.
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Remark 6.63 The number of coloring of graphs was studied by Whitney [46, 45] and
Tutte [38, 39, 40, 41, 42]. That PΓ is indeed a polynomial will be a consequence of
Proposition 6.66. A tool in order to proof this is by deletion-contraction of graphs,
similar to deletion-restriction of arrangements. Notice that the number of k-colorings
of Γ does not change by deleting loops and a parallel edge.

Definition 6.64 Let Γ = (V,E) be a graph. Let e be an edge that is incident to
the vertices u and v. Then the deletion Γ \ e is the graph with vertices V and edges
E \ {e}. The contraction Γ/e is the graph obtained by identifying u and v. Formally
this is defined as follows. Let ū = v̄ = {u, v}, and w̄ = {w} if w 6= u and w 6= v. Let
V̄ = {w̄|w ∈ V }. Then Γ/e = (V̄ , E), where e is incident with w̄ in Γ/e if e ∈ E is
incident with w in Γ.

Proposition 6.65 Let Γ = (V,E) be a graph. Let e be an edge of Γ. Then the
following deletion-contraction formula holds:

PΓ(k) = PΓ\e(k)− PΓ/e(k).

for all positive integers k.

Proof. See [28, Proposition 2.84] �

Proposition 6.66 Let Γ = (V,E) be a finite simple graph. Let χΓ be the characteristic
polynomial of the geometric lattice L(M(Γ)). Then PΓ(k) = χΓ(k) for all positive
integers k.

Proof. See [28, Theorem 2.88] �

Definition 6.67 The graph code of Γ over Fq is the Fq-linear code that is generated
by the rows of I(Γ). The cycle code C(Γ) of Γ is the dual of the graph code of C.

Remark 6.68 Let Γ be a finite graph without loops. Then the arrangement A(Γ) is
isomorphic with AC(Γ).

Proposition 6.69 Let Γ be a finite graph. Then C(Γ) is a code with parameters
[n, k, d], where n = |E|, k = |E| − |V |+ c(Γ) and d = γ(Γ).

Proof. This is left as exercise. �
Sparse graph codes, Gallager or Low-density parity check codes andTanner graph codes
play an important role in the research of coding theory at this moment. See [25, 32].

6.6 The zeta function of an arrangement

Definition 6.70 Let X be an affine variety in Ak defined over Fq, that is the zeroset
of a collection of polynomials in Fq[X1, . . . , Xk]. The zeta function ZX (T ) of X is the
formal power series in T defined by

ZX (T ) = exp

(
∞∑

m=1

|X (Fqm)|
r

T r

)
.
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Theorem 6.71 Let A be an arrangement in Fk
q . Let χA(T ) =

∑k
j=0 cjT

j be the char-

acteristic polynomial of A. Let M = Ak \ (H1 ∪ · · · ∪ Hn) be the complement of the
arrangement. Then the zeta function of M is given by:

ZM(T ) =
k∏

j=0

(1− qjT )−cj .

Proof. See [5, Theorem 3.6]. �

6.7 Exercises

6.1 Show that a poset L is locally finite if and only if [x, y] is finite for all x ≤ y in L.

6.2 Give a proof of the formulas for cr(x, y) and µ(x, y) in Example 6.16.

6.3 Give a proof of the formula for µ(x) in Example 6.19.

6.4 Give a proof of the statements in Example 6.26.

6.5 Give an example of an atomic finite lattice with minimum 0 and maximum 1 that
is not semimodular.

6.6 Give a proof of the statements in Remark 6.28.

6.7 Let L be a geometric lattice. Show that the rank r(x) is the length of a maximal
chain from 0 to x for all x in L.

6.8 Let L be a geometric lattice. Let a be an atom of L and x ∈ L. Show that
r(x ∨ a) ≤ r(x) + 1 and r(x ∨ a) = r(x) if and only if a ≤ x.

6.9 Give a proof of Remark 6.31.

6.10 Give an example of a central arrangement A such that the lattice L(A) is not
modular.

6.11 Give a proof of the formulas for µ(x, y), χL(T ) and ωL(S, T ) in Example 6.39.

6.12 Show that the Whitney polynomial determined by the extended weight enumer-
ator of a code? Give two projective codes over a fixed finite field of the same length and
dimension and with the same characteristic polynomials χi for all i, but with distinct
extended weight enumerators.

6.13 Give a proof of Remark 6.48.

6.14 Give a proof of Proposition 6.69.

7 Matroids and the Tutte polynomial

The notion of a matroid is almost equivalent to a geometric lattice. See [10, 12,
29, 35]. Matroids were introduced by Whitney [46, 47] in axiomatizing the concept of
independence. In the theory of arrangements one uses the notion of a geometric lattice.
In graph and coding theory one refers more to matroids.
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7.1 Matroids

Definition 7.1 A matroid is a pair (M, I) consisting of a finite set M and a collection
I of subsets of M such that the following three conditions hold.

(M.0) ∅ ∈ I.

(M.1) If J ⊆ I and I ∈ I, then J ∈ I.

(M.2) If I, J ∈ I and |I| < |J |, then there exists an j ∈ (J \ I) such that I ∪ {j} in I.

A subset I of M is called independent if I ∈ I , otherwise it is called dependent.
Condition (M.2) is called the independence augmentation axiom.

Remark 7.2 If J is a subset of M , then J has a maximal independent subset, that is
there exists an I ∈ I such that I ⊆ J and I is maximal with respect to this property
and the inclusion. If I1 and I2 are maximal independent subsets of J , then |I1| = |I2|.
The rank or dimension of a subset J of M is the number of elements of a maximal
independent subset of J . An independent set of rank r(M) is called a basis. The
collection of all bases of M is denoted by B.

Example 7.3 Let n and k be non-negative integers such that k ≤ n. Let Un,k be a set
consisting of n elements and In,k = {I ⊆ Un,k||I| ≤ k}. Then (Un,k, In,k) is a matroid
and called the uniform matroid of rank k on an n-element set. A subset B of Un,k is a
basis if and only if |B| = k. The matroids Un,n have no dependent sets and are called
free.

Proposition 7.4 Let L be a finite geometric lattice. Let M(L) be the set of all atoms
of L. Let I(L) be the collection of all subsets I of M(L) such that r(a1 ∨ · · · ∨ ar) = r
if I = {a1, . . . , ar} is a collection of r atoms of L. Then (M(L), I(L)) is a matroid.

Proof. The proof is left as an exercise. �

Proposition 7.5 Let L be a finite geometric lattice. Let M(L) be the matroid associ-
ated with L. Then

χL(T ) =
∑

I⊆M(L)

(−1)|I|T r(L)−r(I).

Proof. The reader is referred to the literature. �

Definition 7.6 Let (M, I) be a matroid. An element x in M is called a loop if {x} is
a dependent set. Let x and y in M be two distinct elements that are not loops. Then
x and y are called parallel if r({x, y}) = 1. The matroid is called simple if it has no
loops and no parallel elements.

Remark 7.7 Let G be a k × n matrix with entries in a field F. Let MG be the set
{1, . . . , n} indexing the columns of G and IG be the collection of all subsets I of MG

such that the submatrix GI consisting of the columns of G at the positions of I are
independent. Then (MG, IG) is a matroid. Suppose that F is a finite field and G1 and
G2 are generator matrices of a code C, then (MG1 , IG1) = (MG2 , IG2). So the matroid
(MC , IC) of a code C is well defined by (MG, IG) for some generator matrix G of C. If
C is degenerate, then there are positions i such that ci = 0 for every codeword c ∈ C
and these positions correspond one-to-one with loops of MC . Let C be nondegenerate.
Then MC has no loops, and the positions i and j with i 6= j are parallel in MC if and
only if the i-th column of G is a scalar multiple of the j-th column. The code C is
projective if and only if the arrangement AG is simple if and only if the matroid MC

is simple. An [n, k] code C is MDS if and only if the matroid MC is uniform.
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Definition 7.8 Let (M1, I1) and (M2, I2) be matroids. A map ϕ : M1 →M2 is called
a morphism of matroids if ϕ(I) ∈ I2 for all I ∈ I1. The map is called an isomorphism
of matroids if it is a morphism of matroids and there exists a map ψ : M2 → M1 such
that it is a morphism of matroids and it is the inverse of ϕ. The matroids are called
isomorphic if there is an isomorphism of matroids between them.

Remark 7.9 Let C be a projective code with generator matrix G. Then AG is an
essential simple arrangement with geometric lattice L(AG). Furthermore the matroids
M(L(AG)) and MC are isomorphic.

Remark 7.10 A matroid M is called realizable over the field F if there exists a matrix
G with entries in F such that M is isomorphic with MG.

Definition 7.11 Let (M, I) be a matroid. A k-flat of M is a maximal subset of M of
rank k. Let L(M) be the collection of all flats of M , it is called the lattice of flats of
M . The closure J̄ of a subset J of M is the intersection of all flats that contain J .

Remark 7.12 M is a k-flat with k = r(M). If F1 and F2 are flats, then F1∩F2 is also
a flat. Consider L(M) with the inclusion as partial order. Then M is the maximum
of L(M). And F1 ∩ F2 = F1 ∧ F2 for all F1 and F2 in L(M). Hence L(M) is indeed a
lattice by Remark 6.15. Let J be a subset of M , then J̄ is a flat, since it is a nonempty,
finite intersection of flats. So ∅̄ is the minimum of L(M).

Remark 7.13 An element x in M is a loop if and only if x̄ = ∅̄. If x, y ∈ M are no
loops, then x and y are parallel if and only if x̄ = ȳ. Let M̄ = {x̄|x ∈ M, x̄ 6= ∅̄} and
Ī = {x̄|x ∈ I} for a subset I of M . Let Ī = {Ī|I ∈ I, ∅̄ 6∈ Ī}. Then (M̄, Ī) is a simple
matroid.
Let G a generator matrix of a code C. The reduced matrix Ḡ is the matrix obtained
from G by deleting all zero columns from G and all columns that are a scalar multiple
of a previous column. The reduced code C̄ of C is the code with generator matrix Ḡ.
The matroids M̄G and MḠ are isomorphic.

Proposition 7.14 Let (M, I) be a matroid. Then L(M) with the inclusion as partial
order is a geometric lattice and L(M) is isomorphic with L(M̄).

Proof. This is left as an exercise. �

Definition 7.15 Let (M, I) be a matroid. Let B be the collection of all bases of M .
Define B⊥ = (M \ B) for B ∈ B, and B⊥ = {B⊥|B ∈ B}. Define M⊥ = M and
I⊥ = {I ⊆ M |I ⊆ B for some B ∈ B⊥}. Then (M⊥, I⊥) is called the dual matroid of
(M, I).

Remark 7.16 The dual matroid is indeed a matroid. Let C be a code over a finite
field. Then (MC)⊥ is isomorphic with MC⊥ as matroids.

Proposition 7.17 Let (M, I) be a matroid with rank function r. Then the dual ma-
troid has rank function

r⊥(J) = |J | − r(M) + r(M \ J).
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Proof. The proof is based on the observarion that r(J) = maxB∈B |B ∩ J | and
B \ J = B ∩ (M \ J).

r⊥(J) = max
B∈B
|(M \B) ∩ J |

= max
B∈B
|J \B|

= |J | −min
B∈B
|J ∩B|

= |J | − (|B| −max
B∈B
|B \ J |)

= |J | − r(M) + max
B∈B
|B ∩ (M \ J)|

= |J | − r(M) + r(S \ J).

�

7.2 Graphs and matroids

Definition 7.18 Let (M, I) be a matroid. A subset C of M is called a circuit if it is
dependent and all its proper subsets are independent.

Proposition 7.19 Let C be the collection of circuits of a matroid. Then

(C.0) ∅ 6∈ C.

(C.1) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C.2) If C1, C2 ∈ C and C1 6= C2 and x ∈ C1 ∩C2, then there exists a C3 ∈ C such that
C3 ⊆ (C1 ∪ C2) \ {x}.

Proof. See [29, Lemma 1.1.3]. �
Condition (C.2) is called the circuit elimination axiom. The converse of Proposition
7.19 holds.

Proposition 7.20 Let C be a collection of subsets of a finite set M that satisfies the
conditions (C.0), (C.1) and (C.2). Let I be the collection of all subsets of M that
contain no member of C. Then (M, I) is a matroid with C as its collection of circuits.

Proof. See [29, Theorem 1.1.4]. �

Proposition 7.21 Let Γ = (V,E) be a finite graph. Let C the collection of all subsets
{e1, . . . , et} such that (e1, . . . , et) is a cycle in Γ. Then C is the collection of circuits of
a matroid M(Γ) on E. This matroid is called the cycle matroid of Γ.

Proof. See [29, Proposition 1.1.7]. �

Remark 7.22 A matroid M is called graphic if M is isomorphic with M(Γ) for some
graph Γ. Loops in Γ correspond one-to-one to loops in M(Γ). Two edges that are no
loops, are parallel in Γ if and only if they are parallel in M(Γ). So Γ is simple if and
only if M(Γ) is simple.

Remark 7.23 Let Γ be a finite graph. Then M(Γ) is isomorphic with MC(Γ).
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7.3 The Tutte and Whitney polynomials of a matroid

See [1, 2, 6, 7, 8, 10, 16, 18] for references of this section.

Definition 7.24 Let (M, I) be a matroid. Then the Whitney rank generating function
RM(X, Y ) is defined by

RM(X, Y ) =
∑
I⊆M

Xr(M)−r(I)Y |I|−r(I)

and the Tutte polynomial by

tM(X, Y ) =
∑
I⊆M

(X − 1)r(M)−r(I)(Y − 1)|I|−r(I) .

In other words
tM(X, Y ) = RM(X − 1, Y − 1).

Remark 7.25 Let L be a finite geometric lattice with associated matroid L(M). Then

χL(T ) =
∑

I⊆M(L)

(−1)|I|T r(L)−r(I),

by Proposition 7.5. Hence

χL(T ) = (−1)r(L)tM(L)(1−X, 0).

describes the characteristic polynomial of L in terms of the Tutte polynomial of M(L).

7.4 Weight enumerator and Tutte polynomial

As we have seen, we can interpret a linear [n, k] code C over Fq as a matroid via
the columns of a generator matrix G. Using Lemma 5.5 we can rewrite the Tutte
polynomial associated to a code:

Proposition 7.26 Let C be a [n, k] code over Fq with generator matrix G. Then the
Tutte polynomial associated with the code C is

tG(X, Y ) =
n∑

t=0

∑
|J |=t

(X − 1)l(J)(Y − 1)l(J)−(k−t) .

This formula and Proposition 5.20 already suggest the next connection between the
weight enumerator and the Tutte polynomial.

Theorem 7.27 Let C be a [n, k] code over Fq with generator matrix G. Then the
following holds for the Tutte polynomial and the extended weight enumerator:

WC(X, Y, T ) = (X − Y )kY n−k tG

(
X + (T − 1)Y

X − Y
,
X

Y

)
.
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Proof. By using the previous proposition about the Tutte polynomial, rewriting, and
Proposition 5.20 we get

(X − Y )kY n−k tG

(
X + (T − 1)Y

X − Y
,
X

Y

)
= (X − Y )kY n−k

n∑
t=0

∑
|J |=t

(
TY

X − Y

)l(J)(
X − Y
Y

)l(J)−(k−t)

= (X − Y )kY n−k

n∑
t=0

∑
|J |=t

T l(J)Y k−t(X − Y )−(k−t)

=
n∑

t=0

∑
|J |=t

T l(J)(X − Y )tY n−t

= WC(X, Y, T ).

�
We use the extended weight enumerator here, because extending a code does not change
the generator matrix and therefore not the matroid G. The converse of this theorem
is also true: the Tutte polynomial is completely defined by the extended weight enu-
merator.

Theorem 7.28 Let C be a [n, k] code over Fq with generator matrix G. Then the
following holds for the extended weight enumerator and the Tutte polynomial:

tG(X, Y ) = Y n(Y − 1)−kWC(1, Y −1, (X − 1)(Y − 1)) .

Proof. The proof of this theorem goes analogous to the proof of the previous theorem.

Y n(Y − 1)−kWC(1, Y −1, (X − 1)(Y − 1))

= Y n(Y − 1)−k

n∑
t=0

∑
|J |=t

((X − 1)(Y − 1))l(J) (1− Y −1)tY −(n−t)

=
n∑

t=0

∑
|J |=t

(X − 1)l(J)(Y − 1)l(J)Y −t(Y − 1)tY −(n−k)Y n(Y − 1)−k

=
n∑

t=0

∑
|J |=t

(X − 1)l(J)(Y − 1)l(J)−(k−t)

= tG(X, Y ).

�
We see that the Tutte polynomial depends on two variables, while the extended weight
enumerator depends on three variables. This is no problem, because the weight enu-
merator is given in its homogeneous form here: we can view the extended weight
enumerator as a polynomial in two variables via WC(Z, T ) = WC(1, Z, T ).
Greene [16] already showed that the Tutte polynomial determines the weight enumer-
ator, but not the other way round. By using the extended weight enumerator, we get
a two-way equivalence and the proof reduces to rewriting.

We can also give expressions for the generalized weight enumerator in terms of the
Tutte polynomial, and the other way round. The first formula was found by Britz [8]
and independently by Jurrius [18].
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Theorem 7.29 For the generalized weight enumerator of a [n, k] code Cand the asso-
ciated Tutte polynomial we have that

W r
C(X, Y ) =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )(X − Y )kY n−k tG

(
X + (qj − 1)Y

X − Y
,
X

Y

)
;

and, conversely,

tG(X, Y ) = Y n(Y − 1)−k

k∑
r=0

(
r−1∏
j=0

((X − 1)(Y − 1)− qj)

)
W r

C(1, Y −1) .

Proof. For the first formula, use Theorems 5.25 and 7.27. Use Theorems 5.24 and
7.28 for the second formula. �

7.5 Exercises

7.1 Give a proof of the statements in Remark 7.2.

7.2 Let L be a finite geometric lattice. Show that (M(L), I(L)) is a matroid as stated
in Proposition 7.4. Show moreover that this matroid is simple.

7.3 Give a proof of the statements in Remark 7.7.

7.4 Give a proof of the statements in Remark 7.12.

7.5 Give a proof of Proposition 7.14.

7.6 Show that all matroids on at most 3 elements are graphic. Give an example of a
matroid that is not graphic.

8 Overview

We have established relations between the generalized weight enumerators for 0 ≤ r ≤
k, the extended weight enumerator and the Tutte polynomial. We summarize this in
the following diagram:

WC(X, Y )

WC(X, Y, T )

5.25
yy

7.28
��

mm

{W r
C(X, Y )}kr=0

5.24 44

7.29 //

\\

tG(X, Y )
7.29

oo

7.27

OO

{W r
C(X, Y, T )}kr=0

--

jj

��

dd

We see that the Tutte polynomial, the extended weight enumerator and the collection
of generalized weight enumerators all contain the same amount of information about
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a code, because they completely define each other. The original weight enumerator
WC(X, Y ) contains less information and therefore does not determine WC(X, Y, T ) or
{W r

C(X, Y )}kr=0. See Simonis [34].
One may wonder if the method of generalizing and extending the weight enumerator
can be continued, creating the generalized extended weight enumerator, in order to get
a stronger invariant. The answer is no: the generalized extended weight enumerator
can be defined, but does not contain more information then the three underlying poly-
nomials.
It was shown by Gray [9] that the matroid of a code is a stronger invariant than its
Tutte polynomial.

8.1 Exercises

8.1 Show that the extended weight enumerator WC(X, Y, T ) is not determined by the
characteristic polynomial χL(T ) of the code. Hint: Because χL(T ) = An(T ), it is not
difficult to find a counterexample of two codes that have the same An(T ), but not the
same extended weight distribution.

8.2 Investigate whether the Whitney polynomial and the extended weight enumerator
determine each other.

8.3 Is the Möbius function or Whitney polynomial of L as defined in Remark 6.37
described in terms of the Tutte polynomial of M(L)?

9 McWilliams type property for duality

For both codes and matroids we defined the dual structure. These objects obviousely
completely define there dual. But how about the various polynomials associated to a
code and a matroid? We know that for example the weight enumerator is a less strong
invariant for a code then the code itself: this means there are non-equivalent codes with
the same weight enumerator. So it is a priori not clear that the weight enumerator of a
code completely defines the weight enumerator of its dual code. We already saw that
there is in fact such a relation, namely the MacWilliams identity in Theorem 3.9. We
will give a proof of this relation, and consider the similar question for the extended
weight enumerator and the extended coset leader weight enumerator, as well as for the
Tutte polynomial of a matroid.

9.1 Using the Tutte polynomial

In this section, we will prove the MacWilliams identities using the Tutte polynomial.
We do this because of the following very useful relation between the Tutte polynomial
of a matroid and its dual:

Theorem 9.1 Let tM(X, Y ) be the Tutte polynomial of a matroid M , and let M⊥ be
the dual matroid. Then tM(X, Y ) = tM⊥(Y,X).

Proof. In Proposition 7.17 we proved r⊥(J) = |J | − r(M) + r(M \ J). In particular,
we have r⊥(M) + r(M) = |M |. Substituting the last relation into the definition of the
Tutte polynomial for the dual code, gives

tM⊥(X, Y ) =
∑

J⊆M⊥

(X − 1)r⊥(M⊥)−r⊥(J)(Y − 1)|J |−r⊥(J)

53



=
∑
J⊆M

(X − 1)r⊥(M⊥)−|J |−r(M\J)+r(M)(Y − 1)r(M)−r(M\J)

=
∑
J⊆M

(X − 1)|M\J |−r(M\J)(Y − 1)r(M)−r(M\J)

= tM(Y,X)

In the last step, we use that the summation over all J ⊆M is the same as a summation
over all M \ J ⊆M . This proves the theorem. �
If we consider a code as a matroid, then the dual matroid is the dual code. Therefore
we can use the above theorem to prove the MacWilliams relations. Greene [16] was
the first to use this idea, see also Brylawsky and Oxley [11].

Theorem 9.2 (MacWilliams) Let C be a code and let C⊥ be its dual. Then the
extended weight enumerator of C completely determines the extended weight enumerator
of C⊥ and vice versa, via the following formula:

WC⊥(X, Y, T ) = T−kWC(X + (T − 1)Y,X − Y, T ).

Proof. Let G be te matroid associated to the code. Using the previous theorem and
the relation between the weight enumerator and the Tutte polynomial, we find

T−kWC(X + (T − 1)Y,X − Y, T )

= T−k(TY )k(X − Y )n−k tG

(
X

Y
,
X + (T − 1)Y

X − Y

)
= Y k(X − Y )n−k tG⊥

(
X + (T − 1)Y

X − Y
,
X

Y

)
= WC⊥(X, Y, T ).

Notice in the last step that dimC⊥ = n− k, and n− (n− k) = k. �

9.2 Generalized MacWilliams identities

We can use the relations in Theorems 5.24 and 5.25 to prove the MacWilliams identities
for the generalized weight enumerator.

Theorem 9.3 Let C be a code and let C⊥ be its dual. Then the generalized weight
enumerators of C completely determine the generalized weight enumerators of C⊥ and
vice versa, via the following formula:

W r
C⊥(X, Y ) =

r∑
j=0

j∑
l=0

(−1)r−j q
(r−j

2 )−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q
W l

C(X + (qj − 1)Y,X − Y ).

Proof. We write the generalized weight enumerator in terms of the extended weight
enumerator, use the MacWilliams identities for the extended weight enumerator, and
convert back to the generalized weight enumerator.

W r
C⊥ =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 ) WC⊥(X, Y, qi)

54



=
r∑

j=0

(−1)r−j q
(r−j

2 )−j(r−j)

〈j〉q〈r − j〉q
q−jkWc(X + (qj − 1)Y,X − Y, qj)

=
r∑

j=0

(−1)r−j q
(r−j

2 )−j(r−j)−jk

〈j〉q〈r − j〉q

×
j∑

l=0

〈j〉q
ql(j−l)〈j − l〉q

W l
C(X + (qj − 1, X − Y )

=
r∑

j=0

j∑
l=0

(−1)r−j q
(r−j

2 )−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q

×W l
C(X + (qj − 1, X − Y ).

�
This theorem was proved by Kløve in [23], although the proof uses only half of the rela-
tions between the generalized weight enumerator and the extended weight enumerator.
Using both makes the proof much shorter.
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Seminaire N. Bourbaki, 561:1–22, 1981.

[13] H. Crapo and G.-C. Rota. On the foundations of combinatorial theory: Combina-
torial geometries. MIT Press, Cambridge MA, 1970.

[14] Iwan M. Duursma. Combinatorics of the two-variable zeta function. In Gary L.
Mullen, Alain Poli, and Henning Stichtenoth, editors, International Conference
on Finite Fields and Applications, volume 2948 of Lecture Notes in Computer
Science, pages 109–136. Springer, 2003.

[15] G.D. Forney. Dimension/length profiles and trellis complexity of linear block
codes. IEEE Trans. Inform. Theory, 40:1741–1752, 1994.

[16] C. Greene. Weight enumeration and the geometry of linear codes. Studies in
Applied Mathematics, 55:119–128, 1976.

[17] T. Helleseth, T. Kløve, and J. Mykkeltveit. The weight distribution of irreducible
cyclic codes with block lengths n1((ql− 1)/n). Discrete Mathematics, 18:179–211,
1977.

[18] R.P.M.J. Jurrius. Classifying polynomials of linear codes. Master’s thesis, Leiden
University, 2008.

[19] R.P.M.J. Jurrius and R. Pellikaan. Extended and generalized weight enumera-
tors. In T. Helleset and Ø Ytrehus, editors, Proc. Int. Workshop on Coding and
Cryptography WCC-2009, pages ...–... Selmer Center, Bergen, 2009.

[20] R.P.M.J. Jurrius and R. Pellikaan. The extended coset leader weight enumerator.
In F. Willems and T. Tjalkens, editors, Proc. 30th Symposium 2009 on Information
Theory in the Benelux, pages 217–224. WIC, Eindhoven, 2009.

[21] G.L. Katsman and M.A. Tsfasman. Spectra of algebraic-geometric codes. Prob-
lemy Peredachi Informatsii, 23:19–34, 1987.

[22] T. Kløve. The weight distribution of linear codes over GF(ql) having generator
matrix over GF(q). Discrete Mathematics, 23:159–168, 1978.

[23] T. Kløve. Support weight distribution of linear codes. Discrete Matematics,
106/107:311–316, 1992.

[24] T. Kløve. Codes for error detection. Series on Coding Theory and Cryptology vol.
2. World Scientific Publishing Co. Pte. Ltd., Hackensack, 2007.

[25] David MacKay. Information theory, inference and learning algorithms. Cambridge
University Press, Cambridge, 2003.

[26] F.J. MacWilliams and N.J.A. Sloane. The theory of error-correcting Codes. North-
Holland Mathematical Library, Amsterdam, 1977.

[27] M. Munuera. Steganography and error-correcting codes. Signal Processing,
87:1528–1533, 2007.

[28] P. Orlik and H. Terao. Arrangements of hyperplanes, volume 300. Springer-Verlag,
Berlin, 1992.

[29] J.G. Oxley. Matroid theory. Oxford University Press, Oxford, 1992.

56



[30] L.H. Ozarev and A.D. Wyner. Wire-tap channel II. AT&T Bell labs Techn. J.,
63:2135–2157, 1984.

[31] R. Pellikaan, X.-W. Wu, and S. Bulygin. Codes and cryptography on algebraic
curves. Book in preparation for Cambridge University Press.

[32] T. Richardson and R. Urbanke. Modern coding theory. Cambridge University
Press, Cambridge, 2008.

[33] G.-C. Rota. On the foundations of combinatorial theory I: Theory of möbius
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A Codes of dimension 3 and length at most 6

In this Appendix a table is given of the weight enumerator and characteristic poly-
nomials χi of all codes C of dimension 3 and length at most 6 with the methods of
Section 6.4. In this classification of the codes are denoted by n.d, where n denotes the
length and d the minimum distance.
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no. G constraints µi 6= 0

3.1

 1 0 0
0 1 0
0 0 1

 µ1 = 3T − 3
µ2 = 3

4.1a

 1 0 0 1
0 1 0 0
0 0 1 0

 µ1 = 2T − 2
µ2 = T + 1
µ3 = 2

4.1b

 1 0 0 1
0 1 0 1
0 0 1 0

 µ2 = 3
µ3 = 1

4.2

 1 0 0 1
0 1 0 1
0 0 1 1

 µ2 = 6

5.1a

 1 0 0 1 1
0 1 0 0 0
0 0 1 0 0

 µ1 = 2T − 2
µ2 = 1
µ3 = T − 1
µ4 = 2

5.1b

 1 0 0 1 0
0 1 0 0 1
0 0 1 0 0

 µ1 = T − 1
µ2 = 2T − 2
µ3 = 2
µ4 = 1

5.1c

 1 0 0 1 1
0 1 0 0 1
0 0 1 0 0

 µ1 = 3T − 4
µ2 = T + 1
µ3 = 1
µ4 = 1

5.2a

 1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

 µ1 = 3T − 3
µ2 = T − 2
µ3 = 4

5.2b

 1 0 0 1 1
0 1 0 0 1
0 0 1 0 1

 µ1 = 3T − 6
µ2 = T + 1
µ3 = 3

5.2c

 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 µ1 = 5T − 9
µ2 = 4
µ3 = 3

5.2d

 1 0 0 1 1
0 1 0 1 a
0 0 1 0 1

 a ∈ Fq \ {0, 1}, ...

µ1 = 5T − 12
µ2 = 7
µ3 = 1

5.3

 1 0 0 1 1
0 1 0 1 a
0 0 1 1 b

 a, b ∈ Fq \ {0, 1}, ...
µ1 = 5T − 15
µ2 = 10

59



no. G constraints µi 6= 0

6.1

 1 0 0 0 0 0
0 1 0 1 1 1
0 0 1 1 a b

 a, b ∈ Fq \ {0, 1}, a 6= b
µ2 = 5
µ5 = 1

6.2a

 1 0 0 0 1 0
0 1 0 1 1 1
0 0 1 1 0 a

 a ∈ Fq \ {0, 1}, ...

µ2 = 6
µ3 = 1
µ4 = 1

6.2b

 1 0 0 1 0 0
0 1 0 1 1 1
0 0 1 1 a b

 a, b ∈ Fq \ {0, 1}, a 6= b
µ2 = 9
µ4 = 1

6.3a

 1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 1 1 0

 µ2 = 3
µ3 = 4

6.3b

 1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 1 1 a

 a ∈ Fq \ {0, 1}, ....
µ2 = 6
µ3 = 3

6.3c

 1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 1 a b

 a, b ∈ Fq \ {0, 1}, a 6= b, ...
µ2 = 9
µ3 = 2

6.3d

 1 0 0 1 0 1
0 1 0 1 1 b
0 0 1 1 a c

 a, b, c ∈ Fq \ {0, 1}, ...
µ2 = 12
µ3 = 1

6.4

 1 0 0 1 1 1
0 1 0 1 a b
0 0 1 1 c d

 a, b, c, d ∈ Fq \ {0, 1}, ...
µ2 = 15
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no. i 1 2 3 4 5

3.1 µi 3T − 3 3
Āi 3 3T − 3 T 2 − 2T + 1
χ̄3−i 3 3T − 3 T 2 − 2T + 1

4.1a µi 2T − 2 T 2
Āi 2 T 2T − 2 T 2 − 2T + 1
χ̄3−i 3 3T − 3 T 2 − 2T + 1

4.1b µi 3 1 0
Āi 1 3 4T − 5 T 2 − 3T + 2
χ̄3−i 4 4T − 5 T 2 − 3T + 2

4.2 µi 0 6 0
Āi 0 6 4T − 8 T 2 − 3T + 3
χ̄3−i 6 4T − 8 T 2 − 3T + 3

5.1a µi 2T − 2 1 T − 1 2
Āi 2 T − 1 1 2T − 2 T 2 − 2T + 1
χ̄3−i 3 3T − 3 T 2 − 2T + 1

5.1b µi T − 1 2T − 2 2 1
Āi 1 2 2T − 2 T − 1 T 2 − 2T + 1
χ̄3−i 3 3T − 3 T 2 − 2T + 1

5.1c µi 3T − 4 T + 1 1 1
Āi 1 1 T + 1 3T − 4 T 2 − 3T + 2
χ̄3−i 4 4T − 5 T 2 − 3T + 2

5.2a µi 3T − 3 T − 2 4 0
Āi 0 4 T − 2 3T − 3 T 2 − 3T + 2
χ̄3−i 4 4T − 5 T 2 − 3T + 2

5.2b µi 3T − 6 T + 1 3 0
Āi 0 3 T + 1 3T − 6 T 2 − 3T + 3
χ̄3−i 6 4T − 8 T 2 − 3T + 3

5.2c µi 5T − 9 4 2 0
Āi 0 2 4 5T − 9 T 2 − 4T + 4
χ̄3−i 6 5T − 9 T 2 − 4T + 4

5.2d µi 5T − 12 7 1 0
Āi 0 1 7 5T − 12 T 2 − 4T + 5
χ̄3−i 8 5T − 12 T 2 − 4T + 5

5.3 µi 5T − 15 10 0 0
Āi 0 0 10 5T − 15 T 2 − 4T + 6
χ̄3−i 10 5T − 15 T 2 − 4T + 6

61



no. i 1 2 3 4 5 6

6.1 µi 5 0 0 1
Āi 1 0 0 5 6T − 9 T 2 − 5T + 4
χ̄3−i 6 6T − 9 T 2 − 5T + 4

6.2a µi 6 1 1 0 0
Āi 0 1 1 6 6T − 13 T 2 − 5T + 6
χ̄3−i 8 6T − 13 T 2 − 5T + 6

6.2b µi 9 0 1 0 0
Āi 0 1 0 9 6T − 16 T 2 − 5T + 7
χ̄3−i 10 6T − 16 T 2 − 5T + 7

6.3a µi 3 4 0 0 0
Āi 0 0 4 3 6T − 12 T 2 − 5T + 6
χ̄3−i 7 6T − 12 T 2 − 5T + 6

6.3b µi 6 3 0 0 0
Āi 0 0 3 6 6T − 15 T 2 − 5T + 7
χ̄3−i 9 6T − 15 T 2 − 5T + 7

6.3c µi 9 2 0 0 0
Āi 0 0 2 9 6T − 18 T 2 − 5T + 8
χ̄3−i 11 6T − 18 T 2 − 5T + 8

6.3d µi 12 1 0 0 0
Āi 0 0 1 12 6T − 21 T 2 − 5T + 9
χ̄3−i 11 6T − 21 T 2 − 5T + 9

6.4 µi 15 0 0 0 0
Āi 0 0 0 15 6T − 24 T 2 − 5T + 10
χ̄3−i 15 6T − 24 T 2 − 5T + 10

62


