Normalization

Gerhard Pfister
pfister@mathematik.uni-kl.de
Departement of Mathematics
University of Kaiserslautern

How to compute the normalization?

- Let A be a reduced ring, the normalization \bar{A} is the integral closure of A in the total ring of fractions $Q(A)$.

How to compute the normalization?

- Let A be a reduced ring, the normalization \bar{A} is the integral closure of A in the total ring of fractions $Q(A)$.
- Let A be a reduced Noetherian ring and $J \subset A$ an ideal containing a non-zerodivisor x of A. Then there are natural inclusions of rings

$$
A \subset \operatorname{Hom}_{A}(J, J) \cong \frac{1}{x} \cdot(x J: J) \subset \bar{A}
$$

- For $a \in A$, let $m_{a}: J \rightarrow J$ denote the multiplication with a. If $m_{a}=0$, then $m_{a}(x)=a x=0$ and, hence, $a=0$, since x is a non-zerodivisor. Thus, $a \mapsto m_{a}$ defines an inclusion $A \subset \operatorname{Hom}_{A}(J, J)$.
- For $a \in A$, let $m_{a}: J \rightarrow J$ denote the multiplication with a. If $m_{a}=0$, then $m_{a}(x)=a x=0$ and, hence, $a=0$, since x is a non-zerodivisor. Thus, $a \mapsto m_{a}$ defines an inclusion $A \subset \operatorname{Hom}_{A}(J, J)$.
- It is easy to see that for $\varphi \in \operatorname{Hom}_{A}(J, J)$ the element $\varphi(x) / x \in Q(A)$ is independent of x : for any $a \in J$ we have $\varphi(a)=(1 / x) \cdot \varphi(x a)=a \cdot \varphi(x) / x$, since φ is A-linear.
- For $a \in A$, let $m_{a}: J \rightarrow J$ denote the multiplication with a. If $m_{a}=0$, then $m_{a}(x)=a x=0$ and, hence, $a=0$, since x is a non-zerodivisor. Thus, $a \mapsto m_{a}$ defines an inclusion $A \subset \operatorname{Hom}_{A}(J, J)$.
- It is easy to see that for $\varphi \in \operatorname{Hom}_{A}(J, J)$ the element $\varphi(x) / x \in Q(A)$ is independent of x : for any $a \in J$ we have $\varphi(a)=(1 / x) \cdot \varphi(x a)=a \cdot \varphi(x) / x$, since φ is A-linear.
- Hence, $\varphi \mapsto \varphi(x) / x$ defines an inclusion $\operatorname{Hom}_{A}(J, J) \subset Q(A)$ mapping $x \cdot \operatorname{Hom}_{A}(J, J)$ into $x J: J=\{b \in A \mid b J \subset x J\}$. The latter map is also surjective, since any $b \in x J: J$ defines, via multiplication with b / x, an element $\varphi \in \operatorname{Hom}_{A}(J, J)$ with $\varphi(x)=b$. Since x is a non-zerodivisor, we obtain the isomorphism $\operatorname{Hom}_{A}(J, J) \cong(1 / x) \cdot(x J: J)$.
- For $a \in A$, let $m_{a}: J \rightarrow J$ denote the multiplication with a. If $m_{a}=0$, then $m_{a}(x)=a x=0$ and, hence, $a=0$, since x is a non-zerodivisor. Thus, $a \mapsto m_{a}$ defines an inclusion $A \subset \operatorname{Hom}_{A}(J, J)$.
- It is easy to see that for $\varphi \in \operatorname{Hom}_{A}(J, J)$ the element $\varphi(x) / x \in Q(A)$ is independent of x : for any $a \in J$ we have $\varphi(a)=(1 / x) \cdot \varphi(x a)=a \cdot \varphi(x) / x$, since φ is A-linear.
- Hence, $\varphi \mapsto \varphi(x) / x$ defines an inclusion $\operatorname{Hom}_{A}(J, J) \subset Q(A)$ mapping $x \cdot \operatorname{Hom}_{A}(J, J)$ into $x J: J=\{b \in A \mid b J \subset x J\}$. The latter map is also surjective, since any $b \in x J: J$ defines, via multiplication with b / x, an element $\varphi \in \operatorname{Hom}_{A}(J, J)$ with $\varphi(x)=b$. Since x is a non-zerodivisor, we obtain the isomorphism $\operatorname{Hom}_{A}(J, J) \cong(1 / x) \cdot(x J: J)$.
- It follows that any $b \in x J: J$ satisfies an integral relation $b^{p}+a_{1} b^{p-1}+\cdots+a_{0}=0$ with $a_{i} \in\left\langle x^{i}\right\rangle$. Hence, b / x is integral over A, showing $(1 / x) \cdot(x J: J) \subset \bar{A}$.

non-normal locus

- The non-normal locus of A is defined as

$$
N(A)=\left\{P \in \operatorname{Spec} A \mid A_{P} \text { is not normal }\right\} .
$$

Let $C=A n n_{A}(\bar{A} / A)=\{a \in A \mid a \bar{A} \subset A\}$ be the conductor of A in \bar{A}. Then

$$
N(A)=V(C)=\{P \in \operatorname{Spec} A \mid P \supset C\} .
$$

non-normal locus

- The non-normal locus of A is defined as

$$
N(A)=\left\{P \in \operatorname{Spec} A \mid A_{P} \text { is not normal }\right\} .
$$

Let $C=A n n_{A}(\bar{A} / A)=\{a \in A \mid a \bar{A} \subset A\}$ be the conductor of A in \bar{A}. Then

$$
N(A)=V(C)=\{P \in \operatorname{Spec} A \mid P \supset C\} .
$$

- In particular, $N(A)$ is closed in SpecA.

Lemma:Let $J \subset A$ be an ideal containing a non-zerodivisor of A.

- There are natural inclusions of A-modules

$$
\operatorname{Hom}_{A}(J, J) \subset \operatorname{Hom}_{A}(J, A) \cap \bar{A} \subset \operatorname{Hom}_{A}(J, \sqrt{J}) .
$$

Lemma:Let $J \subset A$ be an ideal containing a non-zerodivisor of A.

- There are natural inclusions of A-modules

$$
\operatorname{Hom}_{A}(J, J) \subset \operatorname{Hom}_{A}(J, A) \cap \bar{A} \subset \operatorname{Hom}_{A}(J, \sqrt{J}) .
$$

- If $N(A) \subset V(J)$ then $J^{d} \bar{A} \subset A$ for some d.

$\operatorname{Hom}_{A}(J, J) \subset \operatorname{Hom}_{A}(J, A) \cap \bar{A}:$

? The embedding of $\operatorname{Hom}_{A}(J, A)$ in $Q(A)$ is given by $\varphi \mapsto \varphi(x) / x$, where x is a non-zerodivisor of J. With this identification we obtain

$$
\operatorname{Hom}_{A}(J, A)=A:_{Q(A)} J=\{h \in Q(A) \mid h J \subset A\}
$$

and $\operatorname{Hom}_{A}(J, J)$, respectively $\operatorname{Hom}_{A}(J, \sqrt{J})$, is identified with those $h \in Q(A)$ such that $h J \subset J$, respectively $h J \subset \sqrt{J}$.

$\operatorname{Hom}_{A}(J, J) \subset \operatorname{Hom}_{A}(J, A) \cap \bar{A}:$

- The embedding of $\operatorname{Hom}_{A}(J, A)$ in $Q(A)$ is given by $\varphi \mapsto \varphi(x) / x$, where x is a non-zerodivisor of J. With this identification we obtain

$$
\operatorname{Hom}_{A}(J, A)=A:_{Q(A)} J=\{h \in Q(A) \mid h J \subset A\}
$$

and $H o m_{A}(J, J)$, respectively $\operatorname{Hom}_{A}(J, \sqrt{J})$, is identified with those $h \in Q(A)$ such that $h J \subset J$, respectively $h J \subset \sqrt{J}$.
$\operatorname{Hom}_{A}(J, A) \cap \bar{A} \subset \operatorname{Hom}_{A}(J, \sqrt{J}):$

- For the second inclusion let $h \in \bar{A}$ satisfy $h J \subset A$. Consider an integral relation $h^{n}+a_{1} h^{n-1}+\cdots+a_{n}=0$ with $a_{i} \in A$. Let $g \in J$ and multiply the above equation with g^{n}. Then

$$
(h g)^{n}+g a_{1}(h g)^{n-1}+\cdots+g^{n} a_{n}=0 .
$$

Since $g \in J, h g \in A$ and, therefore, $(h g)^{n} \in J$ and $h g \in \sqrt{J}$.

Proof:

If $N(A) \subset V(J)$ then $J^{d} \bar{A} \subset A$ for some d.

If $N(A) \subset V(J)$ then $J^{d} \bar{A} \subset A$ for some d.
$C=A n n_{A}(\bar{A} / A)=\{a \in A \mid a \bar{A} \subset A\}$

- By assumption, we have $V(C) \subset V(J)$ and, hence, $J \subset \sqrt{C}$, that is, $J^{d} \subset C$ for some d which implies the claim.

Criterion for Normality

Let A be a Noetherian reduced ring and $J \subset A$ an ideal satisfying

- J contains a non-zerodivisor of A,
- J is a radical ideal,
- $N(A) \subset V(J)$.

Criterion for Normality

Let A be a Noetherian reduced ring and $J \subset A$ an ideal satisfying

- J contains a non-zerodivisor of A,
- J is a radical ideal,
- $N(A) \subset V(J)$.
- Then A is normal if and only if $A=\operatorname{Hom}_{A}(J, J)$.

Criterion for Normality

Let A be a Noetherian reduced ring and $J \subset A$ an ideal satisfying

- J contains a non-zerodivisor of A,
- J is a radical ideal,
- $N(A) \subset V(J)$.
- Then A is normal if and only if $A=\operatorname{Hom}_{A}(J, J)$.
- Note that the non-normal locus $N(A)$ is contained in the singular locus. In the applications J is an ideal describing the singular locus.
- If $A=\bar{A}$ then $\operatorname{Hom}_{A}(J, J)=A$. To see the converse, we choose $d \geq 0$ minimal such that $J^{d} \bar{A} \subset A$. If $d>0$ then there exists some $a \in J^{d-1}$ and $h \in \bar{A}$ such that $a h \notin A$.
- If $A=\bar{A}$ then $\operatorname{Hom}_{A}(J, J)=A$. To see the converse, we choose $d \geq 0$ minimal such that $J^{d} \bar{A} \subset A$. If $d>0$ then there exists some $a \in J^{d-1}$ and $h \in \bar{A}$ such that $a h \notin A$.
- But $a h \in \bar{A}$ and $a h \cdot J \subset h J^{d} \subset A$, that is, $a h \in \operatorname{Hom}_{A}(J, A) \cap \bar{A}$, which is equal to $\operatorname{Hom}_{A}(J, J)$, since $J=\sqrt{J}$.
- If $A=\bar{A}$ then $\operatorname{Hom}_{A}(J, J)=A$. To see the converse, we choose $d \geq 0$ minimal such that $J^{d} \bar{A} \subset A$. If $d>0$ then there exists some $a \in J^{d-1}$ and $h \in \bar{A}$ such that $a h \notin A$.
- But $a h \in \bar{A}$ and $a h \cdot J \subset h J^{d} \subset A$, that is, $a h \in \operatorname{Hom}_{A}(J, A) \cap \bar{A}$, which is equal to $\operatorname{Hom}_{A}(J, J)$, since $J=\sqrt{J}$.
- By assumption $\operatorname{Hom}_{A}(J, J)=A$ and, hence, $a h \in A$, which is a contradiction. We conclude that $d=0$ and $A=\bar{A}$.

Let A be a reduced Noetherian ring, let $J \subset A$ be an ideal and $x \in J$ a non-zerodivisor. Then

- $A=\operatorname{Hom}_{A}(J, J)$ if and only if $x J: J=\langle x\rangle$.

Let A be a reduced Noetherian ring, let $J \subset A$ be an ideal and $x \in J$ a non-zerodivisor. Then

- $A=\operatorname{Hom}_{A}(J, J)$ if and only if $x J: J=\langle x\rangle$.
- Moreover, let $\left\{u_{0}=x, u_{1}, \ldots, u_{s}\right\}$ be a system of generators for the A-module $x J: J$. Then we can write
- $u_{i} \cdot u_{j}=\sum_{k=0}^{s} x \xi_{k}^{i j} u_{k}$ with suitable $\xi_{k}^{i j} \in A, 1 \leq i \leq j \leq s$.

Let A be a reduced Noetherian ring, let $J \subset A$ be an ideal and $x \in J$ a non-zerodivisor. Then

- $A=\operatorname{Hom}_{A}(J, J)$ if and only if $x J: J=\langle x\rangle$.
- Moreover, let $\left\{u_{0}=x, u_{1}, \ldots, u_{s}\right\}$ be a system of generators for the A-module $x J: J$. Then we can write
- $u_{i} \cdot u_{j}=\sum_{k=0}^{s} x \xi_{k}^{i j} u_{k}$ with suitable $\xi_{k}^{i j} \in A, 1 \leq i \leq j \leq s$.
- Let $\left(\eta_{0}^{(k)}, \ldots, \eta_{s}^{(k)}\right) \in A^{s+1}, k=1, \ldots, m$, generate $\operatorname{syz}\left(u_{0}, \ldots, u_{s}\right)$, and let $I \subset A\left[t_{1}, \ldots, t_{s}\right]$ be the ideal $\left(t_{0}:=1\right)$

$$
I:=\left\langle\left\{t_{i} t_{j}-\sum_{k=0}^{s} \xi_{k}^{i j} t_{k} \mid 1 \leq i \leq j \leq s\right\},\left\{\sum_{\nu=0}^{s} \eta_{\nu}^{(k)} t_{\nu} \mid 1 \leq k \leq m\right\}\right\rangle,
$$

- $t_{i} \mapsto u_{i} / x, i=1, \ldots, s$, defines an isomorphism

$$
A\left[t_{1}, \ldots, t_{s}\right] / I \xrightarrow{\cong} \operatorname{Hom}_{A}(J, J) \cong \frac{1}{x} \cdot(x J: J) .
$$

Example

- Let $A:=K[x, y] /\left\langle x^{2}-y^{3}\right\rangle$ and $J:=\langle x, y\rangle \subset A$.
- Then $x \in J$ is a non-zerodivisor in A with $x J: J=x\langle x, y\rangle:\langle x, y\rangle=\left\langle x, y^{2}\right\rangle$, therefore,
- $\operatorname{Hom}_{A}(J, J)=\left\langle 1, y^{2} / x\right\rangle$.
- Setting $u_{0}:=x, u_{1}:=y^{2}$, we obtain $u_{1}^{2}=y^{4}=x^{2} y$, that is, $\xi_{0}^{11}=y$. Hence, we obtain an isomorphism

Example

- Let $A:=K[x, y] /\left\langle x^{2}-y^{3}\right\rangle$ and $J:=\langle x, y\rangle \subset A$.
- Then $x \in J$ is a non-zerodivisor in A with $x J: J=x\langle x, y\rangle:\langle x, y\rangle=\left\langle x, y^{2}\right\rangle$, therefore,
- $\operatorname{Hom}_{A}(J, J)=\left\langle 1, y^{2} / x\right\rangle$.
- Setting $u_{0}:=x, u_{1}:=y^{2}$, we obtain $u_{1}^{2}=y^{4}=x^{2} y$, that is, $\xi_{0}^{11}=y$. Hence, we obtain an isomorphism

$$
A[t] /\left\langle t^{2}-y, x t-y^{2}, y t-x\right\rangle \xrightarrow{\cong} \operatorname{Hom}_{A}(J, J) .
$$

of A-algebras. Note that $A[t] /\left\langle t^{2}-y, x t-y^{2}, y t-x\right\rangle \simeq K[t]$.

- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x]$ a prime ideal, $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: A polynomial ring $K[t], t=\left(t_{1}, \ldots, t_{N}\right)$, a prime ideal $P \subset K[t]$ and $\pi: K[x] \rightarrow K[t]$ such that the induced map $\pi: K[x] / I \rightarrow K[t] / P$ is the normalization of $K[x] / I$.
- if $I=\langle 0\rangle$ then return $\left(K[x],\langle 0\rangle, i d_{K[x]}\right)$;
- compute $r:=\operatorname{dim}(I)$;
- if we know that the singular locus of I is $V\left(x_{1}, \ldots, x_{n}\right)$

$$
J:=\left\langle x_{1}, \ldots, x_{n}\right\rangle ;
$$

else
compute $J:=$ the ideal of the $(n-r)$-minors of the Jacobian matrix I;

- $J:=\operatorname{radical}(I+J)$;
- choose $a \in J \backslash\{0\}$;
- if $a J: J=\langle a\rangle$ return $\left(K[x], I, i d_{K[x]}\right)$;
- compute a generating system $u_{0}=a, u_{1}, \ldots, u_{s}$ for $a J: J$;
- compute a generating system $\left\{\left(\eta_{0}^{(1)}, \ldots, \eta_{s}^{(1)}\right), \ldots,\left(\eta_{0}^{(m)}, \ldots, \eta_{s}^{(m)}\right)\right\}$ for the module of syzygies $\operatorname{syz}\left(u_{0}, \ldots, u_{s}\right) \subset(K[x] / I)^{s+1}$;
- compute $\xi_{k}^{i j}$ such that $u_{i} \cdot u_{j}=\sum_{k=0}^{s} a \cdot \xi_{k}^{i j} u_{k}, i, j=1, \ldots s$;
- change ring to $K\left[x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{s}\right]$, and set (with $t_{0}:=1$) $I_{1}:=\left\langle\left\{t_{i} t_{j}-\sum_{k=0}^{s} \xi_{k}^{i j} t_{k}\right\}_{0 \leq i \leq j \leq s},\left\{\sum_{\nu=0}^{s} \eta_{\nu}^{(k)} t_{\nu}\right\}_{1 \leq k \leq m}\right\rangle+I K[x, t] ;$
- return NORMALIZATION $\left(I_{1}\right)$.

non-normal locus

The ideal $A n n_{A}\left(\operatorname{Hom}_{A}(J, J) / A\right) \subset A$ defines the non-normal locus. Moreover,

$$
A n n_{A}\left(\operatorname{Hom}_{A}(J, J) / A\right)=\langle x\rangle:(x J: J)
$$

for any non-zerodivisor $x \in J$.

non-normalLocus(I)

- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x]$ a prime ideal, $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: An ideal $N \subset K[x]$, defining the non-normal locus in $V(I)$.
- If $I=\langle 0\rangle$ then return $(K[x])$;
- compute $r=\operatorname{dim}(I)$;
- compute J the ideal of the $(n-r)$-minors of the Jacobian matrix of I;
- $J=$ radical $(I+J)$;
- choose $a \in J \backslash\{0\}$;
- return $(\langle a\rangle:(a J: J))$.

Computeralgebra and finite Groups

Problem: Characterize the class of finite solvable groups G by $2-$ variable identities.

Computeralgebra and finite Groups

Problem: Characterize the class of finite solvable groups G by 2-variable identities.

Example:

- G is abelian $\Leftrightarrow x y=y x \forall x, y \in G$
- (Zorn, 1930) A finite group G is nilpotent $\Leftrightarrow \exists n \geq 1$, such that $v_{n}(x, y)=1 \forall x, y \in G$ (Engel Identity)
$v_{1}:=[x, y]=x y x^{-1} y^{-1}$ (commutator)
$v_{n+1}:=\left[v_{n}, y\right]$

nilpotent groups

Let G be a finite group

$$
G^{(1)}:=[G, G]=\left\langle a b a^{-1} b^{-1} \mid a, b \in G\right\rangle
$$

Let $G^{(i)}:=\left[G^{(i-1)}, G\right]$, then G is called nilpotent, if $G^{(m)}=\{e\}$ for a suitable m.

nilpotent groups

Let G be a finite group

$$
G^{(1)}:=[G, G]=\left\langle a b a^{-1} b^{-1} \mid a, b \in G\right\rangle
$$

Let $G^{(i)}:=\left[G^{(i-1)}, G\right]$, then G is called nilpotent, if $G^{(m)}=\{e\}$ for a suitable m.

- abelian groups are nilpotent.
- if the order of the group is a power of a prime it is nilpotent.
- G ist nilpotent \Leftrightarrow it is the direct product of its Sylow groups.
- S_{3} is not nilpotent.

solvable groups

Let

$$
G^{(i)}:=\left[G^{(i-1)}, G^{(i-1)}\right]
$$

then G is called solvable, if $G^{(m)}=\{e\}$ for a suitable m.

solvable groups

Let

$$
G^{(i)}:=\left[G^{(i-1)}, G^{(i-1)}\right],
$$

then G is called solvable, if $G^{(m)}=\{e\}$ for a suitable m.

- nilpotente groups are solvable.
- S_{3}, S_{4} are solvable.
- groups of odd order are solvable.
- S_{5}, A_{5} are not solvable.

Main result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky,
G. Pfister, E. Plotkin)

$$
\begin{aligned}
U_{1} & =U_{1}(x, y):=x^{2} y^{-1} x \\
U_{n+1} & =U_{n+1}(x, y)=\left[x U_{n} x^{-1}, y U_{n} y^{-1}\right]
\end{aligned}
$$

A finite group G is solvable $\Leftrightarrow \exists n$, such that $U_{n}(x, y)=1 \forall x, y \in G$.

Main result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky,
G. Pfister, E. Plotkin)

$$
\begin{aligned}
U_{1} & =U_{1}(x, y):=x^{2} y^{-1} x \\
U_{n+1} & =U_{n+1}(x, y)=\left[x U_{n} x^{-1}, y U_{n} y^{-1}\right]
\end{aligned}
$$

A finite group G is solvable $\Leftrightarrow \exists n$, such that $U_{n}(x, y)=1 \forall x, y \in G$.

- $U_{1}(x, y)=1 \Leftrightarrow y=x^{-1}$
- $U_{1}(x, y)=U_{2}(x, y)$
$\Leftrightarrow x^{-1} y x^{-1} y^{-1} x^{2}=y x^{-2} y^{-1} x y^{-1}$
- Let $x, y \in G$ such that $y \neq x^{-1}$ and $U_{1}(x, y)=U_{2}(x, y) \Rightarrow U_{n}(x, y) \neq 1 \forall n \in \mathbb{N}$.

Proof

G solvable \Rightarrow Identity is true (by definition).

Proof

G solvable \Rightarrow Identity is true (by definition). Idea of \Leftarrow
Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

Proof

G solvable \Rightarrow Identity is true (by definition).
Idea of \Leftarrow
Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

- $\operatorname{PSL}\left(2, \mathbb{F}_{p}\right), p$ a prime number ≥ 5

Proof

G solvable \Rightarrow Identity is true (by definition).
Idea of \Leftarrow
Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

- $\operatorname{PSL}\left(2, \mathbb{F}_{p}\right), p$ a prime number ≥ 5
- $\operatorname{PSL}\left(2, \mathbb{F}_{2^{p}}\right), p$ a prime number
- $\operatorname{PSL}\left(2, \mathbb{F}_{3^{p}}\right), p$ a prime number

Proof

G solvable \Rightarrow Identity is true (by definition).
Idea of \Leftarrow
Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

- $\operatorname{PSL}\left(2, \mathbb{F}_{p}\right), p$ a prime number ≥ 5
- $\operatorname{PSL}\left(2, \mathbb{F}_{2^{p}}\right), p$ a prime number
- $\operatorname{PSL}\left(2, \mathbb{F}_{3^{p}}\right), p$ a prime number
- $\operatorname{PSL}\left(3, \mathbb{F}_{3}\right)$

Proof

G solvable \Rightarrow Identity is true (by definition).
Idea of \Leftarrow
Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

- $\operatorname{PSL}\left(2, \mathbb{F}_{p}\right), p$ a prime number ≥ 5
- $\operatorname{PSL}\left(2, \mathbb{F}_{2^{p}}\right), p$ a prime number
- $\operatorname{PSL}\left(2, \mathbb{F}_{3^{p}}\right), p$ a prime number
- $\operatorname{PSL}\left(3, \mathbb{F}_{3}\right)$
- $\mathbf{S z}\left(2^{p}\right) p$ a prime number.

Proof

G solvable \Rightarrow Identity is true (by definition).
Idea of \Leftarrow
Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

- $\operatorname{PSL}\left(2, \mathbb{F}_{p}\right), p$ a prime number ≥ 5
- $\operatorname{PSL}\left(2, \mathbb{F}_{2^{p}}\right), p$ a prime number
- $\operatorname{PSL}\left(2, \mathbb{F}_{3^{p}}\right), p$ a prime number
- $\operatorname{PSL}\left(3, \mathbb{F}_{3}\right)$
- $\mathbf{S z}\left(2^{p}\right) p$ a prime number.

If is enough to prove (for G in Thompson's list): $\exists x, y \in G$, such that
$y \neq x^{-1}$ and $U_{1}(x, y)=U_{2}(x, y)$.

Motivation of the choice of the word

Let w be a word in X, Y, X^{-1}, Y^{-1} and

$$
\begin{aligned}
U_{1} & =w \\
U_{n+1} & =\left[X U_{n} X^{-1}, Y U_{n} Y^{-1}\right] .
\end{aligned}
$$

Motivation of the choice of the word

Let w be a word in X, Y, X^{-1}, Y^{-1} and

$$
\begin{aligned}
U_{1} & =w \\
U_{n+1} & =\left[X U_{n} X^{-1}, Y U_{n} Y^{-1}\right] .
\end{aligned}
$$

A Computer-search through the 10,000 shortest words in X, X^{-1}, Y, Y^{-1} found the following four words such that the equation $U_{1}=U_{2}$ has a non-trivial solution in $\operatorname{PSL}(2, p)$ for all $p<1000$:

$$
\begin{aligned}
& w_{1}=X^{-2} Y^{-1} X \\
& w_{2}=X^{-1} Y X Y^{-1} X \\
& w_{3}=Y^{-2} X^{-1} \\
& w_{4}=X Y^{-2} X^{-1} Y X^{-1}
\end{aligned}
$$

$\operatorname{PSL}(2, K)=\operatorname{SL}(2, K) /\left\{\left.\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a^{2}=1\right\}$

$$
\operatorname{PSL}(2, K)=\operatorname{SL}(2, K) /\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right) \right\rvert\, a^{2}=1\right\}
$$

especially

$$
\begin{aligned}
\operatorname{PSL}\left(2, \mathbb{F}_{5}\right) & =\left\{\left[\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\right], a_{11} a_{22}-a_{21} a_{12}=1\right\} \\
{\left[\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\right] } & =\left\{\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right),\left(\begin{array}{ll}
4 a_{11} & 4 a_{12} \\
4 a_{21} & 4 a_{22}
\end{array}\right)\right\} .
\end{aligned}
$$

$$
\operatorname{PSL}(2, K)=\operatorname{SL}(2, K) /\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right) \right\rvert\, a^{2}=1\right\}
$$

especially

$$
\begin{aligned}
\operatorname{PSL}\left(2, \mathbb{F}_{5}\right) & =\left\{\left[\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\right], a_{11} a_{22}-a_{21} a_{12}=1\right\} \\
{\left[\left(\begin{array}{ll}
a_{11} a_{12} \\
a_{21} & a_{22}
\end{array}\right)\right] } & =\left\{\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right),\left(\begin{array}{cc}
4 a_{11} & 4 a_{12} \\
4 a_{21} & 4 a_{22}
\end{array}\right)\right\} .
\end{aligned}
$$

It holds:

$$
\operatorname{PSL}\left(2, \mathbb{F}_{5}\right) \cong \operatorname{PSL}\left(2, \mathbb{F}_{4}\right) \cong A_{5}
$$

Translation to algebraic Geometry

Let us consider $G=\operatorname{PSL}\left(\mathbf{2}, \mathbb{F}_{\boldsymbol{p}}\right), \mathbf{p} \geq \mathbf{5}$

Translation to algebraic Geometry

$$
\text { Let us consider } G=\operatorname{PSL}\left(2, \mathbb{F}_{\boldsymbol{p}}\right), \mathbf{p} \geq \mathbf{5}
$$

Consider the matrices

$$
x=\left(\begin{array}{rr}
t & 1 \\
-1 & 0
\end{array}\right) \quad y=\left(\begin{array}{cc}
1 & b \\
c & 1+b c
\end{array}\right)
$$

$x^{-1}=\left(\begin{array}{cc}0 & -1 \\ 1 & t\end{array}\right)$ implies $y \neq x^{-1}$ for all $(b, c, t) \in \mathbb{F}_{p}^{3}$.

Translation to algebraic Geometry

$$
\text { Let us consider } G=\operatorname{PSL}\left(\mathbf{2}, \mathbb{F}_{\boldsymbol{p}}\right), \mathbf{p} \geq \mathbf{5}
$$

Consider the matrices

$$
x=\left(\begin{array}{rr}
t & 1 \\
-1 & 0
\end{array}\right) \quad y=\left(\begin{array}{cc}
1 & b \\
c & 1+b c
\end{array}\right)
$$

$x^{-1}=\left(\begin{array}{cc}0 & -1 \\ 1 & t\end{array}\right)$ implies $y \neq x^{-1}$ for all $(b, c, t) \in \mathbb{F}_{p}^{3}$.
It is enough to prove that the equation

$$
\begin{gathered}
U_{1}(x, y)=U_{2}(x, y), \text { i.e. } \\
x^{-1} y x^{-1} y^{-1} x^{2}=y x^{-2} y^{-1} x y^{-1}
\end{gathered}
$$

has a solution $(b, c, t) \in \mathbb{F}_{p}^{3}$.

The entries of $U_{1}(x, y)-U_{2}(x, y)$ are the following polynomials in $\mathbb{Z}[b, c, t]$ Let $I=<p_{1}, \ldots, p_{4}>$ and $I^{(p)}$ the induced ideal over \mathbb{Z} / p :

$$
\begin{aligned}
p_{1}= & b^{3} c^{2} t^{2}+b^{2} c^{2} t^{3}-b^{2} c^{2} t^{2}-b c^{2} t^{3}-b^{3} c t+b^{2} c^{2} t+b^{2} c t^{2}+2 b c^{2} t^{2} \\
& +b c t^{3}+b^{2} c^{2}+b^{2} c t+b c^{2} t-b c t^{2}-c^{2} t^{2}-c t^{3}-b^{2} t+b c t+c^{2} t \\
& +c t^{2}+2 b c+c^{2}+b t+^{2} c t+c+1 \\
p_{2}= & -b^{3} c t^{2}-b^{2} c t^{3}+b^{2} c^{2} t+b c^{2} t^{2}+b^{3} t-b^{2} c t-2 b c t^{2}-b^{2} c+b c t \\
& +c^{2} t+c t^{2}-b t-c t-b-c-1 \\
p_{3}= & b^{3} c^{3} t^{2}+b^{2} c^{3} t^{3}-b^{2} c^{2} t^{3}-b c^{2} t^{4}-b^{3} c^{2} t+b^{2} c^{3} t+^{2} b^{2} c^{2} t^{2} \\
& +2 b c^{3} t^{2}+{ }^{2} b c^{2} t^{3}+b^{2} c^{2} t+{ }^{2} b^{2} c t^{2}+b c^{2} t^{2}-c^{2} t^{3}-c t^{4}-2 b^{2} c t \\
& +b c^{2} t+c^{3} t+b c t^{2}+2 c^{2} t^{2}+c t^{3}-b^{2} c-b^{2} t+b c t+c^{2} t+b t^{2} \\
& +3 c t^{2}+b c-b t-b-c+1 \\
p_{4}= & -b^{3} c^{2} t^{2}-b^{2} c^{2} t^{3}+b^{2} c^{2} t^{2}+b c^{2} t^{3}+b^{3} c t-b^{2} c^{2} t-b^{2} c t^{2}-2 b c^{2} t^{2} \\
& -b c t^{3}-2 b^{2} c t+c^{2} t^{2}+c t^{3}+b^{2} t-b c t-c^{2} t-c t^{2}+b^{2}-b t \\
& -2 c t-b-t+1
\end{aligned}
$$

Hasse-Weil-Theorem

Theorem von Hasse-Weil (generalized by Aubry and Perret for singulare curves):

Hasse-Weil-Theorem

Theorem von Hasse-Weil (generalized by Aubry and Perret for singulare curves):
Let $C \subseteq \mathbb{A}^{n}$ be an absolutely irreducible affine curve defined over the finite field \mathbb{F}_{q} and $\bar{C} \subset \mathbb{P}^{n}$ its projective closure \Rightarrow

$$
\# C\left(\mathbb{F}_{q}\right) \geq q+1-2 p_{a} \sqrt{q}-d
$$

($d=$ degree, $p_{a}=$ arithmetic genus of \bar{C}).

Hasse-Weil-Theorem

Theorem von Hasse-Weil (generalized by Aubry and Perret for singulare curves):
Let $C \subseteq \mathbb{A}^{n}$ be an absolutely irreducible affine curve defined over the finite field \mathbb{F}_{q} and $\bar{C} \subset \mathbb{P}^{n}$ its projective closure \Rightarrow

$$
\# C\left(\mathbb{F}_{q}\right) \geq q+1-2 p_{a} \sqrt{q}-d
$$

($d=$ degree, $p_{a}=$ arithmetic genus of \bar{C}).
The Hilbert-polynomial of $\bar{C}, H(t)=d \cdot t-p_{a}+1$, can be computed using the ideal I_{h} of \bar{C} :
We obtain $H(t)=10 t-11 \Rightarrow d=10, p_{a}=12$.

Hasse-Weil-Theorem

Theorem von Hasse-Weil (generalized by Aubry and Perret for singulare curves):
Let $C \subseteq \mathbb{A}^{n}$ be an absolutely irreducible affine curve defined over the finite field \mathbb{F}_{q} and $\bar{C} \subset \mathbb{P}^{n}$ its projective closure \Rightarrow

$$
\# C\left(\mathbb{F}_{q}\right) \geq q+1-2 p_{a} \sqrt{q}-d
$$

($d=$ degree, $p_{a}=$ arithmetic genus of \bar{C}).
The Hilbert-polynomial of $\bar{C}, H(t)=d \cdot t-p_{a}+1$, can be computed using the ideal I_{h} of \bar{C} :
We obtain $H(t)=10 t-11 \Rightarrow d=10, p_{a}=12$. Since $p+1-24 \sqrt{p}-10>0$ if $p>593$, we obtain the result.

absolute irreduciblity

Proposition: $V\left(I^{(p)}\right)$ is absolutely irreducibel for all primes $p \geq 5$.

absolute irreduciblity

Proposition: $V\left(I^{(p)}\right)$ is absolutely irreducibel for all primes $p \geq 5$. proof:

Using SINGULAR we show:

$$
\left\langle f_{1}, f_{2}\right\rangle: h^{2}=I
$$

absolute irreduciblity

Proposition: $V\left(I^{(p)}\right)$ is absolutely irreducibel for all primes $p \geq 5$. proof:

Using SINGULAR we show:

$$
\begin{aligned}
& \left\langle f_{1}, f_{2}\right\rangle: h^{2}=I . \\
& f_{1}= \\
& t^{2} b^{4}+\left(t^{4}-2 t^{3}-2 t^{2}\right) b^{3}-\left(t^{5}-2 t^{4}-t^{2}-2 t-1\right) b^{2} \\
& \\
& f_{2}=\left(t^{5}-4 t^{4}+t^{3}+6 t^{2}+2 t\right) b+\left(t^{4}-4 t^{3}+2 t^{2}+4 t+1\right) \\
& \\
& h=\left(t^{2}-2 t^{2}-t\right) c+t^{2} b^{3}+\left(t^{4}-2 t^{3}-2 t^{2}\right) b^{2} \\
& \left.h=t^{2}-2 t-1\right) b-\left(t^{5}-4 t^{4}+t^{3}+6 t^{2}+2 t\right)
\end{aligned}
$$

We give explicitely matrices M and N with entries in $\mathbb{Z}[b, c, t]$ such
that $M\left(\begin{array}{c}p_{1} \\ \vdots \\ p_{4}\end{array}\right)=\binom{f_{1}}{f_{2}} \quad$ and $N\binom{f_{1}}{f_{2}}=\left(\begin{array}{c}h^{2} p_{1} \\ \vdots \\ h^{2} p_{4}\end{array}\right)$

We give explicitely matrices M and N with entries in $\mathbb{Z}[b, c, t]$ such
that $M\left(\begin{array}{c}p_{1} \\ \vdots \\ p_{4}\end{array}\right)=\binom{f_{1}}{f_{2}}$ and $N\binom{f_{1}}{f_{2}}=\left(\begin{array}{c}h^{2} p_{1} \\ \vdots \\ h^{2} p_{4}\end{array}\right)$
We obtain for all fields K

$$
\operatorname{IK}[b, c, t]=\left(\left\langle f_{1}, f_{2}\right\rangle K[b, c, t]\right): h^{2} .
$$

Schritt 2

f_{2} is linear in c, it is enough to show, that f_{1} is absolutely irreducibel.

Schritt 2

f_{2} is linear in c, it is enough to show, that f_{1} is absolutely irreducibel.
algebraically the following is equivalent:

- $I K[b, c, t]$ is prime
- $\left\langle f_{1}, f_{2}\right\rangle K(t)[b, c]$ prime
- f_{1} irreducibel in $K(t)[b]$ resp. in $K[t, b]$.

Schritt 2

f_{2} is linear in c, it is enough to show, that f_{1} is absolutely irreducibel.
algebraically the following is equivalent:

- $I K[b, c, t]$ is prime
- $\left\langle f_{1}, f_{2}\right\rangle K(t)[b, c]$ prime
- f_{1} irreducibel in $K(t)[b]$ resp. in $K[t, b]$.
geometrically:
Curve $V(I)$ is irreducibel, if the projection to the b, t-plane is irreducibel.

Let $P(x):=\left.t^{2} J[1]\right|_{b=x / t}$ then P is monic of degree 4.

Let $P(x):=\left.t^{2} J[1]\right|_{b=x / t}$ then P is monic of degree 4.

$$
\begin{aligned}
& x^{4}+\left(t^{3}-2 t^{2}-2 t\right) x^{3}-\left(t^{5}-2 t^{4}-t^{2}-2 t-1\right) x^{2}- \\
& \left(t^{6}-4 t^{5}+t^{4}+6 t^{3}+2 t^{2}\right) x+\left(t^{6}-4 t^{5}+2 t^{4}+4 t^{3}+t^{2}\right) .
\end{aligned}
$$

We prove, that the induced polynomial $P \in \mathbb{F}_{p}[t, x]$ is absolutely irreducibel for all primes $p \geq 2$.
(Using the lemma of Gauß this is equivalent to P being irreducibel in $\overline{\mathbb{F}}_{p}(t)[x]$.)

Ansatz

$$
\text { (*) } \quad P=\left(x^{2}+a x+b\right)\left(x^{2}+g x+d\right)
$$

a, b, g, d polynomials in t with variable coefficients

$$
a(i), b(i), g(i), d(i)
$$

Ansatz

$$
\text { (*) } \quad P=\left(x^{2}+a x+b\right)\left(x^{2}+g x+d\right)
$$

a, b, g, d polynomials in t with variable coefficients

$$
a(i), b(i), g(i), d(i)
$$

The decomposition (*) with a (i), b(i), g(i), $\mathrm{d}(\mathrm{i}) \in \overline{\mathbb{F}}_{p}$ does not exist iff the ideal C generated by the coefficients with respect to x, t of $P-\left(x^{2}+a x+b\right)\left(x^{2}+g x+d\right)$ has no solution in $\overline{\mathbb{F}}_{p}$. This is equivalent to the fact that $1 \in C$.

The ideal of the coefficients of C :

```
\(C[1]=-b(5) * d(3)\)
\(C[2]=-b(5) * g(2)\)
\(\mathrm{C}[3]=-\mathrm{b}(4) * \mathrm{~d}(3)-\mathrm{b}(5) * \mathrm{~d}(2)\)
\(\mathrm{C}[4]=-\mathrm{b}(4) * \mathrm{~g}(2)-\mathrm{b}(5) * \mathrm{~g}(1)-\mathrm{d}(3)-1\)
\(\mathrm{C}[5]=-\mathrm{b}(3) * \mathrm{~d}(3)-\mathrm{b}(4) * \mathrm{~d}(2)-\mathrm{b}(5) * \mathrm{~d}(1)+1\)
\(C[6]=-b(5)-g(2)-1\)
\(\mathrm{C}[7]=\mathrm{a}(0) * \mathrm{~b}(5)-\mathrm{a}(2) * \mathrm{~d}(3)-\mathrm{b}(3) * \mathrm{~g}(2)-\mathrm{b}(4) * \mathrm{~g}(1)-\mathrm{d}(2)+4\)
\(\mathrm{c}[8]=-\mathrm{a}(0) \sim 2 * \mathrm{~b}(5)+\mathrm{b}(0) * \mathrm{~b}(5)-\mathrm{b}(2) * \mathrm{~d}(3)-\mathrm{b}(3) * \mathrm{~d}(2)-\mathrm{b}(4) * \mathrm{~d}(1)-\mathrm{b}(5)-4\)
\(c[9]=-a(2) * g(2)-b(4)-g(1)+2\)
\(\mathrm{C}[10]=\mathrm{a}(0) * \mathrm{~b}(4)-\mathrm{a}(1) * \mathrm{~d}(3)-\mathrm{a}(2) * \mathrm{~d}(2)-\mathrm{b}(2) * \mathrm{~g}(2)-\mathrm{b}(3) * \mathrm{~g}(1)-\mathrm{d}(1)-1\)
\(\mathrm{c}[11]=-\mathrm{a}(0) \wedge 2 * \mathrm{~b}(4)+\mathrm{b}(0) * \mathrm{~b}(4)-\mathrm{b}(1) * \mathrm{~d}(3)-\mathrm{b}(2) * \mathrm{~d}(2)-\mathrm{b}(3) * \mathrm{~d}(1)-\mathrm{b}(4)+2\)
\(\mathrm{C}[12]=\mathrm{a}(0)-\mathrm{a}(1) * \mathrm{~g}(2)-\mathrm{a}(2) * \mathrm{~g}(1)-\mathrm{b}(3)-\mathrm{d}(3)\)
\(\mathrm{c}[13]=-\mathrm{a}(0) \wedge 2+\mathrm{a}(0) * \mathrm{~b}(3)-\mathrm{a}(0) * \mathrm{~d}(3)-\mathrm{a}(1) * \mathrm{~d}(2)-\mathrm{a}(2) * \mathrm{~d}(1)+\mathrm{b}(0)-\mathrm{b}(1) * \mathrm{~g}(2)-\mathrm{b}(2) * \mathrm{~g}(1)-7\)
\(\mathrm{C}[14]=-\mathrm{a}(0) \wedge 2 * \mathrm{~b}(3)+\mathrm{b}(0) * \mathrm{~b}(3)-\mathrm{b}(0) * \mathrm{~d}(3)-\mathrm{b}(1) * \mathrm{~d}(2)-\mathrm{b}(2) * \mathrm{~d}(1)-\mathrm{b}(3)+4\)
\(C[15]=-a(2)-g(2)-2\)
\(\mathrm{C}[16]=\mathrm{a}(0) * \mathrm{a}(2)-\mathrm{a}(0) * \mathrm{~g}(2)-\mathrm{a}(1) * \mathrm{~g}(1)-\mathrm{b}(2)-\mathrm{d}(2)+1\)
\(\mathrm{C}[17]=-\mathrm{a}(0) \wedge 2 * \mathrm{a}(2)+\mathrm{a}(0) * \mathrm{~b}(2)-\mathrm{a}(0) * \mathrm{~d}(2)-\mathrm{a}(1) * \mathrm{~d}(1)+\mathrm{a}(2) * \mathrm{~b}(0)-\mathrm{a}(2)-\mathrm{b}(0) * \mathrm{~g}(2)-\mathrm{b}(1) * \mathrm{~g}(1)-2\)
\(C[18]=-a(0) \wedge 2 * b(2)+b(0) * b(2)-b(0) * d(2)-b(1) * d(1)-b(2)+1\)
\(C[19]=-a(1)-g(1)-2\)
\(C[20]=a(0) * a(1)-a(0) * g(1)-b(1)-d(1)+2\)
\(\mathrm{c}[21]=-\mathrm{a}(0) \sim 2 * \mathrm{a}(1)+\mathrm{a}(0) * \mathrm{~b}(1)-\mathrm{a}(0) * \mathrm{~d}(1)+\mathrm{a}(1) * \mathrm{~b}(0)-\mathrm{a}(1)-\mathrm{b}(0) * \mathrm{~g}(1)\)
\(\mathrm{c}[22]=-\mathrm{a}(0)^{\wedge} 2 * \mathrm{~b}(1)+\mathrm{b}(0) * \mathrm{~b}(1)-\mathrm{b}(0) * \mathrm{~d}(1)-\mathrm{b}(1)\)
\(\mathrm{c}[23]=-\mathrm{a}(0))^{\wedge} 3+2 * a(0) * b(0)-a(0)\)
\(C[24]=-a(0) \wedge 2 * b(0)+b(0) \wedge 2-b(0)\)
```

Using Singular, one shows that over $\mathbb{Z}[\{a(i)\},\{b(i)\},\{g(i)\},\{d(i)\}]$

$$
4=\sum_{i=1}^{24} M_{i} \mathrm{C}[i] .
$$

Suzuki groups

This case is much more complicated.
We have to prove that on a surface U any odd power of a certain endomorphism θ has fixed points.

Suzuki groups

This case is much more complicated.
We have to prove that on a surface U any odd power of a certain endomorphism θ has fixed points.
Here we use the Lefschetz-Weil-Grothendieck trace formulae generalized by Deligne-Lusztig, Th. Zink, Pink, Katz and Adolphson-Sperber:

$$
2^{n}-b_{1}(U) \cdot 2^{\frac{3}{4} n}-b_{2}(U) \cdot 2^{\frac{1}{2} n} \leq \# \operatorname{Fix}\left(\theta^{n}, U\right)
$$

for n sufficientely large.

