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How to compute the normalization?

Let A be a reduced ring, the normalization A is the integral
closure of A in the total ring of fractions Q(A).
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How to compute the normalization?

Let A be a reduced ring, the normalization A is the integral
closure of A in the total ring of fractions Q(A).

Let A be a reduced Noetherian ring and J ⊂ A an ideal
containing a non–zerodivisor x of A. Then there are natural
inclusions of rings

A ⊂ HomA(J, J) ∼= 1

x
· (xJ : J) ⊂ A .
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proof

For a ∈ A, let ma : J → J denote the multiplication with a. If ma = 0, then
ma(x) = ax = 0 and, hence, a = 0, since x is a non–zerodivisor. Thus, a 7→ ma

defines an inclusion A ⊂ HomA(J, J).
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proof

For a ∈ A, let ma : J → J denote the multiplication with a. If ma = 0, then
ma(x) = ax = 0 and, hence, a = 0, since x is a non–zerodivisor. Thus, a 7→ ma

defines an inclusion A ⊂ HomA(J, J).

It is easy to see that for ϕ ∈ HomA(J, J) the element ϕ(x)/x ∈ Q(A) is
independent of x: for any a ∈ J we have ϕ(a) = (1/x) · ϕ(xa) = a · ϕ(x)/x, since
ϕ is A–linear.
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proof

For a ∈ A, let ma : J → J denote the multiplication with a. If ma = 0, then
ma(x) = ax = 0 and, hence, a = 0, since x is a non–zerodivisor. Thus, a 7→ ma

defines an inclusion A ⊂ HomA(J, J).

It is easy to see that for ϕ ∈ HomA(J, J) the element ϕ(x)/x ∈ Q(A) is
independent of x: for any a ∈ J we have ϕ(a) = (1/x) · ϕ(xa) = a · ϕ(x)/x, since
ϕ is A–linear.

Hence, ϕ 7→ ϕ(x)/x defines an inclusion HomA(J, J) ⊂ Q(A) mapping
x · HomA(J, J) into xJ : J = {b ∈ A | bJ ⊂ xJ}. The latter map is also
surjective, since any b ∈ xJ : J defines, via multiplication with b/x, an element
ϕ ∈ HomA(J, J) with ϕ(x) = b. Since x is a non–zerodivisor, we obtain the
isomorphism HomA(J, J) ∼= (1/x) · (xJ : J).
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proof

For a ∈ A, let ma : J → J denote the multiplication with a. If ma = 0, then
ma(x) = ax = 0 and, hence, a = 0, since x is a non–zerodivisor. Thus, a 7→ ma

defines an inclusion A ⊂ HomA(J, J).

It is easy to see that for ϕ ∈ HomA(J, J) the element ϕ(x)/x ∈ Q(A) is
independent of x: for any a ∈ J we have ϕ(a) = (1/x) · ϕ(xa) = a · ϕ(x)/x, since
ϕ is A–linear.

Hence, ϕ 7→ ϕ(x)/x defines an inclusion HomA(J, J) ⊂ Q(A) mapping
x · HomA(J, J) into xJ : J = {b ∈ A | bJ ⊂ xJ}. The latter map is also
surjective, since any b ∈ xJ : J defines, via multiplication with b/x, an element
ϕ ∈ HomA(J, J) with ϕ(x) = b. Since x is a non–zerodivisor, we obtain the
isomorphism HomA(J, J) ∼= (1/x) · (xJ : J).

It follows that any b ∈ xJ : J satisfies an integral relation
bp + a1bp−1 + · · · + a0 = 0 with ai ∈ 〈xi〉. Hence, b/x is integral over A, showing
(1/x) · (xJ : J) ⊂ A.
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non-normal locus

The non–normal locus of A is defined as

N(A) = {P ∈ SpecA | AP is not normal} .

Let C = AnnA(A/A) = {a ∈ A | aA ⊂ A} be the conductor of A

in A. Then

N(A) = V (C) = {P ∈ SpecA | P ⊃ C} .
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non-normal locus

The non–normal locus of A is defined as

N(A) = {P ∈ SpecA | AP is not normal} .

Let C = AnnA(A/A) = {a ∈ A | aA ⊂ A} be the conductor of A

in A. Then

N(A) = V (C) = {P ∈ SpecA | P ⊃ C} .

In particular, N(A) is closed in SpecA.
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Lemma:Let J ⊂ A be an ideal containing a non–zerodivisor of A.

There are natural inclusions of A–modules

HomA(J, J) ⊂ HomA(J, A) ∩ A ⊂ HomA(J,
√

J) .
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Lemma:Let J ⊂ A be an ideal containing a non–zerodivisor of A.

There are natural inclusions of A–modules

HomA(J, J) ⊂ HomA(J, A) ∩ A ⊂ HomA(J,
√

J) .

If N(A) ⊂ V (J) then JdA ⊂ A for some d.
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Proof:

HomA(J, J) ⊂ HomA(J, A) ∩ A:

The embedding of HomA(J, A) in Q(A) is given by ϕ 7→ ϕ(x)/x, where x is a
non–zerodivisor of J . With this identification we obtain

HomA(J, A) = A :Q(A) J = {h ∈ Q(A) | hJ ⊂ A}

and HomA(J, J), respectively HomA(J,
√

J), is identified with those h ∈ Q(A)

such that hJ ⊂ J , respectively hJ ⊂
√

J .
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Proof:

HomA(J, J) ⊂ HomA(J, A) ∩ A:

The embedding of HomA(J, A) in Q(A) is given by ϕ 7→ ϕ(x)/x, where x is a
non–zerodivisor of J . With this identification we obtain

HomA(J, A) = A :Q(A) J = {h ∈ Q(A) | hJ ⊂ A}

and HomA(J, J), respectively HomA(J,
√

J), is identified with those h ∈ Q(A)

such that hJ ⊂ J , respectively hJ ⊂
√

J .

HomA(J, A) ∩ A ⊂ HomA(J,
√

J):

For the second inclusion let h ∈ A satisfy hJ ⊂ A. Consider an integral relation
hn + a1hn−1 + · · · + an = 0 with ai ∈ A. Let g ∈ J and multiply the above
equation with gn. Then

(hg)n + ga1(hg)n−1 + · · · + gnan = 0 .

Since g ∈ J , hg ∈ A and, therefore, (hg)n ∈ J and hg ∈
√

J .
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Proof:

If N(A) ⊂ V (J) then JdA ⊂ A for some d.
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Proof:

If N(A) ⊂ V (J) then JdA ⊂ A for some d.
C = AnnA(A/A) = {a ∈ A | aA ⊂ A}

By assumption, we have V (C) ⊂ V (J) and, hence, J ⊂
√

C,
that is, Jd ⊂ C for some d which implies the claim.
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Criterion for Normality

Let A be a Noetherian reduced ring and J ⊂ A an ideal satisfying

J contains a non–zerodivisor of A,

J is a radical ideal,

N(A) ⊂ V (J).
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Criterion for Normality

Let A be a Noetherian reduced ring and J ⊂ A an ideal satisfying

J contains a non–zerodivisor of A,

J is a radical ideal,

N(A) ⊂ V (J).

Then A is normal if and only if A = HomA(J, J).
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Criterion for Normality

Let A be a Noetherian reduced ring and J ⊂ A an ideal satisfying

J contains a non–zerodivisor of A,

J is a radical ideal,

N(A) ⊂ V (J).

Then A is normal if and only if A = HomA(J, J).

Note that the non-normal locus N(A) is contained in the
singular locus. In the applications J is an ideal describing the
singular locus.
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proof

If A = A then HomA(J, J) = A. To see the converse, we choose
d ≥ 0 minimal such that JdA ⊂ A. If d > 0 then there exists
some a ∈ Jd−1 and h ∈ A such that ah 6∈ A.
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proof

If A = A then HomA(J, J) = A. To see the converse, we choose
d ≥ 0 minimal such that JdA ⊂ A. If d > 0 then there exists
some a ∈ Jd−1 and h ∈ A such that ah 6∈ A.

But ah ∈ A and ah · J ⊂ hJd ⊂ A, that is, ah ∈ HomA(J, A) ∩ A,
which is equal to HomA(J, J), since J =

√
J .
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proof

If A = A then HomA(J, J) = A. To see the converse, we choose
d ≥ 0 minimal such that JdA ⊂ A. If d > 0 then there exists
some a ∈ Jd−1 and h ∈ A such that ah 6∈ A.

But ah ∈ A and ah · J ⊂ hJd ⊂ A, that is, ah ∈ HomA(J, A) ∩ A,
which is equal to HomA(J, J), since J =

√
J .

By assumption HomA(J, J) = A and, hence, ah ∈ A, which is a
contradiction. We conclude that d = 0 and A = A.
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Let A be a reduced Noetherian ring, let J ⊂ A be an ideal and x ∈ J a non–zerodivisor.
Then

A = HomA(J, J) if and only if xJ : J = 〈x〉.
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Let A be a reduced Noetherian ring, let J ⊂ A be an ideal and x ∈ J a non–zerodivisor.
Then

A = HomA(J, J) if and only if xJ : J = 〈x〉.
Moreover, let {u0 = x, u1, . . . , us} be a system of generators for the A–module
xJ : J . Then we can write

ui · uj =
s

X

k=0

xξij
k

uk with suitable ξij
k

∈ A, 1 ≤ i ≤ j ≤ s.
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Let A be a reduced Noetherian ring, let J ⊂ A be an ideal and x ∈ J a non–zerodivisor.
Then

A = HomA(J, J) if and only if xJ : J = 〈x〉.
Moreover, let {u0 = x, u1, . . . , us} be a system of generators for the A–module
xJ : J . Then we can write

ui · uj =
s

X

k=0

xξij
k

uk with suitable ξij
k

∈ A, 1 ≤ i ≤ j ≤ s.

Let (η
(k)
0 , . . . , η

(k)
s ) ∈ As+1, k = 1, . . . , m, generate syz(u0, . . . , us), and let

I ⊂ A[t1, . . . , ts] be the ideal ( t0 := 1)

I :=

*(

titj −
s

X

k=0

ξij
k

tk

˛

˛

˛

˛

˛

1 ≤ i ≤ j ≤ s

)

,

(

s
X

ν=0

η
(k)
ν tν

˛

˛

˛

˛

˛

1 ≤ k ≤ m

)+

,

ti 7→ ui/x, i = 1, . . . , s, defines an isomorphism

A[t1, . . . , ts]/I
∼=−→ HomA(J, J) ∼=

1

x
· (xJ : J) .
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Example

Let A := K[x, y]/〈x2− y3〉 and J := 〈x, y〉 ⊂ A.

Then x ∈ J is a non–zerodivisor in A with
xJ : J = x〈x, y〉 : 〈x, y〉 = 〈x, y2〉, therefore,

HomA(J, J) = 〈1, y2/x〉.
Setting u0 := x, u1 := y2, we obtain u2

1 = y4 = x2y, that is,
ξ11
0 = y. Hence, we obtain an isomorphism
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Example

Let A := K[x, y]/〈x2− y3〉 and J := 〈x, y〉 ⊂ A.

Then x ∈ J is a non–zerodivisor in A with
xJ : J = x〈x, y〉 : 〈x, y〉 = 〈x, y2〉, therefore,

HomA(J, J) = 〈1, y2/x〉.
Setting u0 := x, u1 := y2, we obtain u2

1 = y4 = x2y, that is,
ξ11
0 = y. Hence, we obtain an isomorphism

A[t]/〈t2− y, xt − y2, yt − x〉 ∼=−→ HomA(J, J) .

of A–algebras. Note that A[t]/〈t2− y, xt− y2, yt−x〉 ≃ K[t].
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normalization(I)

Input:I := 〈f1, . . . , fk〉 ⊂ K[x] a prime ideal, x = (x1, . . . , xn).

Output: A polynomial ring K[t], t = (t1, . . . , tN ), a prime ideal P ⊂ K[t] and
π : K[x] → K[t] such that the induced map π : K[x]/I → K[t]/P is the
normalization of K[x]/I.

if I = 〈0〉 then return (K[x], 〈0〉, idK[x]);

compute r := dim(I);

if we know that the singular locus of I is V (x1, . . . , xn)

J := 〈x1, . . . , xn〉;
else

compute J := the ideal of the (n − r)–minors of the Jacobian matrix I;

J := RADICAL(I + J);

choose a ∈ J r {0};

if aJ : J = 〈a〉 return (K[x], I, idK[x]);
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normalization(I)

compute a generating system u0 = a, u1, . . . , us for aJ : J ;

compute a generating system
˘

(η
(1)
0 , . . . , η

(1)
s ), . . . , (η

(m)
0 , . . . , η

(m)
s )

¯

for the module of syzygies syz(u0, . . . , us) ⊂ (K[x]/I)s+1;

compute ξij
k

such that ui · uj =
Ps

k=0 a · ξij
k

uk, i, j = 1, . . . s;

change ring to K[x1, . . . , xn, t1, . . . , ts], and set (with t0 := 1)

I1 :=
˙

{titj − Ps
k=0 ξij

k
tk}0≤i≤j≤s, {Ps

ν=0 η
(k)
ν tν}1≤k≤m

¸

+ IK[x, t];

return NORMALIZATION(I1).

Normalization – p. 13



non-normal locus

The ideal AnnA

(

HomA(J, J)/A
)

⊂ A defines the non–normal locus.
Moreover,

AnnA

(

HomA(J, J)/A
)

= 〈x〉 : (xJ : J)

for any non–zerodivisor x ∈ J .
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non–normalLocus(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x] a prime ideal, x = (x1, . . . , xn).

Output: An ideal N ⊂ K[x], defining the non–normal locus in
V (I).

If I = 〈0〉 then return (K[x]);
compute r = dim(I);
compute J the ideal of the (n − r)–minors of the Jacobian
matrix of I;
J = RADICAL (I + J);
choose a ∈ J r {0};

return
(

〈a〉 : (aJ : J)
)

.
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Computeralgebra and finite Groups

Problem : Characterize the class of finite solvable groups G by
2–variable identities.

Normalization – p. 17



Computeralgebra and finite Groups

Problem : Characterize the class of finite solvable groups G by
2–variable identities.

Example:

G is abelian ⇔ xy = yx ∀ x, y ∈ G

(Zorn, 1930) A finite group G is nilpotent ⇔ ∃ n ≥ 1, such that
vn(x, y) = 1 ∀ x, y ∈ G

(Engel Identity )

v1 := [x, y] = xyx−1y−1 (commutator)
vn+1 := [vn, y]
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nilpotent groups

Let G be a finite group

G(1) := [G, G] = 〈aba−1b−1 | a, b ∈ G〉 .

Let G(i) := [G(i−1), G], then G is called nilpotent, if G(m) = {e} for a
suitable m.
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nilpotent groups

Let G be a finite group

G(1) := [G, G] = 〈aba−1b−1 | a, b ∈ G〉 .

Let G(i) := [G(i−1), G], then G is called nilpotent, if G(m) = {e} for a
suitable m.

abelian groups are nilpotent.

if the order of the group is a power of a prime it is nilpotent.

G ist nilpotent ⇔ it is the direct product of its Sylow groups.

S3 is not nilpotent.
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solvable groups

Let

G(i) := [G(i−1), G(i−1)],

then G is called solvable, if G(m) = {e} for a suitable m.
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solvable groups

Let

G(i) := [G(i−1), G(i−1)],

then G is called solvable, if G(m) = {e} for a suitable m.

nilpotente groups are solvable.

S3, S4 are solvable.

groups of odd order are solvable.

S5, A5 are not solvable.

Normalization – p. 19



Main result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky,
G. Pfister, E. Plotkin)

U1 = U1(x, y) := x2y−1x,

Un+1 = Un+1(x, y) = [xUnx−1, yUny−1].

A finite group G is solvable ⇔ ∃ n, such that Un(x, y) = 1 ∀ x, y ∈ G.
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Main result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky,
G. Pfister, E. Plotkin)

U1 = U1(x, y) := x2y−1x,

Un+1 = Un+1(x, y) = [xUnx−1, yUny−1].

A finite group G is solvable ⇔ ∃ n, such that Un(x, y) = 1 ∀ x, y ∈ G.

U1(x, y) = 1 ⇔ y = x−1

U1(x, y) = U2(x, y)

⇔ x−1yx−1y−1x2 = yx−2y−1xy−1

Let x, y ∈ G such that y 6= x−1 and
U1(x, y) = U2(x, y) ⇒ Un(x, y) 6= 1 ∀ n ∈ N.
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Proof

G solvable ⇒ Identity is true (by definition).

Normalization – p. 21



Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:
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Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5
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Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5

PSL(2, F2p), p a prime number

PSL(2, F3p), p a prime number
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Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5

PSL(2, F2p), p a prime number

PSL(2, F3p), p a prime number

PSL(3, F3)
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Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5

PSL(2, F2p), p a prime number

PSL(2, F3p), p a prime number

PSL(3, F3)

Sz(2p) p a prime number.
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Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5

PSL(2, F2p), p a prime number

PSL(2, F3p), p a prime number

PSL(3, F3)

Sz(2p) p a prime number.

If is enough to prove (for G in Thompson’s list): ∃ x, y ∈ G, such that
y 6= x−1 and U1(x, y) = U2(x, y).
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Motivation of the choice of the word

Let w be a word in X, Y, X−1, Y −1 and

U1 = w

Un+1 = [XUnX−1, Y UnY −1].
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Motivation of the choice of the word

Let w be a word in X, Y, X−1, Y −1 and

U1 = w

Un+1 = [XUnX−1, Y UnY −1].

A Computer–search through the 10,000 shortest words in
X, X−1, Y, Y −1 found the following four words such that the equation
U1 = U2 has a non-trivial solution in PSL(2, p) for all p < 1000:

w1 = X−2Y −1X

w2 = X−1Y XY −1X

w3 = Y −2X−1

w4 = XY −2X−1Y X−1
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PSL

PSL(2, K) = SL(2, K)/
{

( a 0
0 a )

∣

∣ a2 = 1
}
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PSL

PSL(2, K) = SL(2, K)/
{

( a 0
0 a )

∣

∣ a2 = 1
}

especially

PSL(2, F5) = {[( a11 a12

a21 a22
)] , a11a22 − a21a12 = 1}

[( a11 a12

a21 a22
)] =

{

( a11 a12

a21 a22
) ,
(

4a11 4a12

4a21 4a22

)}

.
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PSL

PSL(2, K) = SL(2, K)/
{

( a 0
0 a )

∣

∣ a2 = 1
}

especially

PSL(2, F5) = {[( a11 a12

a21 a22
)] , a11a22 − a21a12 = 1}

[( a11 a12

a21 a22
)] =

{

( a11 a12

a21 a22
) ,
(

4a11 4a12

4a21 4a22

)}

.

It holds:

PSL(2, F5) ∼= PSL(2, F4) ∼= A5
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Translation to algebraic Geometry

Let us consider G = PSL(2,FpFpFp), p ≥ 5
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Translation to algebraic Geometry

Let us consider G = PSL(2,FpFpFp), p ≥ 5

Consider the matrices

x =

(

t 1

−1 0

)

y =

(

1 b

c 1 + bc

)

x−1 =
(

0 −1
1 t

)

implies y 6= x−1 for all (b, c, t) ∈ F3
p.
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Translation to algebraic Geometry

Let us consider G = PSL(2,FpFpFp), p ≥ 5

Consider the matrices

x =

(

t 1

−1 0

)

y =

(

1 b

c 1 + bc

)

x−1 =
(

0 −1
1 t

)

implies y 6= x−1 for all (b, c, t) ∈ F3
p.

It is enough to prove that the equation
U1(x, y) = U2(x, y), i.e.

x−1yx−1y−1x2 = yx−2y−1xy−1

has a solution (b, c, t) ∈ F
3
p.
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The equations

The entries of U1(x, y) − U2(x, y) are the following polynomials in
Z[b, c, t] Let I =< p1, . . . , p4 > and I(p) the induced ideal over Z/p:

p1 = b3c2t2 + b2c2t3 − b2c2t2 − bc2t3 − b3ct + b2c2t + b2ct2 + 2bc2t2

+bct3 + b2c2 + b2ct + bc2t − bct2 − c2t2 − ct3 − b2t + bct + c2t

+ct2 + 2bc + c2 + bt +2 ct + c + 1

p2 = −b3ct2 − b2ct3 + b2c2t + bc2t2 + b3t − b2ct − 2bct2 − b2c + bct

+c2t + ct2 − bt − ct − b − c − 1

p3 = b3c3t2 + b2c3t3 − b2c2t3 − bc2t4 − b3c2t + b2c3t +2 b2c2t2

+2bc3t2 +2 bc2t3 + b2c2t +2 b2ct2 + bc2t2 − c2t3 − ct4 − 2b2ct

+bc2t + c3t + bct2 + 2c2t2 + ct3 − b2c − b2t + bct + c2t + bt2

+3ct2 + bc − bt − b − c + 1

p4 = −b3c2t2 − b2c2t3 + b2c2t2 + bc2t3 + b3ct − b2c2t − b2ct2 − 2bc2t2

−bct3 − 2b2ct + c2t2 + ct3 + b2t − bct − c2t − ct2 + b2 − bt

−2ct − b − t + 1
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):
Let C ⊆ A

n be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn its projective closure ⇒

#C(Fq) ≥ q + 1 − 2pa
√

q − d

(d = degree, pa = arithmetic genus of C).
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):
Let C ⊆ A

n be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn its projective closure ⇒

#C(Fq) ≥ q + 1 − 2pa
√

q − d

(d = degree, pa = arithmetic genus of C).

The Hilbert–polynomial of C, H(t) = d · t − pa + 1, can be computed
using the ideal Ih of C:
We obtain H(t) = 10t − 11 ⇒ d = 10, pa = 12.

Normalization – p. 26



Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):
Let C ⊆ A

n be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn its projective closure ⇒

#C(Fq) ≥ q + 1 − 2pa
√

q − d

(d = degree, pa = arithmetic genus of C).

The Hilbert–polynomial of C, H(t) = d · t − pa + 1, can be computed
using the ideal Ih of C:
We obtain H(t) = 10t − 11 ⇒ d = 10, pa = 12.
Since p + 1 − 24

√
p − 10 > 0 if p > 593, we obtain the result.
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absolute irreduciblity

Proposition: V (I(p)) is absolutely irreducibel for all primes p ≥ 5.
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absolute irreduciblity

Proposition: V (I(p)) is absolutely irreducibel for all primes p ≥ 5.
proof:

Using SINGULAR we show:

〈f1, f2〉 : h2 = I.

Normalization – p. 27



absolute irreduciblity

Proposition: V (I(p)) is absolutely irreducibel for all primes p ≥ 5.
proof:

Using SINGULAR we show:

〈f1, f2〉 : h2 = I.

f1 = t2b4 + (t4 − 2t3 − 2t2)b3 − (t5 − 2t4 − t2 − 2t − 1)b2

−(t5 − 4t4 + t3 + 6t2 + 2t)b + (t4 − 4t3 + 2t2 + 4t + 1)

f2 = (t3 − 2t2 − t)c + t2b3 + (t4 − 2t3 − 2t2)b2

−(t5 − 2t4 − t2 − 2t − 1)b − (t5 − 4t4 + t3 + 6t2 + 2t)

h = t3 − 2t2 − t

Normalization – p. 27



We give explicitely matrices M and N with entries in Z[b, c, t] such

that
M









p1

...
p4









=

(

f1

f2

)

and
N

(

f1

f2

)

=









h2p1

...
h2p4
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We give explicitely matrices M and N with entries in Z[b, c, t] such

that
M









p1

...
p4









=

(

f1

f2

)

and
N

(

f1

f2

)

=









h2p1

...
h2p4









We obtain for all fields K

IK[b, c, t] =
(

〈f1, f2〉K[b, c, t]
)

: h2 .
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Schritt 2

f2 is linear in c , it is enough to show, that f1 is absolutely
irreducibel.
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Schritt 2

f2 is linear in c , it is enough to show, that f1 is absolutely
irreducibel.

algebraically the following is equivalent:

IK[b, c, t] is prime

〈f1, f2〉K(t)[b, c] prime

f1 irreducibel in K(t)[b] resp. in K[t, b].
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Schritt 2

f2 is linear in c , it is enough to show, that f1 is absolutely
irreducibel.

algebraically the following is equivalent:

IK[b, c, t] is prime

〈f1, f2〉K(t)[b, c] prime

f1 irreducibel in K(t)[b] resp. in K[t, b].

geometrically:
Curve V (I) is irreducibel, if the projection to the b, t–plane is
irreducibel.
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Let P (x) := t2J [1]|b=x/t then P is monic of degree 4.
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Let P (x) := t2J [1]|b=x/t then P is monic of degree 4.

x4 + (t3 − 2t2 − 2t)x3 − (t5 − 2t4 − t2 − 2t − 1)x2−
(t6 − 4t5 + t4 + 6t3 + 2t2)x + (t6 − 4t5 + 2t4 + 4t3 + t2).

We prove, that the induced polynomial P ∈ Fp[t, x] is absolutely
irreducibel for all primes p ≥ 2.
(Using the lemma of Gauß this is equivalent to P being irreducibel in
Fp(t)[x].)
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Ansatz

(∗) P = (x2 + ax + b)(x2 + gx + d)

a, b, g, d polynomials in t with variable coefficients

a(i), b(i), g(i), d(i) .
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Ansatz

(∗) P = (x2 + ax + b)(x2 + gx + d)

a, b, g, d polynomials in t with variable coefficients

a(i), b(i), g(i), d(i) .

The decomposition (∗) with a(i), b(i), g(i), d(i) ∈ Fp does
not exist iff the ideal C generated by the coefficients with respect to
x, t of P − (x2 + ax + b)(x2 + gx + d) has no solution in Fp . This is
equivalent to the fact that 1 ∈ C.
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The ideal of the coefficients of C:C[1℄=-b(5)*d(3)C[2℄=-b(5)*g(2)C[3℄=-b(4)*d(3)-b(5)*d(2)C[4℄=-b(4)*g(2)-b(5)*g(1)-d(3)-1C[5℄=-b(3)*d(3)-b(4)*d(2)-b(5)*d(1)+1C[6℄=-b(5)-g(2)-1C[7℄=a(0)*b(5)-a(2)*d(3)-b(3)*g(2)-b(4)*g(1)-d(2)+4C[8℄=-a(0)^2*b(5)+b(0)*b(5)-b(2)*d(3)-b(3)*d(2)-b(4)*d(1)-b(5)-4C[9℄=-a(2)*g(2)-b(4)-g(1)+2C[10℄=a(0)*b(4)-a(1)*d(3)-a(2)*d(2)-b(2)*g(2)-b(3)*g(1)-d(1)-1C[11℄=-a(0)^2*b(4)+b(0)*b(4)-b(1)*d(3)-b(2)*d(2)-b(3)*d(1)-b(4)+2C[12℄=a(0)-a(1)*g(2)-a(2)*g(1)-b(3)-d(3)C[13℄=-a(0)^2+a(0)*b(3)-a(0)*d(3)-a(1)*d(2)-a(2)*d(1)+b(0)-b(1)*g(2)-b(2)*g(1)-7C[14℄=-a(0)^2*b(3)+b(0)*b(3)-b(0)*d(3)-b(1)*d(2)-b(2)*d(1)-b(3)+4C[15℄=-a(2)-g(2)-2C[16℄=a(0)*a(2)-a(0)*g(2)-a(1)*g(1)-b(2)-d(2)+1C[17℄=-a(0)^2*a(2)+a(0)*b(2)-a(0)*d(2)-a(1)*d(1)+a(2)*b(0)-a(2)-b(0)*g(2)-b(1)*g(1)-2C[18℄=-a(0)^2*b(2)+b(0)*b(2)-b(0)*d(2)-b(1)*d(1)-b(2)+1C[19℄=-a(1)-g(1)-2C[20℄=a(0)*a(1)-a(0)*g(1)-b(1)-d(1)+2C[21℄=-a(0)^2*a(1)+a(0)*b(1)-a(0)*d(1)+a(1)*b(0)-a(1)-b(0)*g(1)C[22℄=-a(0)^2*b(1)+b(0)*b(1)-b(0)*d(1)-b(1)C[23℄=-a(0)^3+2*a(0)*b(0)-a(0)C[24℄=-a(0)^2*b(0)+b(0)^2-b(0)
Normalization – p. 32



Using SINGULAR, one shows that over
Z
[

{a(i)}, {b(i)}, {g(i)}, {d(i)}
]

4 =

24
∑

i=1

Mi C[i] .
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Suzuki groups

This case is much more complicated.
We have to prove that on a surface U any odd power of a certain
endomorphism θ has fixed points.

Normalization – p. 34



Suzuki groups

This case is much more complicated.
We have to prove that on a surface U any odd power of a certain
endomorphism θ has fixed points.
Here we use the Lefschetz–Weil–Grothendieck trace formulae
generalized by Deligne–Lusztig, Th. Zink, Pink, Katz and
Adolphson–Sperber:

2n − b1(U) · 2
3
4n − b2(U) · 2

1
2n ≤ # Fix (θn, U)

for n sufficientely large.

Normalization – p. 34
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