Solving Polynomial Equations and Primary Decomposition

Gerhard Pfister
pfister@mathematik.uni-kl.de
Departement of Mathematics
University of Kaiserslautern

- Greuel, G.-M.; Pfister, G.: A SINGULAR Introduction to Commutative Algebra, Springer 2002, second edition 2007

References

- Gianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. 6, 149-167 (1988).
- Eisenbud, D.; Huneke, C.; Vasconcelos, W.: Direct Methods for Primary Decomposition. Invent. Math. 110, 207-235 (1992).
- Shimoyama, T.; Yokoyama, K.: Localization and Primary Decomposition of Polynomial ideals. J. Symb. Comp. 22, 247-277 (1996).

References

- Gianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. 6, 149-167 (1988).
- Eisenbud, D.; Huneke, C.; Vasconcelos, W.: Direct Methods for Primary Decomposition. Invent. Math. 110, 207-235 (1992).
- Shimoyama, T.; Yokoyama, K.: Localization and Primary Decomposition of Polynomial ideals. J. Symb. Comp. 22, 247-277 (1996).
- Decker, W.; Greuel, G.-M.; Pfister, G.: Primary Decomposition: Algorithms and Comparisons. In: Algorithmic Algebra and Number Theory, Springer, 187-220 (1998).

SINGULAR

SINGULAR \ll

A Computer Algebra System for Polynomial Computations

 with special emphasize on the needs of algebraic geometry, commutative algebra, and singularity theory
SINGULAR

SINGULAR \ll

A Computer Algebra System for Polynomial Computations

 with special emphasize on the needs of algebraic geometry, commutative algebra, and singularity theoryG.-M. Greuel, G. Pfister, H. Schönemann

Technische Universität Kaiserslautern
Fachbereich Mathematik; Zentrum für Computer Algebra
D-67663 Kaiserslautern

SINGULAR

SINGULAR \ll

A Computer Algebra System for Polynomial Computations with special emphasize on the needs of algebraic geometry, commutative algebra, and singularity theory
G.-M. Greuel, G. Pfister, H. Schönemann

Technische Universität Kaiserslautern
Fachbereich Mathematik; Zentrum für Computer Algebra
D-67663 Kaiserslautern

The computer is not the philosopher's stone but the philosopher's whetstone
Hugo Battus, Rekenen op taal 1983

Motivation

The basic problem of algebraic geometry is to understand the set of solutions $x=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$ of a system of polynomial equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{k}\left(x_{1}, \ldots, x_{n}\right)=0
$$

$f_{i} \in K[x]=K\left[x_{1}, \ldots, x_{n}\right]$ and K a field. The solution set is called an algebraic set or algebraic variety.

Motivation

(A) The Hypersurface $V\left(x^{2}+y^{3}-z^{2} y^{2}\right)$. (B) The Variety $V(x z, y z)$.

Motivation

(C) The Space Curve

$$
V(x y, x z, y z) .
$$

(D) The Set of Points $V\left(y^{4}-y^{2}\right.$,
$\left.x y^{3}-x y, x^{3} y-x y, x^{4}-x^{2}\right)$.

surfaces: http://www.imaginary2008.de/

- Consider the equation

$$
\left((y-z)^{2}+\left(y-1-\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}\right)^{2}-\frac{1}{50}\right)\left(\left(x-\frac{3}{5} y+1\right)^{2}+\left(y-z^{2}\right)^{2}-\frac{1}{100}\right)=0
$$

- defining a surface of degree 10 in \mathbb{R}^{3}.
- What do you expect from the real picture?

Nice algebraic surfaces

Liegestuhl

Motivation

- A set $X \subset \mathbb{A}_{K}^{n}$ is called an affine algebraic variety (over K) if there exist polynomials $f_{\lambda} \in K\left[x_{1}, \ldots, x_{n}\right]$, λ in some index set Λ, such that

$$
X=V\left(\left(f_{\lambda}\right)_{\lambda \in \Lambda}\right)=\left\{x \in \mathbb{A}_{K}^{n} \mid f_{\lambda}(x)=0, \forall \lambda \in \Lambda\right\} .
$$

Motivation

- A set $X \subset \mathbb{A}_{K}^{n}$ is called an affine algebraic variety (over K) if there exist polynomials $f_{\lambda} \in K\left[x_{1}, \ldots, x_{n}\right]$, λ in some index set Λ, such that

$$
X=V\left(\left(f_{\lambda}\right)_{\lambda \in \Lambda}\right)=\left\{x \in \mathbb{A}_{K}^{n} \mid f_{\lambda}(x)=0, \forall \lambda \in \Lambda\right\} .
$$

- Of course, X depends only on the ideal I generated by the f_{λ}, that is, $X=V(I)$ with $I=\left\langle f_{\lambda} \mid \lambda \in \Lambda\right\rangle_{K[x]}$.

Motivation

- A set $X \subset \mathbb{A}_{K}^{n}$ is called an affine algebraic variety (over K) if there exist polynomials $f_{\lambda} \in K\left[x_{1}, \ldots, x_{n}\right]$, λ in some index set Λ, such that

$$
X=V\left(\left(f_{\lambda}\right)_{\lambda \in \Lambda}\right)=\left\{x \in \mathbb{A}_{K}^{n} \mid f_{\lambda}(x)=0, \quad \forall \lambda \in \Lambda\right\} .
$$

- Of course, X depends only on the ideal I generated by the f_{λ}, that is, $X=V(I)$ with $I=\left\langle f_{\lambda} \mid \lambda \in \Lambda\right\rangle_{K[x]}$.
- For any set $X \subset \mathbb{A}^{n}$ define

$$
I(X):=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right]|f|_{X}=0\right\},
$$

the (full vanishing) ideal of X, where $\left.f\right|_{X}: X \rightarrow K$ denotes the polynomial function of f restricted to X.

Motivation

Let $X \subset \mathbb{A}^{n}$ be a subset, $X_{1}, X_{2} \subset \mathbb{A}^{n}$ affine varieties.

1. $I(X)$ is a radical ideal.
2. $V(I(X))=\bar{X}$ the Zariski closure of X in \mathbb{A}^{n}.
3. If X is an affine variety, then $V(I(X))=X$.
4. $I(\bar{X})=I(X)$.

Motivation

Let $X \subset \mathbb{A}^{n}$ be a subset, $X_{1}, X_{2} \subset \mathbb{A}^{n}$ affine varieties.

1. $I(X)$ is a radical ideal.
2. $V(I(X))=\bar{X}$ the Zariski closure of X in \mathbb{A}^{n}.
3. If X is an affine variety, then $V(I(X))=X$.
4. $I(\bar{X})=I(X)$.
5. $X_{1} \subset X_{2}$ if and only if $I\left(X_{2}\right) \subset I\left(X_{1}\right)$,
$X_{1}=X_{2}$ if and only if $I\left(X_{1}\right)=I\left(X_{2}\right)$.
6. $I\left(X_{1} \cup X_{2}\right)=I\left(X_{1}\right) \cap I\left(X_{2}\right)$.
7. $I\left(X_{1} \cap X_{2}\right)=\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)}$.

Motivation

Let $X \subset \mathbb{A}^{n}$ be a subset, $X_{1}, X_{2} \subset \mathbb{A}^{n}$ affine varieties.

1. $I(X)$ is a radical ideal.
2. $V(I(X))=\bar{X}$ the Zariski closure of X in \mathbb{A}^{n}.
3. If X is an affine variety, then $V(I(X))=X$.
4. $I(\bar{X})=I(X)$.
5. $X_{1} \subset X_{2}$ if and only if $I\left(X_{2}\right) \subset I\left(X_{1}\right)$,
$X_{1}=X_{2}$ if and only if $I\left(X_{1}\right)=I\left(X_{2}\right)$.
6. $I\left(X_{1} \cup X_{2}\right)=I\left(X_{1}\right) \cap I\left(X_{2}\right)$.
7. $I\left(X_{1} \cap X_{2}\right)=\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)}$.

Hilbert's Nullstellensatz: If $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal, K is algebraically closed, and $X=V(I)$, then

$$
I(X)=\sqrt{I} .
$$

Motivation

We obtain, for K algebraically closed, an inclusion reversing bijection (HN refers to Hilbert's Nullstellensatz)
\{affine algebraic sets in $\left.\mathbb{A}_{K}^{n}\right\} \xrightarrow{H N}\left\{\right.$ radical ideals $\left.I \subset K\left[x_{1}, \ldots, x_{n}\right]\right\}$

$$
\begin{gathered}
X \longmapsto I(X) \\
V(I) \longleftrightarrow I .
\end{gathered}
$$

Motivation

For K an algebraically closed field, we have the following inclusion reversing bijections (with $K[x]=K\left[x_{1}, \ldots, x_{n}\right]$):
\{algebraic sets in $\left.\mathbb{A}_{K}^{n}\right\} \stackrel{H N}{\leftrightarrow} \quad$ \{radical ideals in $\left.K[x]\right\}$
$\cup \quad U$
\{irreducible algebraic sets in $\left.\mathbb{A}_{K}^{n}\right\} \leftrightarrow \quad$ \{prime ideals in $\left.K[x]\right\}$
$\left\{\right.$ points of $\left.\mathbb{A}_{K}^{n}\right\} \leftrightarrow \quad$ \{maximal ideals in $\left.K[x]\right\}$

How to solve polynomial systems?

Let $>$ be the lexicographical ordering lp, i.e. $x_{1}>\ldots,>x_{n}$. A set of polynomials $F=\left\{f_{1}, \ldots, f_{n}\right\} \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called a triangular set if for each i
(1) $f_{i} \in K\left[x_{n-i+1}, \ldots, x_{n}\right]$,
(2) $L M\left(f_{i}\right)=x_{n-i+1}^{m_{i}}$, for some $m_{i}>0$.

Hence, f_{1} depends only on x_{n}, f_{2} on x_{n-1}, x_{n} and so on, until f_{n} which depends on all variables.

How to solve polynomial systems?

Let $>$ be the lexicographical ordering lp, i.e. $x_{1}>\ldots,>x_{n}$. A set of polynomials $F=\left\{f_{1}, \ldots, f_{n}\right\} \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called a triangular set if for each i
(1) $f_{i} \in K\left[x_{n-i+1}, \ldots, x_{n}\right]$,
(2) $L M\left(f_{i}\right)=x_{n-i+1}^{m_{i}}$, for some $m_{i}>0$.

Hence, f_{1} depends only on x_{n}, f_{2} on x_{n-1}, x_{n} and so on, until f_{n} which depends on all variables.

- A list of triangular sets F_{1}, \ldots, F_{s} is called a triangular decomposition of the zero-dimensional ideal I if

$$
\sqrt{I}=\sqrt{\left\langle F_{1}\right\rangle} \cap \ldots \cap \sqrt{\left\langle F_{s}\right\rangle} .
$$

How to solve polynomial systems?

Let $>$ be the lexicographical ordering lp, i.e. $x_{1}>\ldots,>x_{n}$. A set of polynomials $F=\left\{f_{1}, \ldots, f_{n}\right\} \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called a triangular set if for each i
(1) $f_{i} \in K\left[x_{n-i+1}, \ldots, x_{n}\right]$,
(2) $L M\left(f_{i}\right)=x_{n-i+1}^{m_{i}}$, for some $m_{i}>0$.

Hence, f_{1} depends only on x_{n}, f_{2} on x_{n-1}, x_{n} and so on, until f_{n} which depends on all variables.

- A list of triangular sets F_{1}, \ldots, F_{s} is called a triangular decomposition of the zero-dimensional ideal I if

$$
\sqrt{I}=\sqrt{\left\langle F_{1}\right\rangle} \cap \ldots \cap \sqrt{\left\langle F_{s}\right\rangle} .
$$

- A triangular set is a Gröbner basis.

How to solve polynomial systems?

- Let $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a maximal ideal and $G=\left\{g_{1}, \ldots, g_{r}\right\}$ a minimal Gröbner basis of M such that $L M\left(g_{1}\right)<\ldots<L M\left(g_{r}\right)$. Then G is a triangular set, in particular $r=n$.

How to solve polynomial systems?

- Let $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a maximal ideal and $G=\left\{g_{1}, \ldots, g_{r}\right\}$ a minimal Gröbner basis of M such that $L M\left(g_{1}\right)<\ldots<L M\left(g_{r}\right)$. Then G is a triangular set, in particular $r=n$.
- There is an algorithm to compute a triangular decomposition of the zero-dimensional ideal I without computing the associated maximal ideals using only Gröbner bases and no multivariate polynomial factorization.

How to solve polynomial systems?

- Let $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a maximal ideal and $G=\left\{g_{1}, \ldots, g_{r}\right\}$ a minimal Gröbner basis of M such that $L M\left(g_{1}\right)<\ldots<L M\left(g_{r}\right)$. Then G is a triangular set, in particular $r=n$.
- There is an algorithm to compute a triangular decomposition of the zero-dimensional ideal I without computing the associated maximal ideals using only Gröbner bases and no multivariate polynomial factorization.
- This algorithm is implemented in SINGULAR: solve.lib .

How to solve polynomial systems?

$$
\begin{aligned}
\text { ring } & \mathrm{A}=0,(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{l} \mathrm{p} ; \\
\text { ideal } \mathrm{I}= & \mathrm{x} 2+\mathrm{y}+\mathrm{z}-1, \\
& \mathrm{x}+\mathrm{y} 2+\mathrm{z}-1, \\
& \mathrm{x}+\mathrm{y}+\mathrm{z} 2-1 ;
\end{aligned}
$$

LIB"solve.lib";
list sl=solve (I, 6);
[1]:

0.414214

1
[3]:
[1]:
-2.414214
[2]:
-2.414214
[3]:
-2.414214
[4]: [5]:
[1]:
1
[2]:
0
[3]:
[3]:

Sudoku

				5			8	
				6	2			5
6			4			7		
		7				9	6	
		5	2		6	1		
	3	6				4		
		3			7			4
1			5	8				
	6			1				

Sudoku

- the idea of a Sudoku goes back to Leonard Euler: Latin squares
- in our days invented by Howard Garns (USA): Number place

Sudoku

- the idea of a Sudoku goes back to Leonard Euler: Latin squares
- in our days invented by Howard Garns (USA): Number place
J.Gago-Vargas, I. Hartillo-Hermoso, J. Martin-Morales, J. Maria Ucha-Enriquez:
Sudokus and Gröbner bases: not only a Divertimento

Sudoku

- the idea of a Sudoku goes back to Leonard Euler: Latin squares
- in our days invented by Howard Garns (USA): Number place
J.Gago-Vargas, I. Hartillo-Hermoso, J. Martin-Morales, J. Maria Ucha-Enriquez:
Sudokus and Gröbner bases: not only a Divertimento
- associate to the places in a Sudoku the variables x_{1}, \ldots, x_{81} and to each variable x_{i} the polynomial $F_{i}\left(x_{i}\right)=\prod_{j=1}^{9}\left(x_{i}-j\right)$
- Let
$E=\{(i, j), i<j$ and i, j in the same row, column or $3 \times 3-$ box $\}$
- For $(i, j) \in E$ let $G_{i, j}=\frac{F_{i}-F_{j}}{x_{i}-x_{j}}$.
- Let $I \subset \mathbb{Q}\left[x_{1}, \ldots, x_{81}\right]$ be the ideal generated by the 891 polynomials $\left\{G_{i, j}\right\}_{(i, j) \in E}$ and $\left\{F_{i}\right\}_{i=1, \ldots, 9}$

Sudoku

- $a=\left(a_{1}, \ldots, a_{81}\right) \in V(I)$ iff $a_{i} \in\{1, \ldots, 9\}$ and $a_{i} \neq a_{j}$ for $(i, j) \in E$
- a well posed Sudoku has a unique solution.
- Let $L \subset\{1, \ldots, 81\}$ be the set of pre-assigned places and $\left\{a_{i}\right\}_{i \in L}$ the corresponding numbers of a concrete Sudoku S.
- Then $I_{S}=I+<\left\{x_{i}-a_{i}\right\}_{i \in L}>$ is the ideal associated to the Sudoku S. It has to be a maximal ideal if the Sudoku is well posed.

Sudoku

- $a=\left(a_{1}, \ldots, a_{81}\right) \in V(I)$ iff $a_{i} \in\{1, \ldots, 9\}$ and $a_{i} \neq a_{j}$ for $(i, j) \in E$
- a well posed Sudoku has a unique solution.
- Let $L \subset\{1, \ldots, 81\}$ be the set of pre-assigned places and $\left\{a_{i}\right\}_{i \in L}$ the corresponding numbers of a concrete Sudoku S.
- Then $I_{S}=I+<\left\{x_{i}-a_{i}\right\}_{i \in L}>$ is the ideal associated to the Sudoku S. It has to be a maximal ideal if the Sudoku is well posed.
- The reduced Gröbner basis of I_{S} with respect to the lexicographical ordering has the shape $x_{1}-a_{1}, \ldots, x_{81}-a_{81}$ and $\left(a_{1}, \ldots, a_{81}\right)$ is the solution of the Sudoku.

Models for economy

Felix Kubler and Karl Schmedders (University of Zürich)
General problem:

- Study a computer model of a national economy, a standard exchange economy with finitely many agents and goods
- especially study equilibria

Walrasian equilibrium consists of prices and choices, such that household maximize utilities, firms maximize profits and markets clear

Models for economy

Felix Kubler and Karl Schmedders (University of Zürich)
General problem:

- Study a computer model of a national economy, a standard exchange economy with finitely many agents and goods
- especially study equilibria

Walrasian equilibrium consists of prices and choices, such that household maximize utilities, firms maximize profits and markets clear

Mathematical problem:
Find the positive real roots of a given system of polynomial equations

```
ring R = 0,x(1..22),dp;
ideal I = -1+x(1)^ 5*x(4)*x(13), -1+x(2)^ 5*x (4)*x(14),
-1+x(3)^ 5*x(4)*x(15), -1+x(5)^ 3*x(8)*x(13), -1+x(6)^ 3*x (8)*x(14),
-1+x(7)^3*x(8)*x(15),}\quad-1+x(9)^4*x(12)*x(13)
-1+x(10)^4*x(12)*x(14),
5+2*x(16)-x(1)*x(13)-x(2)*x(14)-x(3)*x (15),
3+5*x(16) -x (5)*x(13) -x (6)*x(14) -x (7) *x (15),
(x(1)+x(5)+x(9))^3-x(17)^2*x(18),
(x(2)+x(6)+x(10))^2-x(19)*x(20),
(x(3)+x(7)+x(11))^2-4*x(21)*x(22),
x(17)+x(19)+x(21)-10, x(18)+x(20)+x(22)-10,
8*x(13)^3*x(18)-27*x(16)^3*x (17), x(13)^3*x(17)^2-27*x(18)^2,
x(14)^ 2*x(20)-4*x(16)^ 2*x(19), x(14)^ 2*x(19)-4*x(20),
x(15)^2*x(22)-x(16)^ 2*x(21),
x(15) ^ 2*x(21)-x(22);
```


Primary decomposition

Let A be a Noetherian ring, and let $I \subsetneq A$ be an ideal.

1. The set of associated primes of I, denoted by $\operatorname{Ass}(I)$, is defined as $\operatorname{Ass}(I)=\{P \subset A \| P$ prime, $P=I:\langle b\rangle$ for some $b \in A\}$. Elements of $\operatorname{Ass}(\langle 0\rangle)$ are also called associated primes of A.

Primary decomposition

Let A be a Noetherian ring, and let $I \subsetneq A$ be an ideal.

1. The set of associated primes of I, denoted by $\operatorname{Ass}(I)$, is defined as $\operatorname{Ass}(I)=\{P \subset A \| P$ prime, $P=I:\langle b\rangle$ for some $b \in A\}$. Elements of $\operatorname{Ass}(\langle 0\rangle)$ are also called associated primes of A.
2. Let $P, Q \in \operatorname{Ass}(I)$ and $Q \subsetneq P$, then P is called an embedded prime ideal of I. Ass $(I, P):=\{Q \mid Q \in \operatorname{Ass}(I), Q \subset P\}$.

Primary decomposition

Let A be a Noetherian ring, and let $I \subsetneq A$ be an ideal.

1. The set of associated primes of I, denoted by $\operatorname{Ass}(I)$, is defined as $\operatorname{Ass}(I)=\{P \subset A \| P$ prime, $P=I:\langle b\rangle$ for some $b \in A\}$. Elements of $\operatorname{Ass}(\langle 0\rangle)$ are also called associated primes of A.
2. Let $P, Q \in \operatorname{Ass}(I)$ and $Q \subsetneq P$, then P is called an embedded prime ideal of I. Ass $(I, P):=\{Q \mid Q \in \operatorname{Ass}(I), Q \subset P\}$.
3. I is called equidimensional or pure dimensional if all associated primes of I have the same dimension.

Primary decomposition

Let A be a Noetherian ring, and let $I \subsetneq A$ be an ideal.

1. The set of associated primes of I, denoted by $\operatorname{Ass}(I)$, is defined as $\operatorname{Ass}(I)=\{P \subset A \| P$ prime, $P=I:\langle b\rangle$ for some $b \in A\}$. Elements of $\operatorname{Ass}(\langle 0\rangle)$ are also called associated primes of A.
2. Let $P, Q \in \operatorname{Ass}(I)$ and $Q \subsetneq P$, then P is called an embedded prime ideal of I. Ass $(I, P):=\{Q \mid Q \in \operatorname{Ass}(I), Q \subset P\}$.
3. I is called equidimensional or pure dimensional if all associated primes of I have the same dimension.
4. I is a primary ideal if, for any $a, b \in A, a b \in I$ and $a \notin I$ imply $b \in \sqrt{I}$. Let P be a prime ideal, then a primary ideal I is called P-primary if $P=\sqrt{I}$.

Primary decomposition

Let A be a Noetherian ring, and let $I \subsetneq A$ be an ideal.

1. The set of associated primes of I, denoted by $\operatorname{Ass}(I)$, is defined as $\operatorname{Ass}(I)=\{P \subset A \| P$ prime, $P=I:\langle b\rangle$ for some $b \in A\}$. Elements of $\operatorname{Ass}(\langle 0\rangle)$ are also called associated primes of A.
2. Let $P, Q \in \operatorname{Ass}(I)$ and $Q \subsetneq P$, then P is called an embedded prime ideal of I. Ass $(I, P):=\{Q \mid Q \in \operatorname{Ass}(I), Q \subset P\}$.
3. I is called equidimensional or pure dimensional if all associated primes of I have the same dimension.
4. I is a primary ideal if, for any $a, b \in A, a b \in I$ and $a \notin I$ imply $b \in \sqrt{I}$. Let P be a prime ideal, then a primary ideal I is called P-primary if $P=\sqrt{I}$.
5. A primary decomposition of I, that is, a decomposition $I=Q_{1} \cap \cdots \cap Q_{s}$ with Q_{i} primary ideals, is called irredundant if no Q_{i} can be omitted and if $\sqrt{Q_{i}} \neq \sqrt{Q_{j}}$ for all $i \neq j$.

Primary decomposition

- Let A be a Noetherian ring and $I \subsetneq A$ be an ideal, then there exists an irredundant decomposition $I=Q_{1} \cap \cdots \cap Q_{r}$ of I as intersection of primary ideals Q_{1}, \ldots, Q_{r}.

Primary decomposition

- Let A be a Noetherian ring and $I \subsetneq A$ be an ideal, then there exists an irredundant decomposition $I=Q_{1} \cap \cdots \cap Q_{r}$ of I as intersection of primary ideals Q_{1}, \ldots, Q_{r}.
- Let A be a ring and $I \subset A$ be an ideal with irredundant primary decomposition $I=Q_{1} \cap \cdots \cap Q_{r}$. Then $r=\#$ Ass (I),

$$
\operatorname{Ass}(I)=\left\{\sqrt{Q_{1}}, \ldots, \sqrt{Q_{r}}\right\}
$$

and if $\left\{\sqrt{Q_{i_{1}}}, \ldots, \sqrt{Q_{i_{s}}}\right\}=\operatorname{Ass}(I, P)$ for $P \in \operatorname{Ass}(I)$ then $Q_{i_{1}} \cap \cdots \cap Q_{i_{s}}$ is independent of the decomposition.

Primary decomposition

1. If $I=\langle f\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]$ is a principal ideal and $f=f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}$ is the factorization of f into irreducible factors, then

$$
I=\left\langle f_{1}^{n_{1}}\right\rangle \cap \cdots \cap\left\langle f_{r}^{n_{r}}\right\rangle
$$

is the primary decomposition, and the $\left\langle f_{i}\right\rangle$ are the associated prime ideals which are all minimal.

Primary decomposition

1. If $I=\langle f\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]$ is a principal ideal and $f=f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}$ is the factorization of f into irreducible factors, then

$$
I=\left\langle f_{1}^{n_{1}}\right\rangle \cap \cdots \cap\left\langle f_{r}^{n_{r}}\right\rangle
$$

is the primary decomposition, and the $\left\langle f_{i}\right\rangle$ are the associated prime ideals which are all minimal.
2. Let $I=\langle x y, x z, y z\rangle=\langle x, y\rangle \cap\langle x, z\rangle \cap\langle y, z\rangle \subset K[x, y, z]$. Then the zero-set $V(I)$ is the union of the coordinate axes .

Primary decomposition

Let $I=\left\langle\left(y^{2}-x z\right) \cdot\left(z^{2}-x^{2} y\right),\left(y^{2}-x z\right) \cdot z\right\rangle \subset K[x, y, z]$.

- $I=\left\langle y^{2}-x z\right\rangle \cap\left\langle x^{2}, z\right\rangle \cap\left\langle y, z^{2}\right\rangle$,
- $\operatorname{Ass}(I)=\left\{\left\langle y^{2}-x z\right\rangle,\langle x, z\rangle,\langle y, z\rangle\right\}$
- $\operatorname{minAss}(I)=\left\{\left\langle y^{2}-x z\right\rangle,\langle x, z\rangle\right\}$.
- $\langle y, z\rangle$ is an embedded prime $\operatorname{Ass}(I,\langle y, z\rangle)=\left\{\left\langle y^{2}-x z\right\rangle,\langle y, z\rangle\right\}$.

Gianni, Trager, Zacharias

Definition

- A maximal ideal $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, if there exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ with $M=\left\langle x_{1}+g_{1}\left(x_{n}\right), \ldots, x_{n-1}+g_{n-1}\left(x_{n}\right), g_{n}\left(x_{n}\right)\right\rangle$.

Gianni, Trager, Zacharias

Definition

- A maximal ideal $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, if there exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ with $M=\left\langle x_{1}+g_{1}\left(x_{n}\right), \ldots, x_{n-1}+g_{n-1}\left(x_{n}\right), g_{n}\left(x_{n}\right)\right\rangle$.
- A zero-dimensional ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, if all associated primes P_{1}, \ldots, P_{k} are in general position and if $P_{i} \cap K\left[x_{n}\right] \neq P_{j} \cap K\left[x_{n}\right]$ for $i \neq j$.

Proposition

Let K be a field of characteristic 0 , and let $I \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$, be a zero-dimensional ideal. Then there exists a non-empty, Zariski open subset $U \subset K^{n-1}$ such that for all $\underline{a}=\left(a_{1}, \ldots, a_{n-1}\right) \in U$, the coordinate change $\varphi_{\underline{a}}: K[x] \rightarrow K[x]$ defined by $\varphi_{\underline{a}}\left(x_{i}\right)=x_{i}$ if $i<n$, and

$$
\varphi_{\underline{a}}\left(x_{n}\right)=x_{n}+\sum_{i=1}^{n-1} a_{i} x_{i}
$$

has the property that $\varphi_{\underline{a}}(I)$ is in general position with respect to the lexicographical ordering defined by $x_{1}>\cdots>x_{n}$.

Proposition

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a zero-dimensional ideal. Let $\langle g\rangle=I \cap K\left[x_{n}\right], g=g_{1}^{\nu_{1}} \ldots g_{s}^{\nu_{s}}, g_{i}$ monic and prime and $g_{i} \neq g_{j}$ for $i \neq j$. Then

- $I=\bigcap_{i=1}^{s}\left\langle I, g_{i}^{\nu_{i}}\right\rangle$.

Proposition

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a zero-dimensional ideal. Let $\langle g\rangle=I \cap K\left[x_{n}\right], g=g_{1}^{\nu_{1}} \ldots g_{s}^{\nu_{s}}, g_{i}$ monic and prime and $g_{i} \neq g_{j}$ for $i \neq j$. Then

- $I=\bigcap_{i=1}^{s}\left\langle I, g_{i}^{\nu_{i}}\right\rangle$.
- If I is in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, then
(2) $\left\langle I, g_{i}^{\nu_{i}}\right\rangle$ is a primary ideal for all i.

Criterion

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a proper ideal. Then the following conditions are equivalent:

- I is zero-dimensional, primary and in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$.
- There exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ and positive integers ν_{1}, \ldots, ν_{n} such that
- $I \cap K\left[x_{n}\right]=\left\langle g_{n}^{\nu_{n}}\right\rangle, g_{n}$ irreducible;
- for each $j<n, I$ contains the element $\left(x_{j}+g_{j}\right)^{\nu_{j}}$.

Criterion

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a proper ideal. Then the following conditions are equivalent:

- I is zero-dimensional, primary and in general position with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$.
- There exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ and positive integers ν_{1}, \ldots, ν_{n} such that
- $I \cap K\left[x_{n}\right]=\left\langle g_{n}^{\nu_{n}}\right\rangle, g_{n}$ irreducible;
- for each $j<n, I$ contains the element $\left(x_{j}+g_{j}\right)^{\nu_{j}}$.
- Let S be a reduced Gröbner basis of I with respect to the lexicographical ordering with $x_{1}>\ldots>x_{n}$. Then there exist $g_{1}, \ldots, g_{n} \in K\left[x_{n}\right]$ and positive integers
ν_{1}, \ldots, ν_{n} such that
- $g_{n}^{\nu_{n}} \in S$ and g_{n} is irreducible;
- $\left(x_{j}+g_{j}\right)^{\nu_{j}}$ is congruent to an element in $S \cap K\left[x_{j}, \ldots, x_{n}\right]$ modulo $\left\langle g_{n}, x_{n-1}+g_{n-1}, \ldots, x_{j+1}+g_{j+1}\right\rangle \subset K[x]$ for $j=1, \ldots, n-1$.
- Input: A zero-dimensional ideal $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: \sqrt{I} if I is primary and in general position or $\langle 0\rangle$ else.
- compute a reduced Gröbner basis S of I with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$;
- factorize $g \in S$, the element with smallest leading monomial;
- if ($g=g_{n}^{\nu_{n}}$ with g_{n} irreducible) prim $:=\left\langle g_{n}\right\rangle$ else return $\langle 0\rangle$.
- $i:=n$;
while ($i>1$)
$i:=i-1 ;$
choose $f \in S$ with $L M(f)=x_{i}^{m}$;
$b:=$ the coefficient of x_{i}^{m-1} in f considered as polynomial in x_{i};
$q:=x_{i}+b / m ;$
if $\left(q^{m} \equiv f \bmod \operatorname{prim}\right) \quad$ prim $:=\operatorname{prim}+\langle q\rangle$;
else return $\langle 0\rangle$;
- return prim.
- Input: a zero-dimensional ideal $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: a set of pairs $\left(Q_{i}, P_{i}\right)$ of ideals in $K[x], i=1, \ldots, r$, such that
$-I=Q_{1} \cap \cdots \cap Q_{r}$ is a primary decomposition of I, and
$-P_{i}=\sqrt{Q_{i}}, i=1, \ldots, r$.
- result $:=\emptyset$;
- choose a random $\underline{a} \in K^{n-1}$, and apply the coordinate change $I^{\prime}:=\varphi_{\underline{a}}(I)$;
- compute a Gröbner basis G of I^{\prime} with respect to the lexicographical ordering with $x_{1}>\cdots>x_{n}$, let $g \in G$ be the element with smallest leading monomial.
2 factorize $g=g_{1}^{\nu_{1}} \cdot \ldots \cdot g_{s}^{\nu_{s}} \in K\left[x_{n}\right]$;
- for $i=1$ to s do

```
set \(Q_{i}^{\prime}:=\left\langle I^{\prime}, g_{i}^{\nu_{i}}\right\rangle\) and \(Q_{i}:=\left\langle I, \varphi_{\underline{a}}^{-1}\left(g_{i}\right)^{\nu_{i}}\right\rangle ;\)
set \(P_{i}^{\prime}:=\operatorname{PrimaryTest}\left(Q_{i}^{\prime}\right)\);
if \(P_{i}^{\prime} \neq\langle 0\rangle\)
    set \(P_{i}:=\varphi_{\underline{a}}^{-1}\left(P_{i}^{\prime}\right)\);
    result := result \(\cup\left\{\left(Q_{i}, P_{i}\right)\right\}\);
else
    result := result \(\cup\) zerodecomp \(\left(Q_{i}\right)\);
```

e return result.

Example

```
ring R=0, (x,y),lp;
ideal I=(x2-2)^2,y2-2;
map phi=R,x,x+y; //coordinate change
map psi=R,x,-x+y; //the inverse map
I=std(phi(I));
I;
I[1]=y6-1 6y4+64y2
I [2]=32xy2+y5+8y3
I [3] =x2+2xy+y2-2
factorize(I[1]);
[1]:
_[1]=1
_[2]=y
_[3]=y2-8
[2]:
    1,2,2
```


Example

 KAISERSLAUTERNideal Q1=std(I, (y^2)); //the candidates for the //primary ideals
ideal Q2=std(I, (y^2-8) ^2); //in general position Q1; Q2;

Q1[1]=y2
Q1[2] $=x 2+2 x y-2$
$Q 2[1]=y 4-16 y 2+64$
$Q 2[2]=32 x+y 3+8 y$

Q2=std(psi(Q2));
Q2;
Q2[1]=y2-2
Q2[2] $=x 2+2 x y+2$

Example

> primdecGTZ(I);
[1]:
[1]:

$$
\begin{aligned}
& -[1]=y^{2}-2 \\
& _[2]=x 2-2 x y+2
\end{aligned}
$$

[2]:
$-[1]=y 2-2$
_[2] $=x-y$
[2]:
[1]:

$$
\begin{aligned}
& -[1]=y^{2}-2 \\
& _[2]=x 2+2 x y+2
\end{aligned}
$$

[2]:
$-[1]=y 2-2$
$-[2]=x+y$

Proposition

Let $I \subset K[x]$ be an ideal and $u \subset x=\left\{x_{1}, \ldots, x_{n}\right\}$ be a maximal independent set of variables with respect to I.
$(I \cap K[u]=\{0\}$ and $\#(u)=\operatorname{dim}(K[x] / I))$

- $I K(u)[x \backslash u] \subset K(u)[x \backslash u]$ is a zero-dimensional ideal.
- Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset I \subset K[x]$ be a Gröbner basis of $I K(u)[x \backslash u]$, and let $h:=\operatorname{lcm}\left(\operatorname{LC}\left(g_{1}\right), \ldots, \operatorname{LC}\left(g_{s}\right)\right) \in K[u]$, then

$$
I K(u)[x \backslash u] \cap K[x]=I:\left\langle h^{\infty}\right\rangle,
$$

and this ideal is equidimensional of dimension $\operatorname{dim}(I)$.

Proposition

Let $I \subset K[x]$ be an ideal and $u \subset x=\left\{x_{1}, \ldots, x_{n}\right\}$ be a maximal independent set of variables with respect to I.
$(I \cap K[u]=\{0\}$ and $\#(u)=\operatorname{dim}(K[x] / I))$

- $I K(u)[x \backslash u] \subset K(u)[x \backslash u]$ is a zero-dimensional ideal.
- Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subset I \subset K[x]$ be a Gröbner basis of $I K(u)[x \backslash u]$, and let $h:=\operatorname{lcm}\left(\operatorname{LC}\left(g_{1}\right), \ldots, \operatorname{LC}\left(g_{s}\right)\right) \in K[u]$, then

$$
I K(u)[x \backslash u] \cap K[x]=I:\left\langle h^{\infty}\right\rangle,
$$

and this ideal is equidimensional of dimension $\operatorname{dim}(I)$.

- Let $I K(u)[x \backslash u]=Q_{1} \cap \cdots \cap Q_{s}$ be an irredundant primary decomposition, then also $I K(u)[x \backslash u] \cap K[x]=\left(Q_{1} \cap K[x]\right) \cap \cdots \cap\left(Q_{s} \cap K[x]\right)$ is an irredundant primary decomposition.
- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: A list (u, G, h), where
$-u \subset x$ is a maximal independent set with respect to I,
$-G=\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis of $I K(u)[x \backslash u]$,
$-h \in K[u]$ such that $I K(u)[x \backslash u] \cap K[x]=I:\langle h\rangle=I:\left\langle h^{\infty}\right\rangle$.
- compute a maximal independent set $u \subset x$ with respect to I;
- compute a Gröbner basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I with respect to the lexicographical ordering with $x \backslash u>u$;
- $h:=\prod_{i=1}^{s} \mathrm{LC}\left(g_{i}\right) \in K[u]$, where the g_{i} are considered as polynomials in $x \backslash u$ with coefficients in $K(u)$;
- compute m such that $\left\langle g_{1}, \ldots, g_{s}\right\rangle:\left\langle h^{m}\right\rangle=\left\langle g_{1}, \ldots, g_{s}\right\rangle:\left\langle h^{m+1}\right\rangle$;
- return $u,\left\{g_{1}, \ldots, g_{s}\right\}, h^{m}$.
- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: a set of pairs $\left(Q_{i}, P_{i}\right)$ of ideals in $K[x], i=1, \ldots, r$, such that
$-I=Q_{1} \cap \cdots \cap Q_{r}$ is a primary decomposition of I, and
$\left.-P_{i}=\sqrt{(} Q_{i}\right), i=1, \ldots, r$.
- $(u, G, h):=$ reductiontozero (I);
- change ring to $K(u)[x \backslash u]$ and compute qprimary := zeroDecomp $\left(\langle G\rangle_{K(u)[x \backslash u]}\right)$;
- change ring to $K[x]$ and compute
primary $:=\left\{\left(Q^{\prime} \cap K[x], P^{\prime} \cap K[x]\right) \mid\left(Q^{\prime}, P^{\prime}\right) \in\right.$ qprimary $\} ;$
- primary := primary $\cup \operatorname{decomp~}\left(\left\langle I, h^{n}\right\rangle\right)$;
- return primary.

Definition

Let A be a Noetherian ring, let $I \subset A$ be an ideal, and let $I=Q_{1} \cap \cdots \cap Q_{s}$ be an irredundant primary decomposition.

- The equidimensional part $E(I)$ is the intersection of all primary ideals Q_{i} with $\operatorname{dim}\left(Q_{i}\right)=\operatorname{dim}(I)$.

Definition

Let A be a Noetherian ring, let $I \subset A$ be an ideal, and let $I=Q_{1} \cap \cdots \cap Q_{s}$ be an irredundant primary decomposition.

- The equidimensional part $E(I)$ is the intersection of all primary ideals Q_{i} with $\operatorname{dim}\left(Q_{i}\right)=\operatorname{dim}(I)$.
- The ideal I (respectively the ring A / I) is called equidimensional or pure dimensional if $E(I)=I$. In particular, the ring A is called equidimensional if $E(\langle 0\rangle)=\langle 0\rangle$.
- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: $E(I) \subset K[x]$, the equidimensional part of I.
- set $(u, G, h):=$ reductionToZero (I);
- if $(\operatorname{dim}(\langle I, h\rangle)<\operatorname{dim}(I))$ return $(\langle G\rangle:\langle h\rangle)$;
else
return $((\langle G\rangle:\langle h\rangle) \cap$ Equidimensional $(\langle I, h\rangle))$.

Proposition

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a zero-dimensional ideal and $I \cap K\left[x_{i}\right]=\left\langle f_{i}\right\rangle$ for $i=1, \ldots, n$. Moreover, let g_{i} be the squarefree part of f_{i}, then $\sqrt{I}=I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.

- Obviously, $I \subset I+\left\langle g_{1}, \ldots, g_{n}\right\rangle \subset \sqrt{I}$. Hence, it remains to show that $a^{n} \in I$ implies that $a \in I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.
- Obviously, $I \subset I+\left\langle g_{1}, \ldots, g_{n}\right\rangle \subset \sqrt{I}$. Hence, it remains to show that $a^{n} \in I$ implies that $a \in I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.
- Let \bar{K} be the algebraic closure of K. We see that each g_{i} is the product of different linear factors of $\bar{K}\left[x_{i}\right]$. These linear factors of the g_{i} induce a splitting of the ideal $\left(I+\left\langle g_{1}, \ldots, g_{n}\right\rangle\right) \bar{K}[x]$ into an intersection of maximal ideals.
- Obviously, $I \subset I+\left\langle g_{1}, \ldots, g_{n}\right\rangle \subset \sqrt{I}$. Hence, it remains to show that $a^{n} \in I$ implies that $a \in I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$.
- Let \bar{K} be the algebraic closure of K. We see that each g_{i} is the product of different linear factors of $\bar{K}\left[x_{i}\right]$. These linear factors of the g_{i} induce a splitting of the ideal $\left(I+\left\langle g_{1}, \ldots, g_{n}\right\rangle\right) \bar{K}[x]$ into an intersection of maximal ideals.
- Hence, $\left(I+\left\langle g_{1}, \ldots, g_{n}\right\rangle\right) \bar{K}[x]$ is radical. Now consider $a \in K[x]$ with $a^{n} \in I+\left\langle g_{1}, \ldots, g_{n}\right\rangle$. We obtain

$$
a \in\left(I+\left\langle g_{1}, \ldots, g_{n}\right\rangle\right) \bar{K}[x] \cap K[x]=I+\left\langle g_{1}, \ldots, g_{n}\right\rangle .
$$

zeroradical(I)

- Input: a zero-dimensional ideal $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x]$, $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: $\sqrt{I} \subset K[x]$, the radical of I.
- for $i=1, \ldots, n$, compute $f_{i} \in K\left[x_{i}\right]$ such that $I \cap K\left[x_{i}\right]=\left\langle f_{i}\right\rangle ;$
- return $I+\left\langle\operatorname{squarefree}\left(f_{1}\right), \ldots\right.$, $\left.\operatorname{squarefree}\left(f_{n}\right)\right\rangle$.
- Input: $I:=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset K[x], x=\left(x_{1}, \ldots, x_{n}\right)$.
- Output: $\sqrt{I} \subset K[x]$, the radical of I.
- $(u, G, h):=$ reductionToZero (I);
- change ring to $K(u)[x \backslash u]$ and compute
$J:=$ zeroradical $(\langle G\rangle)$;
- compute a Gröbner basis $\left\{g_{1}, \ldots, g_{\ell}\right\} \subset K[x]$ of J;
- set $p:=\prod_{i=1}^{\ell} \mathrm{LC}\left(g_{i}\right) \in K[u]$;
- change ring to $K[x]$ and compute
$J \cap K[x]=\left\langle g_{1}, \ldots, g_{\ell}\right\rangle:\left\langle p^{\infty}\right\rangle ;$
- return $(J \cap K[x]) \cap \operatorname{radical}(\langle I, h\rangle)$.

