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with special emphasize on the needs of algebraic geometry, commutative algebra, and
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The computer is not the philosopher’s stone but the philosopher’s
whetstone

Hugo Battus, Rekenen op taal 1983
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Motivation

The basic problem of algebraic geometry is to understand the set of
solutions x = (x1, . . . , xn) ∈ Kn of a system of polynomial equations

f1(x1, . . . , xn) = 0 , . . . , fk(x1, . . . , xn) = 0 ,

fi ∈ K[x] = K[x1, . . . , xn] and K a field. The solution set is called an
algebraic set or algebraic variety.
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Motivation

(A) The Hypersurface V (x2+ y3− z2y2). (B) The Variety V (xz, yz).
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Motivation

(C) The Space Curve
V (xy, xz, yz).

(D) The Set of Points V (y4− y2,
xy3− xy, x3y − xy, x4− x2).
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surfaces: http://www.imaginary2008.de/

Consider the equation

((y−z)2+(y−1− 1
2x− 1

8x2+ 1
16x3)2− 1

50 )((x− 3
5y+1)2+(y−z2)2− 1

100 ) = 0

defining a surface of degree 10 in R3.

What do you expect from the real picture?
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Nice algebraic surfaces
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Motivation

A set X ⊂ An
K is called an affine algebraic variety (over K) if

there exist polynomials fλ ∈ K[x1, . . . , xn], λ in some index set
Λ, such that

X = V
(

(fλ)λ∈Λ

)

= {x ∈ An
K | fλ(x) = 0, ∀ λ ∈ Λ} .

Solving Polynomial Equations and Primary Decomposition – p. 10



Motivation

A set X ⊂ An
K is called an affine algebraic variety (over K) if

there exist polynomials fλ ∈ K[x1, . . . , xn], λ in some index set
Λ, such that

X = V
(

(fλ)λ∈Λ

)

= {x ∈ An
K | fλ(x) = 0, ∀ λ ∈ Λ} .

Of course, X depends only on the ideal I generated by the fλ,
that is, X = V (I) with I = 〈fλ | λ ∈ Λ〉K[x].
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Motivation

A set X ⊂ An
K is called an affine algebraic variety (over K) if

there exist polynomials fλ ∈ K[x1, . . . , xn], λ in some index set
Λ, such that

X = V
(

(fλ)λ∈Λ

)

= {x ∈ An
K | fλ(x) = 0, ∀ λ ∈ Λ} .

Of course, X depends only on the ideal I generated by the fλ,
that is, X = V (I) with I = 〈fλ | λ ∈ Λ〉K[x].

For any set X ⊂ An define

I(X) :=
{

f ∈ K[x1, . . . , xn]
∣

∣ f |X = 0
}

,

the (full vanishing) ideal of X, where f |X : X → K denotes the
polynomial function of f restricted to X.
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Motivation

Let X ⊂ An be a subset, X1, X2 ⊂ An affine varieties.

1. I(X) is a radical ideal.
2. V

(

I(X)
)

= X the Zariski closure of X in An.

3. If X is an affine variety, then V
(

I(X)
)

= X.

4. I(X) = I(X).
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Motivation

Let X ⊂ An be a subset, X1, X2 ⊂ An affine varieties.

1. I(X) is a radical ideal.
2. V

(

I(X)
)

= X the Zariski closure of X in An.

3. If X is an affine variety, then V
(

I(X)
)

= X.

4. I(X) = I(X).
5. X1 ⊂ X2 if and only if I(X2) ⊂ I(X1),

X1 = X2 if and only if I(X1) = I(X2).
6. I(X1 ∪ X2) = I(X1) ∩ I(X2).

7. I(X1 ∩ X2) =
√

I(X1) + I(X2).
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Motivation

Let X ⊂ An be a subset, X1, X2 ⊂ An affine varieties.

1. I(X) is a radical ideal.
2. V

(

I(X)
)

= X the Zariski closure of X in An.

3. If X is an affine variety, then V
(

I(X)
)

= X.

4. I(X) = I(X).
5. X1 ⊂ X2 if and only if I(X2) ⊂ I(X1),

X1 = X2 if and only if I(X1) = I(X2).
6. I(X1 ∪ X2) = I(X1) ∩ I(X2).

7. I(X1 ∩ X2) =
√

I(X1) + I(X2).

Hilbert’s Nullstellensatz: If I ⊂ K[x1, . . . , xn] is an ideal, K is
algebraically closed, and X = V (I), then

I(X) =
√

I .
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Motivation

We obtain, for K algebraically closed, an inclusion reversing
bijection (HN refers to Hilbert’s Nullstellensatz)

{affine algebraic sets in An
K} // {radical ideals I ⊂ K[x1, . . . , xn]}HN

oo

X
�

// I(X)

V (I) I .
�

oo
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Motivation

For K an algebraically closed field, we have the following inclusion
reversing bijections (with K[x] = K[x1, . . . , xn]):

{algebraic sets in An
K} HN↔ {radical ideals in K[x]}
⋃ ⋃

{irreducible algebraic sets in An
K} ↔ {prime ideals in K[x]}
⋃ ⋃

{points of An
K} ↔ {maximal ideals in K[x]} .
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How to solve polynomial systems?

Let > be the lexicographical ordering lp, i.e. x1 > . . . , > xn.
A set of polynomials F = {f1, . . . , fn} ⊂ K[x1, . . . , xn] is called a
triangular set if for each i

(1) fi ∈ K[xn−i+1, . . . , xn],

(2) LM(fi) = xmi

n−i+1, for some mi > 0.

Hence, f1 depends only on xn, f2 on xn−1, xn and so on, until fn

which depends on all variables.
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Let > be the lexicographical ordering lp, i.e. x1 > . . . , > xn.
A set of polynomials F = {f1, . . . , fn} ⊂ K[x1, . . . , xn] is called a
triangular set if for each i

(1) fi ∈ K[xn−i+1, . . . , xn],

(2) LM(fi) = xmi

n−i+1, for some mi > 0.

Hence, f1 depends only on xn, f2 on xn−1, xn and so on, until fn

which depends on all variables.

A list of triangular sets F1, . . . , Fs is called a triangular
decomposition of the zero–dimensional ideal I if

√
I =

√

〈F1〉 ∩ . . . ∩
√

〈Fs〉.
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How to solve polynomial systems?

Let > be the lexicographical ordering lp, i.e. x1 > . . . , > xn.
A set of polynomials F = {f1, . . . , fn} ⊂ K[x1, . . . , xn] is called a
triangular set if for each i

(1) fi ∈ K[xn−i+1, . . . , xn],

(2) LM(fi) = xmi

n−i+1, for some mi > 0.

Hence, f1 depends only on xn, f2 on xn−1, xn and so on, until fn

which depends on all variables.

A list of triangular sets F1, . . . , Fs is called a triangular
decomposition of the zero–dimensional ideal I if

√
I =

√

〈F1〉 ∩ . . . ∩
√

〈Fs〉.

A triangular set is a Gröbner basis.
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How to solve polynomial systems?

Let M ⊂ K[x1, . . . , xn] be a maximal ideal and G = {g1, . . . , gr} a
minimal Gröbner basis of M such that LM(g1) < . . . < LM(gr).
Then G is a triangular set, in particular r = n.
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Let M ⊂ K[x1, . . . , xn] be a maximal ideal and G = {g1, . . . , gr} a
minimal Gröbner basis of M such that LM(g1) < . . . < LM(gr).
Then G is a triangular set, in particular r = n.

There is an algorithm to compute a triangular decomposition of
the zero-dimensional ideal I without computing the associated
maximal ideals using only Gröbner bases and no multivariate
polynomial factorization.
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How to solve polynomial systems?

Let M ⊂ K[x1, . . . , xn] be a maximal ideal and G = {g1, . . . , gr} a
minimal Gröbner basis of M such that LM(g1) < . . . < LM(gr).
Then G is a triangular set, in particular r = n.

There is an algorithm to compute a triangular decomposition of
the zero-dimensional ideal I without computing the associated
maximal ideals using only Gröbner bases and no multivariate
polynomial factorization.

This algorithm is implemented in SINGULAR: solve.lib .
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How to solve polynomial systems?

ring A=0,(x,y,z),lp;
ideal I=x2+y+z-1,

x+y2+z-1,
x+y+z2-1;

LIB"solve.lib";
list s1=solve(I,6);

[1]: [2]: [3]: [4]: [5]:
[1]: [1]: [1]: [1]: [1]:

0.414214 0 -2.414214 1 0
[2]: [2]: [2]: [2]: [2]:

0.414214 0 -2.414214 0 1
[3]: [3]: [3]: [3]: [3]:

0.414214 1 -2.414214 0 0
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Sudoku

5 8
6 2 5

6 4 7
7 9 6
5 2 6 1

3 6 4
3 7 4

1 5 8
6 1

Abbildung 1: Sudoku
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Sudoku

the idea of a Sudoku goes back to Leonard Euler: Latin squares

in our days invented by Howard Garns (USA): Number place
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the idea of a Sudoku goes back to Leonard Euler: Latin squares

in our days invented by Howard Garns (USA): Number place

J.Gago-Vargas, I. Hartillo-Hermoso, J. Martin-Morales, J. Maria
Ucha-Enriquez:
Sudokus and Gröbner bases: not only a Divertimento
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Sudoku

the idea of a Sudoku goes back to Leonard Euler: Latin squares

in our days invented by Howard Garns (USA): Number place

J.Gago-Vargas, I. Hartillo-Hermoso, J. Martin-Morales, J. Maria
Ucha-Enriquez:
Sudokus and Gröbner bases: not only a Divertimento

associate to the places in a Sudoku the variables x1, . . . , x81

and to each variable xi the polynomial Fi(xi) =
∏9

j=1(xi − j)

Let
E = {(i, j), i < j and i, j in the same row, column or 3× 3−box}

For (i, j) ∈ E let Gi,j =
Fi−Fj

xi−xj
.

Let I ⊂ Q[x1, . . . , x81] be the ideal generated by the 891
polynomials {Gi,j}(i,j)∈E and {Fi}i=1,...,9

Solving Polynomial Equations and Primary Decomposition – p. 18



Sudoku

a = (a1, . . . , a81) ∈ V (I) iff ai ∈ {1, . . . , 9} and ai 6= aj for
(i, j) ∈ E

a well posed Sudoku has a unique solution.

Let L ⊂ {1, . . . , 81} be the set of pre-assigned places and
{ai}i∈L the corresponding numbers of a concrete Sudoku S.

Then IS = I+ < {xi − ai}i∈L > is the ideal associated to the
Sudoku S. It has to be a maximal ideal if the Sudoku is well
posed.
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Sudoku

a = (a1, . . . , a81) ∈ V (I) iff ai ∈ {1, . . . , 9} and ai 6= aj for
(i, j) ∈ E

a well posed Sudoku has a unique solution.

Let L ⊂ {1, . . . , 81} be the set of pre-assigned places and
{ai}i∈L the corresponding numbers of a concrete Sudoku S.

Then IS = I+ < {xi − ai}i∈L > is the ideal associated to the
Sudoku S. It has to be a maximal ideal if the Sudoku is well
posed.

The reduced Gröbner basis of IS with respect to the
lexicographical ordering has the shape x1 − a1, . . . , x81 − a81

and (a1, . . . , a81) is the solution of the Sudoku.
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Models for economy

Felix Kubler and Karl Schmedders (University of Zürich)

General problem:

Study a computer model of a national economy,
a standard exchange economy with finitely many agents and goods

especially study equilibria
Walrasian equilibrium consists of prices and choices, such that household

maximize utilities, firms maximize profits and markets clear
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Models for economy

Felix Kubler and Karl Schmedders (University of Zürich)

General problem:

Study a computer model of a national economy,
a standard exchange economy with finitely many agents and goods

especially study equilibria
Walrasian equilibrium consists of prices and choices, such that household

maximize utilities, firms maximize profits and markets clear

Mathematical problem:
Find the positive real roots of a given system of polynomial
equations
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equilibrium model with production

ring R = 0,x(1..22),dp;ideal I = -1+x(1)^5*x(4)*x(13), -1+x(2)^5*x(4)*x(14),-1+x(3)^5*x(4)*x(15), -1+x(5)^3*x(8)*x(13), -1+x(6)^3*x(8)*x(14),-1+x(7)^3*x(8)*x(15), -1+x(9)^4*x(12)*x(13),-1+x(10)^4*x(12)*x(14), -1+x(11)^4*x(12)*x(15),5+2*x(16)-x(1)*x(13)-x(2)*x(14)-x(3)*x(15),3+5*x(16)-x(5)*x(13)-x(6)*x(14)-x(7)*x(15),(x(1)+x(5)+x(9))^3-x(17)^2*x(18),(x(2)+x(6)+x(10))^2-x(19)*x(20),(x(3)+x(7)+x(11))^2-4*x(21)*x(22),x(17)+x(19)+x(21)-10, x(18)+x(20)+x(22)-10,8*x(13)^3*x(18)-27*x(16)^3*x(17), x(13)^3*x(17)^2-27*x(18)^2,x(14)^2*x(20)-4*x(16)^2*x(19), x(14)^2*x(19)-4*x(20),x(15)^2*x(22)-x(16)^2*x(21), x(15)^2*x(21)-x(22);
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Primary decomposition

Let A be a Noetherian ring, and let I ( A be an ideal.

1. The set of associated primes of I, denoted by Ass(I), is defined
as Ass(I) = {P ⊂ A‖P prime, P = I : 〈b〉 for some b ∈ A} .

Elements of Ass(〈0〉) are also called associated primes of A.
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as Ass(I) = {P ⊂ A‖P prime, P = I : 〈b〉 for some b ∈ A} .

Elements of Ass(〈0〉) are also called associated primes of A.

2. Let P, Q ∈ Ass(I) and Q ( P , then P is called an embedded
prime ideal of I. Ass(I, P ) := {Q | Q ∈ Ass(I), Q ⊂ P}.
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Primary decomposition
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1. The set of associated primes of I, denoted by Ass(I), is defined
as Ass(I) = {P ⊂ A‖P prime, P = I : 〈b〉 for some b ∈ A} .

Elements of Ass(〈0〉) are also called associated primes of A.

2. Let P, Q ∈ Ass(I) and Q ( P , then P is called an embedded
prime ideal of I. Ass(I, P ) := {Q | Q ∈ Ass(I), Q ⊂ P}.

3. I is called equidimensional or pure dimensional if all
associated primes of I have the same dimension.
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Primary decomposition

Let A be a Noetherian ring, and let I ( A be an ideal.

1. The set of associated primes of I, denoted by Ass(I), is defined
as Ass(I) = {P ⊂ A‖P prime, P = I : 〈b〉 for some b ∈ A} .

Elements of Ass(〈0〉) are also called associated primes of A.

2. Let P, Q ∈ Ass(I) and Q ( P , then P is called an embedded
prime ideal of I. Ass(I, P ) := {Q | Q ∈ Ass(I), Q ⊂ P}.

3. I is called equidimensional or pure dimensional if all
associated primes of I have the same dimension.

4. I is a primary ideal if, for any a, b ∈ A, ab ∈ I and a 6∈ I imply
b ∈

√
I. Let P be a prime ideal, then a primary ideal I is called

P–primary if P =
√

I.
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Primary decomposition

Let A be a Noetherian ring, and let I ( A be an ideal.

1. The set of associated primes of I, denoted by Ass(I), is defined
as Ass(I) = {P ⊂ A‖P prime, P = I : 〈b〉 for some b ∈ A} .

Elements of Ass(〈0〉) are also called associated primes of A.

2. Let P, Q ∈ Ass(I) and Q ( P , then P is called an embedded
prime ideal of I. Ass(I, P ) := {Q | Q ∈ Ass(I), Q ⊂ P}.

3. I is called equidimensional or pure dimensional if all
associated primes of I have the same dimension.

4. I is a primary ideal if, for any a, b ∈ A, ab ∈ I and a 6∈ I imply
b ∈

√
I. Let P be a prime ideal, then a primary ideal I is called

P–primary if P =
√

I.

5. A primary decomposition of I, that is, a decomposition
I = Q1 ∩ · · · ∩ Qs with Qi primary ideals, is called irredundant if
no Qi can be omitted and if

√
Qi 6=

√

Qj for all i 6= j.

Solving Polynomial Equations and Primary Decomposition – p. 22



Primary decomposition

Let A be a Noetherian ring and I ( A be an ideal, then there
exists an irredundant decomposition I = Q1 ∩ · · · ∩ Qr of I as
intersection of primary ideals Q1, . . . , Qr.
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Primary decomposition

Let A be a Noetherian ring and I ( A be an ideal, then there
exists an irredundant decomposition I = Q1 ∩ · · · ∩ Qr of I as
intersection of primary ideals Q1, . . . , Qr.

Let A be a ring and I ⊂ A be an ideal with irredundant primary
decomposition I = Q1 ∩ · · · ∩ Qr. Then r = #Ass(I),

Ass(I) = {
√

Q1, . . . ,
√

Qr} ,

and if {
√

Qi1 , . . . ,
√

Qis
} = Ass(I, P ) for P ∈ Ass(I) then

Qi1∩ · · · ∩ Qis
is independent of the decomposition.
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Primary decomposition

1. If I = 〈f〉 ⊂ K[x1, . . . , xn] is a principal ideal and f = fn1

1 · · · fns
s

is the factorization of f into irreducible factors, then

I = 〈fn1

1 〉 ∩ · · · ∩ 〈fnr

r 〉

is the primary decomposition, and the 〈fi〉 are the associated
prime ideals which are all minimal.
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Primary decomposition

1. If I = 〈f〉 ⊂ K[x1, . . . , xn] is a principal ideal and f = fn1

1 · · · fns
s

is the factorization of f into irreducible factors, then

I = 〈fn1

1 〉 ∩ · · · ∩ 〈fnr

r 〉

is the primary decomposition, and the 〈fi〉 are the associated
prime ideals which are all minimal.

2. Let I = 〈xy, xz, yz〉 = 〈x, y〉 ∩ 〈x, z〉 ∩ 〈y, z〉 ⊂ K[x, y, z]. Then the
zero–set V (I) is the union of the coordinate axes .
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Primary decomposition

Let I = 〈(y2− xz) · (z2− x2y), (y2− xz) · z〉 ⊂ K[x, y, z].

I = 〈y2− xz〉 ∩ 〈x2, z〉 ∩ 〈y, z2〉,
Ass(I) = {〈y2− xz〉, 〈x, z〉, 〈y, z〉}
minAss(I) = {〈y2− xz〉, 〈x, z〉}.

〈y, z〉 is an embedded prime Ass(I, 〈y, z〉) = {〈y2− xz〉, 〈y, z〉}.
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Gianni, Trager, Zacharias

Definition

A maximal ideal M ⊂ K[x1, . . . , xn] is called in general position
with respect to the lexicographical ordering with x1 > · · · > xn, if
there exist g1, . . . , gn ∈ K[xn] with
M = 〈x1 + g1(xn), . . . , xn−1 + gn−1(xn), gn(xn)〉.
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Gianni, Trager, Zacharias

Definition

A maximal ideal M ⊂ K[x1, . . . , xn] is called in general position
with respect to the lexicographical ordering with x1 > · · · > xn, if
there exist g1, . . . , gn ∈ K[xn] with
M = 〈x1 + g1(xn), . . . , xn−1 + gn−1(xn), gn(xn)〉.
A zero–dimensional ideal I ⊂ K[x1, . . . , xn] is called in general
position with respect to the lexicographical ordering with
x1 > · · · > xn, if all associated primes P1, . . . , Pk are in general
position and if Pi ∩ K[xn] 6= Pj ∩ K[xn] for i 6= j.
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Proposition

Let K be a field of characteristic 0, and let I ⊂ K[x], x = (x1, . . . , xn),
be a zero–dimensional ideal. Then there exists a non–empty, Zariski
open subset U ⊂ Kn−1 such that for all a = (a1, . . . , an−1) ∈ U , the
coordinate change ϕa : K[x] → K[x] defined by ϕa(xi) = xi if i < n,
and

ϕa(xn) = xn +

n−1
∑

i=1

aixi

has the property that ϕa(I) is in general position with respect to the
lexicographical ordering defined by x1 > · · · > xn.
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Proposition

Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal. Let
〈g〉 = I ∩ K[xn], g = gν1

1 . . . gνs
s , gi monic and prime and gi 6= gj for

i 6= j. Then

I =
⋂s

i=1〈I, gνi

i 〉.
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Proposition

Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal. Let
〈g〉 = I ∩ K[xn], g = gν1

1 . . . gνs
s , gi monic and prime and gi 6= gj for

i 6= j. Then

I =
⋂s

i=1〈I, gνi

i 〉.
If I is in general position with respect to the lexicographical
ordering with x1 > · · · > xn, then

(2) 〈I, gνi

i 〉 is a primary ideal for all i.
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Criterion

Let I ⊂ K[x1, . . . , xn] be a proper ideal. Then the following conditions are equivalent:

I is zero–dimensional, primary and in general position with respect to the
lexicographical ordering with x1 > · · · > xn.

There exist g1, . . . , gn ∈ K[xn] and positive integers ν1, . . . , νn such that

I ∩ K[xn] = 〈gνn
n 〉, gn irreducible;

for each j < n, I contains the element
`

xj + gj

´νj .
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Criterion

Let I ⊂ K[x1, . . . , xn] be a proper ideal. Then the following conditions are equivalent:

I is zero–dimensional, primary and in general position with respect to the
lexicographical ordering with x1 > · · · > xn.

There exist g1, . . . , gn ∈ K[xn] and positive integers ν1, . . . , νn such that

I ∩ K[xn] = 〈gνn
n 〉, gn irreducible;

for each j < n, I contains the element
`

xj + gj

´νj .

Let S be a reduced Gröbner basis of I with respect to the lexicographical ordering
with x1 > . . . > xn. Then there exist g1, . . . , gn ∈ K[xn] and positive integers
ν1, . . . , νn such that

gνn
n ∈ S and gn is irreducible;

(xj + gj)
νj is congruent to an element in S ∩ K[xj , . . . , xn] modulo

〈gn, xn−1 + gn−1, . . . , xj+1 + gj+1〉 ⊂ K[x] for j = 1, . . . , n − 1.
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primaryTest(I)

Input: A zero–dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output:
√

I if I is primary and in general position or < 0 > else.

compute a reduced Gröbner basis S of I with respect to the lexicographical
ordering with x1 > · · · > xn;

factorize g ∈ S, the element with smallest leading monomial;

if (g = gνn
n with gn irreducible) prim := 〈gn〉

else return 〈0〉.
i := n;
while (i > 1)

i := i − 1;
choose f ∈ S with LM(f) = xm

i ;
b := the coefficient of xm−1

i in f considered as
polynomial in xi;
q := xi + b/m;
if (qm ≡ f mod prim) prim := prim + 〈q〉;
else return 〈0〉;

return prim.
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zeroDecomp(I)

Input: a zero-dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that
− I = Q1 ∩ · · · ∩ Qr is a primary decomposition of I, and
− Pi =

√
Qi, i = 1, . . . , r.

result := ∅;

choose a random a ∈ Kn−1, and apply the coordinate change I′ := ϕa(I);

compute a Gröbner basis G of I′ with respect to the lexicographical ordering
with x1 > · · · > xn, let g ∈ G be the element with smallest leading monomial.

factorize g = gν1

1 · . . . · gνs
s ∈ K[xn];

for i = 1 to s do
set Q′

i := 〈I′, gνi

i 〉 and Qi := 〈I, ϕ−1
a (gi)

νi 〉;
set P ′

i := PRIMARYTEST(Q′

i);
if P ′

i 6= 〈0〉
set Pi := ϕ−1

a (P ′

i );
result := result ∪{(Qi, Pi)};

else
result := result ∪ ZERODECOMP (Qi);
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Example

ring R=0,(x,y),lp;
ideal I=(x2-2)ˆ2,y2-2;

map phi=R,x,x+y; //coordinate change
map psi=R,x,-x+y; //the inverse map
I=std(phi(I));
I;
I[1]=y6-16y4+64y2
I[2]=32xy2+y5+8y3
I[3]=x2+2xy+y2-2

factorize(I[1]);
[1]:

_[1]=1
_[2]=y
_[3]=y2-8

[2]:
1,2,2
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Example

ideal Q1=std(I,(yˆ2)); //the candidates for the
//primary ideals

ideal Q2=std(I,(yˆ2-8)ˆ2); //in general position
Q1; Q2;

Q1[1]=y2 Q1[2]=x2+2xy-2

Q2[1]=y4-16y2+64 Q2[2]=32x+y3+8y

Q2=std(psi(Q2));
Q2;
Q2[1]=y2-2 Q2[2]=x2+2xy+2
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Example

> primdecGTZ(I);
[1]:

[1]:
_[1]=y2-2
_[2]=x2-2xy+2

[2]:
_[1]=y2-2
_[2]=x-y

[2]:
[1]:

_[1]=y2-2
_[2]=x2+2xy+2

[2]:
_[1]=y2-2
_[2]=x+y
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Proposition

Let I ⊂ K[x] be an ideal and u ⊂ x = {x1, . . . , xn} be a maximal
independent set of variables with respect to I.
(I ∩ K[u] = {0} and #(u) = dim(K[x]/I))

IK(u)[x r u] ⊂ K(u)[x r u] is a zero–dimensional ideal.

Let S = {g1, . . . , gs} ⊂ I ⊂ K[x] be a Gröbner basis of
IK(u)[x r u], and let h := lcm

(

LC(g1), . . . , LC(gs)
)

∈ K[u], then

IK(u)[x r u] ∩ K[x] = I : 〈h∞〉 ,

and this ideal is equidimensional of dimension dim(I).
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Proposition

Let I ⊂ K[x] be an ideal and u ⊂ x = {x1, . . . , xn} be a maximal
independent set of variables with respect to I.
(I ∩ K[u] = {0} and #(u) = dim(K[x]/I))

IK(u)[x r u] ⊂ K(u)[x r u] is a zero–dimensional ideal.

Let S = {g1, . . . , gs} ⊂ I ⊂ K[x] be a Gröbner basis of
IK(u)[x r u], and let h := lcm

(

LC(g1), . . . , LC(gs)
)

∈ K[u], then

IK(u)[x r u] ∩ K[x] = I : 〈h∞〉 ,

and this ideal is equidimensional of dimension dim(I).

Let IK(u)[x r u] = Q1 ∩ · · · ∩ Qs be an irredundant primary
decomposition, then also
IK(u)[x r u] ∩ K[x] = (Q1 ∩ K[x]) ∩ · · · ∩ (Qs ∩ K[x]) is an
irredundant primary decomposition.
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reductionToZero(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output: A list (u, G, h), where
− u ⊂ x is a maximal independent set with respect to I,
− G = {g1, . . . , gs} ⊂ I is a Gröbner basis of IK(u)[x r u],
− h ∈ K[u] such that IK(u)[x r u] ∩ K[x] = I : 〈h〉 = I : 〈h∞〉.

compute a maximal independent set u ⊂ x with respect to I;

compute a Gröbner basis G = {g1, . . . , gs} of I with respect to the
lexicographical ordering with x r u > u;

h :=
Qs

i=1 LC(gi) ∈ K[u], where the gi are considered as polynomials in
x r u with coefficients in K(u);

compute m such that 〈g1, . . . , gs〉 : 〈hm〉 = 〈g1, . . . , gs〉 : 〈hm+1〉;
return u, {g1, . . . , gs}, hm.
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decomp(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that
− I = Q1 ∩ · · · ∩ Qr is a primary decomposition of I, and
− Pi =

p

(Qi), i = 1, . . . , r.
`

u, G, h
´

:= REDUCTIONTOZERO (I);

change ring to K(u)[x r u] and compute
qprimary := ZERODECOMP (〈G〉K(u)[xru]);

change ring to K[x] and compute
primary := {(Q′ ∩ K[x], P ′ ∩ K[x]) | (Q′, P ′) ∈ qprimary};

primary := primary ∪ DECOMP (〈I, hn〉);
return primary.
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Definition

Let A be a Noetherian ring, let I ⊂ A be an ideal, and let
I = Q1 ∩ · · · ∩ Qs be an irredundant primary decomposition.

The equidimensional part E(I) is the intersection of all primary
ideals Qi with dim(Qi) = dim(I).
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Definition

Let A be a Noetherian ring, let I ⊂ A be an ideal, and let
I = Q1 ∩ · · · ∩ Qs be an irredundant primary decomposition.

The equidimensional part E(I) is the intersection of all primary
ideals Qi with dim(Qi) = dim(I).

The ideal I (respectively the ring A/I) is called equidimensional
or pure dimensional if E(I) = I. In particular, the ring A is
called equidimensional if E(〈0〉) = 〈0〉.
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equidimensional(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output: E(I) ⊂ K[x], the equidimensional part of I.

set (u, G, h) := REDUCTIONTOZERO (I);
if (dim(〈I, h〉) < dim(I))

return (〈G〉 : 〈h〉);
else

return
(

(〈G〉 : 〈h〉)∩ EQUIDIMENSIONAL (〈I, h〉)
)

.
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Proposition

Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal and
I ∩ K[xi] = 〈fi〉 for i = 1, . . . , n. Moreover, let gi be the squarefree
part of fi, then

√
I = I + 〈g1, . . . , gn〉.
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proof

Obviously, I ⊂ I + 〈g1, . . . , gn〉 ⊂
√

I. Hence, it remains to show
that an ∈ I implies that a ∈ I + 〈g1, . . . , gn〉.
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proof

Obviously, I ⊂ I + 〈g1, . . . , gn〉 ⊂
√

I. Hence, it remains to show
that an ∈ I implies that a ∈ I + 〈g1, . . . , gn〉.
Let K be the algebraic closure of K. We see that each gi is the
product of different linear factors of K[xi]. These linear factors
of the gi induce a splitting of the ideal (I + 〈g1, . . . , gn〉)K[x] into
an intersection of maximal ideals.
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proof

Obviously, I ⊂ I + 〈g1, . . . , gn〉 ⊂
√

I. Hence, it remains to show
that an ∈ I implies that a ∈ I + 〈g1, . . . , gn〉.
Let K be the algebraic closure of K. We see that each gi is the
product of different linear factors of K[xi]. These linear factors
of the gi induce a splitting of the ideal (I + 〈g1, . . . , gn〉)K[x] into
an intersection of maximal ideals.

Hence, (I + 〈g1, . . . , gn〉)K[x] is radical. Now consider a ∈ K[x]
with an ∈ I + 〈g1, . . . , gn〉. We obtain
a ∈ (I + 〈g1, . . . , gn〉)K[x] ∩ K[x] = I + 〈g1, . . . , gn〉.
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zeroradical(I)

Input: a zero–dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x],
x = (x1, . . . , xn).

Output:
√

I ⊂ K[x], the radical of I.

for i = 1, . . . , n, compute fi ∈ K[xi] such that
I ∩ K[xi] = 〈fi〉;
return I + 〈SQUAREFREE (f1), . . . , SQUAREFREE (fn)〉.
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radical(I)

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).

Output:
√

I ⊂ K[x], the radical of I.

(u, G, h) := REDUCTIONTOZERO (I);
change ring to K(u)[x r u] and compute
J := ZERORADICAL (〈G〉);
compute a Gröbner basis {g1, . . . , gℓ} ⊂ K[x] of J ;

set p :=
∏ℓ

i=1 LC(gi) ∈ K[u];
change ring to K[x] and compute
J ∩ K[x] = 〈g1, . . . , gℓ〉 : 〈p∞〉;
return (J ∩ K[x]) ∩ RADICAL (〈I, h〉).
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