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SINGULAR
A Computer Algebra System for Polynomial Computations

with special emphasize on the needs of algebraic geometry, commutative algebra, and
singularity theory
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SINGULAR

A Computer Algebra System for Polynomial Computations
with special emphasize on the needs of algebraic geometry, commutative algebra, and
singularity theory

G.-M. Greuel, G. Pfister, H. Schénemann
Technische Universitat Kaiserslautern
Fachbereich Mathematik; Zentrum fir Computer Algebra
D-67663 Kaiserslautern

The computer is not the philosopher’s stone but the philosopher’s
whetstone
Hugo Battus, Rekenen op taal 1983
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The basic problem of algebraic geometry is to understand the set of
solutions =z = (z4,...,x,) € K™ of a system of polynomial equations

fi(xr,...,xn) =0, ..., fe(x1,...,2,) =0,

fi € K|x| = K|z1,...,x,] and K a field. The solution set is called an
algebraic set or algebraic variety.
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(A) The Hypersurface V (z?+ y°>— 2%y?). (B) The Variety V (zz, yz2).

Solvina Polvnomial Eauations and Primarv Decomposition — p. 6



i
| ] n - ..
‘ Motivation [ = v

I

(C) The Space Curve
Vizy,zz,yz).

(D) The Set of Points V (y*— 4?2,
1'93— Ty, Zng — x, 334_ 332).

|
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‘ surfaces: http://www.imaginary2008.de/ [ = s tiesme

® Consider the equation

(y=2)"+(y—1=52—52"+152°)? = 55) (2 =3y +1)*+(y=2")" —155) = 0

® defining a surface of degree 10 in R3.
® What do you expect from the real picture?
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Liegestuhl
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® Aset X C A% is called an affine algebraic variety (over K) if
there exist polynomials f, € K|zq,...,x,], A In some index set
A, such that

X = V((fA)AeA) = {ZIZ c A% | fA(x) =0, Ve A}.
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® Aset X C A% is called an affine algebraic variety (over K) if

there exist polynomials f, € K|zq,...,x,], A In some index set
A, such that

X = V((fA)AeA) = {ZIZ c A% | fA(x) =0, Ve A}.

® Of course, X depends only on the ideal I generated by the f;,
thatis, X = V() with I = (fy | A € A) gy)-
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® Aset X C A% is called an affine algebraic variety (over K) if

there exist polynomials f, € K|zq,...,x,], A In some index set
A, such that

X = V((fA)AeA) = {ZIZ c A% | fA(x) =0, Ve A}.

® Of course, X depends only on the ideal I generated by the f;,
thatis, X = V() with I = (fy | A € A) gy)-

® Foranyset X ¢ A" define

[(X):={feKlz,...,zn] | flx =0},

the (full vanishing) ideal of X, where f|x : X — K denotes the

polynomial function of f restricted to X.
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Let X C A™ be a subset, X;, Xo C A™ affine varieties.

1. I(X) is a radical ideal.

2. V(I(X)) = X the Zariski closure of X in A™.
3. If X is an affine variety, then V(I(X)) = X.
4. I(X) = I(X).
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‘ Motivation

Let X C A™ be a subset, X;, Xo C A™ affine varieties.

bk wbE

~N O

I(X) is a radical ideal.
V(I(X)) = X the Zariski closure of X in A™.
If X is an affine variety, then V (I(X)) = X.
I(X) = I(X).

X; C Xsifand only if 7(X5)
X1 = Xy ifand only if 7(X7)
I(X1UX>) = I(X1) N I(Xs).

C I(X1),
= I(X3).

CI(X N X)) = /I(X1) + 1(X).

]
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‘ Motivation

Let X C A™ be a subset, X;, Xo C A™ affine varieties.

bk wbE

o

1.

Hilbert's Nullstellensatz: If I ¢ K|z, ...,

I(X) is a radical ideal.

V(I(X)) = X the Zariski closure of X in A™.
If X is an affine variety, then V (I(X)) = X.
I(X) = I(X).

X; C Xsifand only if 7(X5)
X1 = Xy ifand only if 7(X7)
I(X1UX>) = I(X1) N I(Xs).
I[(X1NXy) = /I(X1) + 1(X3).

C I(X1),
= I(X3).

algebraically closed, and X = V' (I), then

[(X)=+VT.

]
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x,] 1S anideal, K is
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We obtain, for K algebraically closed, an inclusion reversing
bijection (HN refers to Hilbert’s Nullstellensatz)

{affine algebraic sets in A7} </ {radical ideals I C K[z1,...,zn]}
X I(X)
V(I) T

|
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For K an algebraically closed field, we have the following inclusion

reversing bijections (with K|x| = K|z1,...,z,]):
{algebraic sets in a7} &Y {radical ideals in Kz]}
U U
{irreducible algebraic sets in A2} « {prime ideals in K[z]}
U U

{points of A%} « {maximal ideals in K[z]}
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‘ How to solve polynomial systems? [ = T e

Let > be the lexicographical ordering Ip, 1.e. 21 > ..., > x,,.
A set of polynomials F = {fy,..., fn} C K|z1,...,x,] IS called a
triangular set If for each i

(1) fZ S K[x’n—i—i—la s e 7x’n]1
(2) LM(f;) =z,",., for some m; > 0.

Hence, f; depends only on z,,, f> on z,,_1, x,, and so on, until f,,
which depends on all variables.
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‘ How to solve polynomial systems? | R

Let > be the lexicographical ordering Ip, 1.e. 21 > ..., > x,,.
A set of polynomials F = {fy,..., fn} C K|z1,...,x,] IS called a
triangular set If for each i

(1) fZ S K[x’n—i—i—la s e 7x’n]1
(2) LM(f;) =z,",., for some m; > 0.

Hence, f; depends only on z,,, f> on z,,_1, x,, and so on, until f,,
which depends on all variables.

® A list of triangular sets F, ..., Fs Is called a triangular

decomposition of the zero—dimensional ideal I if
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‘ How to solve polynomial systems? [ = T e

Let > be the lexicographical ordering Ip, 1.e. 21 > ..., > x,,.
A set of polynomials F = {fy,..., fn} C K|z1,...,x,] IS called a
triangular set If for each i

(1) fZ S K[x’n—i—i—la s e 7x’n]1
(2) LM(f;) =z,",., for some m; > 0.

Hence, f; depends only on z,,, f> on z,,_1, x,, and so on, until f,,
which depends on all variables.

® A list of triangular sets F, ..., Fs Is called a triangular
decomposition of the zero—dimensional ideal I if

VI=+/(F)N...0n/(F).

® A triangular set is a Grobner basis. \
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‘ How to solve polynomial systems? [ = T e

® letM C K[xy,...,z,] be amaximal idealand G = {g1,...,9,} @
minimal Grébner basis of M such that LM (¢1) < ... < LM(g,).
Then G Is a triangular set, in particular r = n.
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‘ How to solve polynomial systems? | R

® letM C K|zy,...,z,] be amaximal ideal and G = {g1,...,9,-} @
minimal Grobner basis of M such that LM(g1) < ... < LM(g,).
Then G Is a triangular set, in particular r = n.

®» There is an algorithm to compute a triangular decomposition of
the zero-dimensional ideal I without computing the associated
maximal ideals using only Grobner bases and no multivariate
polynomial factorization.
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‘ How to solve polynomial systems? | R

® letM C K|zy,...,z,] be amaximal ideal and G = {g1,...,9,-} @
minimal Grobner basis of M such that LM(g1) < ... < LM(g,).
Then G Is a triangular set, in particular r = n.

®» There is an algorithm to compute a triangular decomposition of
the zero-dimensional ideal I without computing the associated
maximal ideals using only Grobner bases and no multivariate
polynomial factorization.

® This algorithm is implemented in SINGULAR: solve.lib .
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‘ How to solve polynomial systems? | R

ring A=0,(x,y,2),lp;

iIdeal 1=x2+y+z-1,
X+y2+z-1,
X+y+z2-1;

LIB"solve.lib":
list sl=solve(l,6);

[1]: [2]: [3]: [4]: [5]:
[1]: [1]: [1]: [1]: [1]:
0.414214 0 -2.414214 1 0
[2]: [2]: [2] [2] [2]:
0.414214 0 -2.414214 0 1
[3]: [3]: [3]: [3]: [3]:
0.414214 1 -2.414214 0 0
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® the idea of a Sudoku goes back to Leonard Euler: Latin squares

® in our days invented by Howard Garns (USA). Number place
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® the idea of a Sudoku goes back to Leonard Euler: Latin squares

® in our days invented by Howard Garns (USA). Number place

J.Gago-Vargas, |. Hartillo-Hermoso, J. Martin-Morales, J. Maria
Ucha-Enriquez:
Sudokus and Grobner bases: not only a Divertimento
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Sudoku | R

® the idea of a Sudoku goes back to Leonard Euler: Latin squares

® in our days invented by Howard Garns (USA). Number place

J.Gago-Vargas, |. Hartillo-Hermoso, J. Martin-Morales, J. Maria
Ucha-Enriquez:

Sudokus and Grobner bases: not only a Divertimento

® associate to the places in a Sudoku the variables x4, ..., zs1
and to each variable z; the polynomial F;(x;) = H?:1(J5z‘ — )
® let

E={(i,j),7 < j and 4, j in the same row, column or 3 x 3 — box}

® For (i,j) € EletG;; = -4,

i X

® let] C Qzy,...,xs1] be the ideal generated by the 891

polynomials {G; ; } i jyer @and {F;}i=1,.. 9 \
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Sudoku | R

® o= (ay,...,a81) € V() iffa; € {1,...,9} and a; # a; for
(i,5) € £
® a well posed Sudoku has a unique solution.

® letl C{l,...,81} be the set of pre-assigned places and
{a; };cr, the corresponding numbers of a concrete Sudoku S.

® Then Ig = I+ < {z; — a;};cr > IS the ideal associated to the
Sudoku S. It has to be a maximal ideal if the Sudoku is well
posed.

|
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® o= (ay,...,a81) € V() iffa; € {1,...,9} and a; # a; for
(i,5) € £
® a well posed Sudoku has a unique solution.

® letl C{l,...,81} be the set of pre-assigned places and
{a; };cr, the corresponding numbers of a concrete Sudoku S.

® Then Ig = I+ < {z; — a;};cr > IS the ideal associated to the
Sudoku S. It has to be a maximal ideal if the Sudoku is well
posed.

® The reduced Grobner basis of Is with respect to the
lexicographical ordering has the shape x1 — a1, ..., 281 — as1

and (ay,...,as1) IS the solution of the Sudoku.
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Models for economy [ = vt

Felix Kubler and Karl Schmedders (University of Zlrich)

General problem:

® Study a computer model of a national economy,
a standard exchange economy with finitely many agents and goods

® especially study equilibria
Walrasian equilibrium consists of prices and choices, such that household
maximize utilities, firms maximize profits and markets clear
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Models for economy [ = vt

Felix Kubler and Karl Schmedders (University of Zlrich)

General problem:

® Study a computer model of a national economy,
a standard exchange economy with finitely many agents and goods

® especially study equilibria
Walrasian equilibrium consists of prices and choices, such that household
maximize utilities, firms maximize profits and markets clear

Mathematical problem:
Find the positive real roots of a given system of polynomial
equations
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equilibrium model with production [ = s e

ring R = 0,x(1..22),dp;

ideal I = -1+4+x(1) "5*x(4)*x(13), -14+x(2) "5*x(4) *x(14),

-1+x(3) "5*x(4)*x(15), -1+x(5) "3*x(8) *x(13), -1+x(6) "3*x(8)*x(14),
-1+x(7) ~3*x(8) *x (15) , -1+x(9) ~4*x(12)*x(13),

-1+x (10) ~4xx (12) *x (14) , -1+x(11) ~"4*x (12) *x (15),

5+2*x (16)-x (1) *x(13) -x(2) *x (14)-x(3) *x(15) ,
3+5*x(16)-x(5) *x(13) -x(6) *x (14) -x(7) *x(15) ,
(x (1) +x(5)+x(9)) "3-x(17) "2*xx(18),
(x(2)+x(6)+x(10)) "2-x(19) *x(20) ,

(x(B)+x(7)+x(11)) " 2-4x*x(21)*x(22),

x(17)+x(19)+x(21)-10, x (18)+x(20)+x(22)-10,
8xx(13) "3*x(18)-27*x(16) "3*x(17), x(13)"3*x(17) "2-27*x(18) "2,
x(14) "2*x(20) -4*x(16) "2*xx (19), x(14) ~"2*x(19)-4*x(20) ,

x(15) "2*x(22)-x(16) "2*x(21), x(15) "2*x(21)-x(22) ;
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‘ Primary decomposition [ = s

Let A be a Noetherian ring, and let I C A be an ideal.

1. The set of associated primes of I, denoted by Ass(7), is defined
as Ass(I) ={P C A||P prime,P =1:(b) forsomebec A} .
Elements of Ass((0)) are also called associated primes of A.

|
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Let A be a Noetherian ring, and let I C A be an ideal.

1. The set of associated primes of I, denoted by Ass(7), is defined
as Ass(I) ={P C A||P prime,P =1:(b) forsomebec A} .
Elements of Ass((0)) are also called associated primes of A.

2. Let P,Q € Ass(I) and Q C P, then P is called an embedded
prime ideal of I. Ass(I,P) :={Q | Q € Ass(I),Q C P}.
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Let A be a Noetherian ring, and let I C A be an ideal.

1. The set of associated primes of I, denoted by Ass(7), is defined
as Ass(I) ={P C A||P prime,P =1:(b) forsomebec A} .
Elements of Ass((0)) are also called associated primes of A.

2. Let P,Q € Ass(I) and Q C P, then P is called an embedded
prime ideal of I. Ass(I,P) :={Q | Q € Ass(I),Q C P}.

3. I is called equidimensional or pure dimensional if all
associated primes of I have the same dimension.

|
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Let A be a Noetherian ring, and let I C A be an ideal.

1. The set of associated primes of I, denoted by Ass(7), is defined
as Ass(I) ={P C A||P prime,P =1:(b) forsomebec A} .
Elements of Ass((0)) are also called associated primes of A.

2. Let P,Q € Ass(I) and Q C P, then P is called an embedded
prime ideal of I. Ass(I,P) :={Q | Q € Ass(I),Q C P}.

3. I is called equidimensional or pure dimensional if all
associated primes of I have the same dimension.

4. Iis aprimary ideal if, forany a,b € A, ab e I and a ¢ I imply
b € vI. Let P be a prime ideal, then a primary ideal I is called

P—primary if P = V1.
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Let A be a Noetherian ring, and let I C A be an ideal.

1. The set of associated primes of I, denoted by Ass(7), is defined
as Ass(I) ={P C A||P prime,P =1:(b) forsomebec A} .
Elements of Ass((0)) are also called associated primes of A.

2. Let P,Q € Ass(I) and Q C P, then P is called an embedded
prime ideal of I. Ass(I,P) :={Q | Q € Ass(I),Q C P}.

3. I is called equidimensional or pure dimensional if all
associated primes of I have the same dimension.

4. Iis aprimary ideal if, forany a,b € A, ab e I and a ¢ I imply
b € vI. Let P be a prime ideal, then a primary ideal I is called
P—primary if P = V1.

5. A primary decomposition of I, that is, a decomposition
I=0Q:1n---NQ, with @Q; primary ideals, is called irredundant if \
no @, can be omitted and if \/Q; # /Q, for all i # j.

Solvina Polvnomial Eauations and Primarv Decombposition — p. 22



ol
‘ Primary decomposition [ = s

® Let A be aNoetherianring and I C A be an ideal, then there
exists an irredundant decomposition I = Q1 N---NQ, of I as
Intersection of primary ideals @+, ..., Q,.

|
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® Let A be aNoetherianring and I C A be an ideal, then there
exists an irredundant decomposition I = Q1 N---NQ, of I as
Intersection of primary ideals @+, ..., Q,.

® let Abearingand I C A be an ideal with irredundant primary
decomposition I = Q1 N---N Q... Thenr = #Ass(1),

Ass(I) = {V/Q1, ..., V/Qr},
and if {\/Q;,,...,\/Qi.} = Ass(I, P) for P € Ass(I) then

Q;,N---NQ;. Isindependent of the decomposition.

|
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‘ Primary decomposition [ = s

1. f I =(f) C K|x1,...,x,] ISaprincipal ideal and f = f{"* --- fI'
IS the factorization of f into irreducible factors, then

I={fi")n--- 0

IS the primary decomposition, and the (f;) are the associated
prime ideals which are all minimal.

|
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‘ Primary decomposition [ = s

1. f I =(f) C K|x1,...,x,] ISaprincipal ideal and f = f{"* --- fI'
IS the factorization of f into irreducible factors, then

I={fi")n--- 0

IS the primary decomposition, and the (f;) are the associated
prime ideals which are all minimal.

2. Let I = (zy,zz,yz) = (z,y) N(z,2) N (y,2) C K[z,y,z|. Thenthe
zero—set V(I) is the union of the coordinate axes .

=]
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Primary decomposition = T ey

2

—xz)-2) C Klx,y, z|.

Let 1 y?— x2) - (22— 2%y), (y

® = (y*—zz)N (2% 2)N{y, 2?),
® Ass(I) ={({y?—x2),(z,2), (y, 2
® minAss(I) = {(y*>— zz), (z, 2)}.
9

y, z) is an embedded prime Ass(I, (y, z)) = {(y*— x2), (y, 2) }.
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‘ Gianni, Trager, Zacharias [ = wosebne

Definition

® A maximal ideal M C K|z4,...,z,] Is called in general position
with respect to the lexicographical ordering with 1 > --- > x,,, If
there exist g1, ..., 9, € K|x,]| with

M= (x1+g1(xn), - s Tn-1+ gn-1(Tn), gn(zn)).

|
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‘ Gianni, Trager, Zacharias [ = wosebne

Definition

® A maximalideal M C K|x1,...,x,] Is called in general position
with respect to the lexicographical ordering with 1 > --- > x,,, If
there exist g1, ..., 9, € K|x,]| with
M = (x1+g1(Tn), s Tn-1+ gn-1(Tn)s gn(Tn)).

® A zero—dimensionalideal I C K|[z4,...,x,] IS called in general
position with respect to the lexicographical ordering with

x> -+ > x,, If all associated primes P, ..., P, are in general
position and if P, N K|z, # P; N K|z,] for i # j.

|
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Let K be a field of characteristic 0, and let I C K|x|, x = (z1,...,x,),
be a zero—dimensional ideal. Then there exists a non—empty, Zariski

open subset U ¢ K»~ ! such thatforall a = (ay,...,a,-1) € U, the
coordinate change ¢, : K[z] — K|z| defined by ¢, (x;) = z; if i <n,
and

n—1
Pa(Tn) = Tn + Z ALy
1=1

has the property that ¢, (1) is in general position with respect to the
lexicographical ordering defined by ©; > --- > x,,.

|
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‘ Proposition | v

Let I C K|z4,...,z,] be a zero—dimensional ideal. Let
() =INK|xy,],9=9{"...97°, gg monic and prime and g, # g, for
i # j. Then

® /= ﬂf:1<[79;/i>-

|
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‘ Proposition | v

Let I C K|z4,...,z,] be a zero—dimensional ideal. Let
() =INK|xy,],9=9{"...97°, gg monic and prime and g, # g, for
i # j. Then

® /= ﬂf:1<[79;/i>-

® If I is in general position with respect to the lexicographical
ordering with z1 > --- > z,,, then

(2) (I,q;") Is a primary ideal for all :.

|
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[} [ ] - .o,
Criterion | R

Let I C K|z1,...,xn] be a properideal. Then the following conditions are equivalent:
® | is zero—dimensional, primary and in general position with respect to the
lexicographical ordering with xy > - -+ > x,.
® Thereexistg1,...,gn € K|z,] and positive integers v1, .. ., v, such that

® N Klzxy] = (gn™), gn irreducible;
® for each j < n, I contains the element (z; + g;)"”.
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[} [ ] - .o,
Criterion | R

Let I C K|z1,...,xn] be a properideal. Then the following conditions are equivalent:

® | is zero—dimensional, primary and in general position with respect to the
lexicographical ordering with xy > - -+ > x,.

® Thereexistg1,...,gn € K|z,] and positive integers v1, .. ., v, such that
® INKlzn] = {(gn™), gn irreducible;
® for each j < n, I contains the element (z; + g;)"”.

® et S be areduced Grobner basis of I with respect to the lexicographical ordering
with x1 > ... > xy,. Then there exist g1, ..., gn € K|[xy,] and positive integers
Vi, ...,Un Such that
® g7 € Sand g, is irreducible;
® (xz; +g;)%7 iscongruentto an elementin S N K|z, ..., z,] modulo
(GnsTn—1+Gn—1,---,Tj41 + gj+1) C Klz]forj=1,...,n— 1.
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p rl m aryTe St( I ) I : TECHNISCHE UNIVERSITAT

m KAISERSLAUTERN

® Input: A zero—dimensional ideal I := (f1,..., fi) C K[z], 2 = (21,...,Tn).
® Output: T if I is primary and in general position or < 0 > else.

® compute a reduced Grobner basis S of I with respect to the lexicographical
orderingwith x1 > - -+ > xp;

® factorize g € S, the element with smallest leading monomial;

® if (g = g, with g, irreducible) prim := (gn)

else return (0).
® :=n;
while (¢ > 1)
1 =1 — 1;

choose f € Swith LM (f) = xI";
b := the coefficient of xzm_l in f considered as
polynomial in x;;

q:=x; +b/m,;
if (™ = f mod prim) prim := prim + (q);
else return (0);

® return prim.
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zeroDecomp(l) [ = osssvnesm

® Input: a zero-dimensional ideal I := {f1,..., fi) C K[z], z = (z1,...,2n).
® Output: a set of pairs (Q;, P;) ofideals in K[x],7 =1,...,r, such that
—I=Q1N---NQ,isaprimary decomposition of I, and
—P=Q;,i=1,...,r.
® result:= 0;
® choose arandom a € K™~1, and apply the coordinate change I’ := ¢, (I);
® compute a Grobner basis G of I’ with respect to the lexicographical ordering
with z1 > --- > x,, let g € G be the element with smallest leading monomial.
& factorizeg=g;{' ... g5° € Klzn];
® fori=1tosdo
set Q1= (I',g7") and Q; := (I, 05 ' (9:)"%);
set P! := PRIMARYTEST(Q)?);
if P/ # (0)
set P; := g ' (P!);
result := result U{(Qs, P;) };

else
result := result U zeroDecomp (Q;);

® return result.
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Example | R

ring R=0,(x,y),lp;
ideal 1=(x2-2)"2,y2-2;

map phi=R,Xx,x+y; //lcoordinate change
map psi=R,Xx,-x+y; /lthe Inverse map
|=std(phi(l));

;
I[1]=y6-16y4+64y2
I[2]=32xy2+y5+8y3
[[3]=x2+2xy+y2-2

factorize(I[1]);
[1]:
_[1]=1
_[2]=y

_[3]=y2-8
2]

1,2,2
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—-
Example | R

ideal Q1=std(l,(y"2)); //the candidates for the
/[primary ideals

iIdeal Q2=std(l,(y"2-8)"2), //in general position
Ql; Q2

Ql[1]=y2 Q1[2]=x2+2xy-2
Q2[1]=y4-16y2+64 Q2[2]=32x+y3+8y
Q2=std(psi(Q2));

Q2;

Q2[1]=y2-2 Q2[2]=x2+2xy+2

|
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—-
Example | R

> primdecGTZ(l);

[1]:
[1]:
_[1]=y2-2
_[2]=x2-2xy+2
[2]:
_[1]=y2-2
_[2]=x-y
[2]:
[
_|1]=y2-2
_[2]=x2+2xy+2
2.
_|1]=y2-2
2

_[2]=x+y \
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‘ Proposition | v

Let ] C K|z] beanidealand v C x = {z4,...,z,} be a maximal

Independent set of variables with respect to 1.
(I N K[u] = {0} and #(u) = dim(K[x]/I))

® [K(u)lz \u] C K(u)[z\ u|is azero—dimensional ideal.

® letS=1{g1,...,9s} C I C K|z] be a Grobner basis of
[K(u)[z \ u], and let b :=lcm(LC(g1), ...,LC(ygs)) € K[u], then

IK(u)lz~ulNKlx|=1:(h>),

and this ideal is equidimensional of dimension dim(7).

|
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‘ Proposition | v

Let ] C K|z] beanidealand v C x = {z4,...,z,} be a maximal
Independent set of variables with respect to 1.
(I N K[u] = {0} and #(u) = dim(K[x]/I))

® [K(u)lz \u] C K(u)[z\ u|is azero—dimensional ideal.

® letS=1{g1,...,9s} C I C K|z] be a Grobner basis of
[K(u)[z \ u], and let b :=lcm(LC(g1), ...,LC(ygs)) € K[u], then

IK(u)lz~ulNKlx|=1:(h>),

and this ideal is equidimensional of dimension dim(7).

® let/K(u)lz~ul=Q1N---NQs be an irredundant primary
decomposition, then also

IK(u)|x~ulNKlz]=(@1NKlz])N---N(Qs N K|x])

IS an
iIrredundant primary decomposition. \
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reductionToZero(l) [ = sssiven

® Input: I:={(f1,...,fx) CKlz],z=(x1,...,Tn).

® Output: Alist (u, G, h), where
— u C z iIs a maximal independent set with respect to I,
— G={g1,...,9s} C Iisa Grobner basis of I K (u)[z ~ u],
— h € Klu]suchthat IK(u)[z ~u]|NK[x] =1:(h) =1: (h>).

¥
¥

compute a maximal independent set u C x with respect to I;

compute a Grébner basis G = {g1, ..., gs} of I with respect to the
lexicographical ordering with x ~ u > wu;

h:=1];_{LC(g:) € K[u], where the g; are considered as polynomials in
x ~ u with coefficients in K (u);

compute m such that (g1, ..., gs) : (R™) = {g1,...,gs) : (K™ T1);
return u, {g1,...,9s}, h"™.
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decomp(l) [ = et

® Input: I:={(f1,...,fx) CKlz],z=(x1,...,Tn).

® Output: a set of pairs (Q;, P;) ofideals in K[x],7 =1,...,r, such that
—I=Q1N---NQ,isaprimary decomposition of I, and
—Pi=./(Q),i=1,...,r.
» (u, G, h) := REDUCTIONTOZERO (I);
#® changering to K (u)[x ~ u] and compute
gprimary := zeroDEcOMP ({G) K (u)[z~ u]);
® change ring to K[z] and compute
primary := {(Q' N K[z]|, P N K[z]) | (Q’, P") € qprimary};
® primary := primary U pecomp ({1, h™));
® return primary.

|
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Definition | R

Let A be a Noetherianring, let I ¢ A be an ideal, and let
I=0Q:1Nn---NQ, beanirredundant primary decomposition.

® The equidimensional part E(I) is the intersection of all primary
Ideals @; with dim(Q;) = dim(]).

|
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—-
Definition | R

Let A be a Noetherianring, let I ¢ A be an ideal, and let
I=0Q:1Nn---NQ, beanirredundant primary decomposition.

® The equidimensional part E(I) is the intersection of all primary
Ideals @; with dim(Q;) = dim(]).

® Theideal I (respectively the ring A/I) is called equidimensional
or pure dimensional if £(I) = I. In particular, the ring A is
called equidimensional if E£({0)) = (0).

|
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‘ equidimensional(l) | v

® Input: I :=(f1,...,fx) CKlz],z = (x1,...,2n).
® Output: £(I) C K|x|, the equidimensional part of I.

» set (u,G, h) ;= REDUCTIONTOZERO (I);
o if (dim((I,h)) < dim(7))
return ((G) : (h));
else
return (((G) : (h)) N equibiMENSIONAL ((I, h))).

|
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‘ Proposition | v

Let/ C K[x1,...,z,] be a zero—dimensional ideal and
INK|zx;) =(f;) fori=1,...,n. Moreover, let g; be the squarefree

part of f;, then VI =1+ (g1,...,qn).

|
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—-
proof | R

® Obviously, I ¢ I+ (g1,...,9,) C V1. Hence, it remains to show
that a™ € I impliesthata € T + (g1,..., gn).

|
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proof | v

® Obviously, I ¢ I+ (g1,...,9,) C V1. Hence, it remains to show
that a™ € I impliesthata € T + (g1,..., gn).

® Let K be the algebraic closure of K. We see that each g; is the
product of different linear factors of K|[z;]. These linear factors

of the g; induce a splitting of the ideal (I + (g1, ..., 9,))K|x] INtO
an intersection of maximal ideals.

|
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proof | v

® Obviously, I ¢ I+ (g1,...,9,) C V1. Hence, it remains to show
that a™ € I impliesthata € T + (g1,..., gn).

® Let K be the algebraic closure of K. We see that each g; is the
product of different linear factors of K|[z;]. These linear factors

of the g; induce a splitting of the ideal (I + (g1, ..., 9,))K|x] INtO
an intersection of maximal ideals.

® Hence, (I + {g1,...,9,))K][x] Is radical. Now consider a € K|x]
with a™ € I + (g1, ..., 9,). We obtain

a € (I+{g1,....,gn))Klz] N Klz] =1+ (g1,...,9n)

|
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‘ zeroradical(l) [ = st

® |[nput: a zero—dimensional ideal I := (f1,..., fx) C K|x],
r=(T1,...,%p).

#® Output: VI C K[z], the radical of I.

s fori=1,...,n, compute f; € K[x;] such that
INKlxi] = (fi);
® return I + (SQUAREFREE (f1), ..., SQUAREFREE (fy)).

|

Solvina Polvnomial Eauations and Primarv Decombposition — p. 42



_ e
radical(l) | R

® Input: I :=(f1,...,fx) CKlz],z = (x1,...,2n).
® Output: /I C K|z], the radical of I.

® (u,G,h) = ReEDUCTIONTOZERO (I);
# changering to K(u)[z ~ u] and compute
J := zerorADICAL ({G));

# compute a Grobner basis {g1,...,9¢} C K|x| of J,
s setp:=[\_, LC(g:) € K[u];
# change ring to K|z] and compute

JN Kzl ={g1,...,90) : (p*°);
» return (J N K|z]) NRrabicaL ({1, h)).

|
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