

Solving Polynomial Equations and Primary Decomposition

Gerhard Pfister

pfister@mathematik.uni-kl.de

Departement of Mathematics University of Kaiserslautern

Solving Polynomial Equations and Primary Decomposition - p. 1

Solving Polynomial Equations and Primary Decomposition - p. 3

Solving Polynomial Equations and Primary Decomposition - p. 3

Solving Polynomial Equations and Primary Decomposition - p. 4

A Computer Algebra System for Polynomial Computations with special emphasize on the needs of algebraic geometry, commutative algebra, and

singularity theory

G.-M. Greuel, G. Pfister, H. Schönemann Technische Universität Kaiserslautern Fachbereich Mathematik; Zentrum für Computer Algebra D-67663 Kaiserslautern

Solving Polynomial Equations and Primary Decomposition - p. 4

A Computer Algebra System for Polynomial Computations with special emphasize on the needs of algebraic geometry, commutative algebra, and singularity theory

> G.-M. Greuel, G. Pfister, H. Schönemann Technische Universität Kaiserslautern Fachbereich Mathematik; Zentrum für Computer Algebra D-67663 Kaiserslautern

The computer is not the philosopher's stone but the philosopher's whetstone

Hugo Battus, Rekenen op taal 1983

Solving Polynomial Equations and Primary Decomposition – p. 4

The basic problem of algebraic geometry is to understand the set of solutions $x = (x_1, \ldots, x_n) \in K^n$ of a system of polynomial equations

$$f_1(x_1,\ldots,x_n) = 0, \ldots, f_k(x_1,\ldots,x_n) = 0,$$

 $f_i \in K[x] = K[x_1, ..., x_n]$ and K a field. The solution set is called an algebraic set or algebraic variety.

Solving Polynomial Equations and Primary Decomposition – p. 6

(C) The Space Curve V(xy, xz, yz).

(D) The Set of Points $V(y^4 - y^2)$, $xy^3 - xy, x^3y - xy, x^4 - x^2$.

Solving Polynomial Equations and Primary Decomposition - p. 7

Solving Polynomial Equations and Primary Decomposition - p. 10

Solving Polynomial Equations and Primary Decomposition – p. 10

the *(full vanishing) ideal of* X, where $f|_X : X \to K$ denotes the polynomial function of f restricted to X.

Solving Polynomial Equations and Primary Decomposition – p. 10

Solving Polynomial Equations and Primary Decomposition – p. 11

Solving Polynomial Equations and Primary Decomposition – p. 11

algebraically closed, and X = V(I), then

 $I(X) = \sqrt{I} \,.$

Solving Polynomial Equations and Primary Decomposition - p. 12

Solving Polynomial Equations and Primary Decomposition – p. 13

Let > be the lexicographical ordering lp, i.e. $x_1 > \ldots , > x_n$. A set of polynomials $F = \{f_1, \ldots, f_n\} \subset K[x_1, \ldots, x_n]$ is called a *triangular set* if for each *i*

- (1) $f_i \in K[x_{n-i+1}, \ldots, x_n]$,
- (2) $LM(f_i) = x_{n-i+1}^{m_i}$, for some $m_i > 0$.

Hence, f_1 depends only on x_n, f_2 on x_{n-1}, x_n and so on, until f_n which depends on all variables.

Solving Polynomial Equations and Primary Decomposition – p. 14

Let > be the lexicographical ordering lp, i.e. $x_1 > ..., > x_n$. A set of polynomials $F = \{f_1, ..., f_n\} \subset K[x_1, ..., x_n]$ is called a *triangular set* if for each *i*

- (1) $f_i \in K[x_{n-i+1}, \ldots, x_n]$,
- (2) $LM(f_i) = x_{n-i+1}^{m_i}$, for some $m_i > 0$.

Hence, f_1 depends only on x_n, f_2 on x_{n-1}, x_n and so on, until f_n which depends on all variables.

A list of triangular sets F_1, \ldots, F_s is called a *triangular* decomposition of the zero-dimensional ideal I if

$$\sqrt{I} = \sqrt{\langle F_1 \rangle} \cap \ldots \cap \sqrt{\langle F_s \rangle}.$$

Solving Polynomial Equations and Primary Decomposition – p. 14

Let > be the lexicographical ordering lp, i.e. $x_1 > \ldots, > x_n$. A set of polynomials $F = \{f_1, \ldots, f_n\} \subset K[x_1, \ldots, x_n]$ is called a *triangular set* if for each *i*

- (1) $f_i \in K[x_{n-i+1}, \ldots, x_n]$,
- (2) $LM(f_i) = x_{n-i+1}^{m_i}$, for some $m_i > 0$.

Hence, f_1 depends only on x_n, f_2 on x_{n-1}, x_n and so on, until f_n which depends on all variables.

• A list of triangular sets F_1, \ldots, F_s is called a *triangular* decomposition of the zero-dimensional ideal I if

$$\sqrt{I} = \sqrt{\langle F_1 \rangle} \cap \ldots \cap \sqrt{\langle F_s \rangle}.$$

A triangular set is a Gröbner basis.

Solving Polynomial Equations and Primary Decomposition – p. 15

- Let $M \subset K[x_1, ..., x_n]$ be a maximal ideal and $G = \{g_1, ..., g_r\}$ a minimal Gröbner basis of M such that $LM(g_1) < ... < LM(g_r)$. Then G is a triangular set, in particular r = n.
- There is an algorithm to compute a triangular decomposition of the zero-dimensional ideal *I* without computing the associated maximal ideals using only Gröbner bases and no multivariate polynomial factorization.

Solving Polynomial Equations and Primary Decomposition – p. 15

- Let $M \subset K[x_1, ..., x_n]$ be a maximal ideal and $G = \{g_1, ..., g_r\}$ a minimal Gröbner basis of M such that $LM(g_1) < ... < LM(g_r)$. Then G is a triangular set, in particular r = n.
- There is an algorithm to compute a triangular decomposition of the zero-dimensional ideal *I* without computing the associated maximal ideals using only Gröbner bases and no multivariate polynomial factorization.
- This algorithm is implemented in SINGULAR: solve.lib.

Solving Polynomial Equations and Primary Decomposition – p. 15


```
LIB"solve.lib";
list s1=solve(I,6);
```

Solving Polynomial Equations and Primary Decomposition - p. 16

				5	2		8	
				6	2			5
6			4			7		
		7				9 1	6	
		5	2		6	1		
	3	6				4		
	3	3			7			4
1			5	8				
	6			1				

Solving Polynomial Equations and Primary Decomposition - p. 18

Solving Polynomial Equations and Primary Decomposition – p. 18

- the idea of a Sudoku goes back to Leonard Euler: Latin squares
- in our days invented by Howard Garns (USA): Number place

J.Gago-Vargas, I. Hartillo-Hermoso, J. Martin-Morales, J. Maria Ucha-Enriquez:

Sudokus and Gröbner bases: not only a Divertimento

- associate to the places in a Sudoku the variables $x_1, ..., x_{81}$ and to each variable x_i the polynomial $F_i(x_i) = \prod_{j=1}^9 (x_i - j)$
- Let $E = \{(i, j), i < j \text{ and } i, j \text{ in the same row, column or } 3 \times 3 - box\}$
- For $(i,j) \in E$ let $G_{i,j} = \frac{F_i F_j}{x_i x_j}$.
- Let $I \subset \mathbb{Q}[x_1, ..., x_{81}]$ be the ideal generated by the 891 polynomials $\{G_{i,j}\}_{(i,j)\in E}$ and $\{F_i\}_{i=1,...,9}$

Solving Polynomial Equations and Primary Decomposition – p. 19

Solving Polynomial Equations and Primary Decomposition – p. 19

Felix Kubler and Karl Schmedders (University of Zürich)

General problem:

- Study a computer model of a national economy, a standard exchange economy with finitely many agents and goods
- especially study equilibria
 - Walrasian equilibrium consists of prices and choices, such that household maximize utilities, firms maximize profits and markets clear

Felix Kubler and Karl Schmedders (University of Zürich)

General problem:

- Study a computer model of a national economy, a standard exchange economy with finitely many agents and goods
- especially study equilibria

Walrasian equilibrium consists of prices and choices, such that household maximize utilities, firms maximize profits and markets clear

Mathematical problem:

Find the positive real roots of a given system of polynomial equations

Solving Polynomial Equations and Primary Decomposition – p. 20

Solving Polynomial Equations and Primary Decomposition - p. 21

Solving Polynomial Equations and Primary Decomposition – p. 22

Solving Polynomial Equations and Primary Decomposition – p. 22

Solving Polynomial Equations and Primary Decomposition – p. 22

4. *I* is a *primary ideal* if, for any $a, b \in A$, $ab \in I$ and $a \notin I$ imply $b \in \sqrt{I}$. Let *P* be a prime ideal, then a primary ideal *I* is called *P*-*primary* if $P = \sqrt{I}$.

Solving Polynomial Equations and Primary Decomposition – p. 22

- 4. *I* is a *primary ideal* if, for any $a, b \in A$, $ab \in I$ and $a \notin I$ imply $b \in \sqrt{I}$. Let *P* be a prime ideal, then a primary ideal *I* is called *P*-*primary* if $P = \sqrt{I}$.
- 5. A primary decomposition of *I*, that is, a decomposition $I = Q_1 \cap \cdots \cap Q_s$ with Q_i primary ideals, is called *irredundant* if no Q_i can be omitted and if $\sqrt{Q_i} \neq \sqrt{Q_j}$ for all $i \neq j$.

Solving Polynomial Equations and Primary Decomposition - p. 23

Solving Polynomial Equations and Primary Decomposition – p. 23

1. If $I = \langle f \rangle \subset K[x_1, \dots, x_n]$ is a principal ideal and $f = f_1^{n_1} \cdots f_s^{n_s}$ is the factorization of f into irreducible factors, then

$$I = \langle f_1^{n_1} \rangle \cap \dots \cap \langle f_r^{n_r} \rangle$$

is the primary decomposition, and the $\langle f_i \rangle$ are the associated prime ideals which are all minimal.

Solving Polynomial Equations and Primary Decomposition – p. 24

1. If $I = \langle f \rangle \subset K[x_1, \dots, x_n]$ is a principal ideal and $f = f_1^{n_1} \cdots f_s^{n_s}$ is the factorization of f into irreducible factors, then

$$I = \langle f_1^{n_1} \rangle \cap \dots \cap \langle f_r^{n_r} \rangle$$

is the primary decomposition, and the $\langle f_i \rangle$ are the associated prime ideals which are all minimal.

2. Let $I = \langle xy, xz, yz \rangle = \langle x, y \rangle \cap \langle x, z \rangle \cap \langle y, z \rangle \subset K[x, y, z]$. Then the zero-set V(I) is the union of the coordinate axes .

Let
$$I = \langle (y^2 - xz) \cdot (z^2 - x^2y), (y^2 - xz) \cdot z \rangle \subset K[x, y, z].$$

• $I = \langle y^2 - xz \rangle \cap \langle x^2, z \rangle \cap \langle y, z^2 \rangle,$
• $Ass(I) = \{ \langle y^2 - xz \rangle, \langle x, z \rangle, \langle y, z \rangle \}$
• $minAss(I) = \{ \langle y^2 - xz \rangle, \langle x, z \rangle \}.$

•
$$\langle y, z \rangle$$
 is an embedded prime $Ass(I, \langle y, z \rangle) = \{ \langle y^2 - xz \rangle, \langle y, z \rangle \}.$

Definition

 A maximal ideal $M ⊂ K[x_1, ..., x_n]$ is called in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$, if there exist $g_1, ..., g_n ∈ K[x_n]$ with $M = \langle x_1 + g_1(x_n), ..., x_{n-1} + g_{n-1}(x_n), g_n(x_n) \rangle.$

Solving Polynomial Equations and Primary Decomposition – p. 26

Definition

- A maximal ideal $M \subset K[x_1, ..., x_n]$ is called in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$, if there exist $g_1, ..., g_n \in K[x_n]$ with $M = \langle x_1 + g_1(x_n), ..., x_{n-1} + g_{n-1}(x_n), g_n(x_n) \rangle$.
- A zero-dimensional ideal $I \subset K[x_1, \ldots, x_n]$ is called in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$, if all associated primes P_1, \ldots, P_k are in general position and if $P_i \cap K[x_n] \neq P_j \cap K[x_n]$ for $i \neq j$.

Solving Polynomial Equations and Primary Decomposition – p. 26

Let *K* be a field of characteristic 0, and let $I \subset K[x]$, $x = (x_1, \ldots, x_n)$, be a zero-dimensional ideal. Then there exists a non-empty, Zariski open subset $U \subset K^{n-1}$ such that for all $\underline{a} = (a_1, \ldots, a_{n-1}) \in U$, the coordinate change $\varphi_{\underline{a}} : K[x] \to K[x]$ defined by $\varphi_{\underline{a}}(x_i) = x_i$ if i < n, and

$$\varphi_{\underline{a}}(x_n) = x_n + \sum_{i=1}^{n-1} a_i x_i$$

has the property that $\varphi_{\underline{a}}(I)$ is in general position with respect to the lexicographical ordering defined by $x_1 > \cdots > x_n$.

Solving Polynomial Equations and Primary Decomposition – p. 27

Let $I \subset K[x_1, \ldots, x_n]$ be a zero-dimensional ideal. Let $\langle g \rangle = I \cap K[x_n], g = g_1^{\nu_1} \ldots g_s^{\nu_s}, g_i$ monic and prime and $g_i \neq g_j$ for $i \neq j$. Then

 $I = \bigcap_{i=1}^{s} \langle I, g_i^{\nu_i} \rangle.$

Let $I \subset K[x_1, \ldots, x_n]$ be a zero-dimensional ideal. Let $\langle g \rangle = I \cap K[x_n]$, $g = g_1^{\nu_1} \ldots g_s^{\nu_s}$, g_i monic and prime and $g_i \neq g_j$ for $i \neq j$. Then

 $I = \bigcap_{i=1}^{s} \langle I, g_i^{\nu_i} \rangle.$

If *I* is in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$, then

(2) $\langle I, g_i^{\nu_i} \rangle$ is a primary ideal for all *i*.

Solving Polynomial Equations and Primary Decomposition – p. 28

Let $I \subset K[x_1, \ldots, x_n]$ be a proper ideal. Then the following conditions are equivalent:

- I is zero-dimensional, primary and in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$.
- There exist $g_1, \ldots, g_n \in K[x_n]$ and positive integers ν_1, \ldots, ν_n such that
 - $I \cap K[x_n] = \langle g_n^{\nu_n} \rangle, g_n \text{ irreducible;}$
 - for each j < n, I contains the element $(x_j + g_j)^{\nu_j}$.

Solving Polynomial Equations and Primary Decomposition – p. 29

Let $I \subset K[x_1, \ldots, x_n]$ be a proper ideal. Then the following conditions are equivalent:

- I is zero-dimensional, primary and in general position with respect to the lexicographical ordering with $x_1 > \cdots > x_n$.
- There exist $g_1, \ldots, g_n \in K[x_n]$ and positive integers ν_1, \ldots, ν_n such that
 - $I \cap K[x_n] = \langle g_n^{\nu_n} \rangle, g_n \text{ irreducible;}$
 - for each j < n, I contains the element $(x_j + g_j)^{\nu_j}$.
- Let *S* be a reduced Gröbner basis of *I* with respect to the lexicographical ordering with $x_1 > \ldots > x_n$. Then there exist $g_1, \ldots, g_n \in K[x_n]$ and positive integers ν_1, \ldots, ν_n such that
 - $g_n^{\nu_n} \in S$ and g_n is irreducible;
 - $(x_j + g_j)^{\nu_j}$ is congruent to an element in $S \cap K[x_j, \dots, x_n]$ modulo $\langle g_n, x_{n-1} + g_{n-1}, \dots, x_{j+1} + g_{j+1} \rangle \subset K[x]$ for $j = 1, \dots, n-1$.

Solving Polynomial Equations and Primary Decomposition - p. 29

Solving Polynomial Equations and Primary Decomposition – p. 30

Solving Polynomial Equations and Primary Decomposition – p. 31


```
ring R=0, (x, y), lp;
ideal I=(x2-2)^2, y2-2;
map phi=R,x,x+y; //coordinate change
map psi=R,x,-x+y; //the inverse map
I=std(phi(I));
Τ;
I[1] = y6 - 16y4 + 64y2
I[2]=32xy2+y5+8y3
I[3] = x^{2} + 2xy + y^{2} - 2
factorize(I[1]);
[1]:
   [1]=1
   _[2]=y
   _[3]=y2-8
[2]:
   1,2,2
```

```
Solving Polynomial Equations and Primary Decomposition – p. 32
```


Solving Polynomial Equations and Primary Decomposition - p. 33

Example


```
> primdecGTZ(I);
[1]:
   [1]:
      [1]=y2-2
      [2] = x^2 - 2xy + 2
   [2]:
      _[1]=y2-2
      _[2]=x-y
[2]:
   [1]:
      _[1]=y2-2
      _[2]=x2+2xy+2
   [2]:
      _[1]=y2-2
      _[2]=x+y
```

Solving Polynomial Equations and Primary Decomposition - p. 34

Let $I \subset K[x]$ be an ideal and $u \subset x = \{x_1, \dots, x_n\}$ be a maximal independent set of variables with respect to *I*. ($I \cap K[u] = \{0\}$ and #(u) = dim(K[x]/I))

- $IK(u)[x \setminus u] \subset K(u)[x \setminus u]$ is a zero–dimensional ideal.
- ▶ Let $S = \{g_1, ..., g_s\} \subset I \subset K[x]$ be a Gröbner basis of $IK(u)[x \smallsetminus u]$, and let $h := \text{lcm}(\text{LC}(g_1), ..., \text{LC}(g_s)) \in K[u]$, then

$$IK(u)[x \setminus u] \cap K[x] = I : \langle h^{\infty} \rangle,$$

and this ideal is equidimensional of dimension $\dim(I)$.

Solving Polynomial Equations and Primary Decomposition – p. 35

Let $I \subset K[x]$ be an ideal and $u \subset x = \{x_1, \dots, x_n\}$ be a maximal independent set of variables with respect to *I*. ($I \cap K[u] = \{0\}$ and #(u) = dim(K[x]/I))

- $IK(u)[x \setminus u] \subset K(u)[x \setminus u]$ is a zero–dimensional ideal.
- ▶ Let $S = \{g_1, ..., g_s\} \subset I \subset K[x]$ be a Gröbner basis of $IK(u)[x \smallsetminus u]$, and let $h := \text{lcm}(\text{LC}(g_1), ..., \text{LC}(g_s)) \in K[u]$, then

$$IK(u)[x \smallsetminus u] \cap K[x] = I : \langle h^{\infty} \rangle,$$

and this ideal is equidimensional of dimension $\dim(I)$.

■ Let $IK(u)[x \setminus u] = Q_1 \cap \cdots \cap Q_s$ be an irredundant primary decomposition, then also $IK(u)[x \setminus u] \cap K[x] = (Q_1 \cap K[x]) \cap \cdots \cap (Q_s \cap K[x])$ is an irredundant primary decomposition.

Solving Polynomial Equations and Primary Decomposition – p. 35

Solving Polynomial Equations and Primary Decomposition – p. 36

Solving Polynomial Equations and Primary Decomposition - p. 37

Solving Polynomial Equations and Primary Decomposition - p. 38

Solving Polynomial Equations and Primary Decomposition – p. 38

Solving Polynomial Equations and Primary Decomposition – p. 39

Let $I \subset K[x_1, \ldots, x_n]$ be a zero-dimensional ideal and $I \cap K[x_i] = \langle f_i \rangle$ for $i = 1, \ldots, n$. Moreover, let g_i be the squarefree part of f_i , then $\sqrt{I} = I + \langle g_1, \ldots, g_n \rangle$.

Solving Polynomial Equations and Primary Decomposition – p. 40

Solving Polynomial Equations and Primary Decomposition - p. 41

Solving Polynomial Equations and Primary Decomposition – p. 41

Solving Polynomial Equations and Primary Decomposition – p. 41

Solving Polynomial Equations and Primary Decomposition – p. 42

Solving Polynomial Equations and Primary Decomposition – p. 43