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Introduction and Overview 4 / 120

Introduction and Overview (I)

� Toric Geometry is a topic of increasing interest

� Toric varieties are objects suitable for checking explicit properties and computing invariants from Algebraic

Geometry

� This holds for normal toric varieties

(coming from rational fans in a Euclidean space)

� Non-normal varieties also have interesting and nice applications

� Normal Toric Geometry uses techniques mainly from convex geometry

� It is based on fans: set of polyhedral cones so that each cones provides an affine chart of the toric

variety

� Thus, the coordinate algebra of such a chart is the semigroup algebra of lattice points inside the dual

cone

TORIC GEOMETRY 5 / 120

Introduction and Overview (II)

� In Non-Normal Toric Geometry we need more than cones

� Consider affine charts whose coordinate algebra is given by a more general type of semigroup

� Thus, convex geometry should be used just as a tool:

nice semigroups generate concrete polyhedral cones

� The first part of the course is devoted to show how mathematics involved in Toric Geometry can be

regarded as the theory os suitable classes of commutative semigroups with given generators

� This point of view requieres the description of derived ingredients, such as lattices, binomial ideals or

polytopes

� Our purpose is to show the mathematical connections between all these ingredients and present some

applications, mainly focusing to Integer Programming

TORIC GEOMETRY 6 / 120
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Semigroups

� The central objects will be

finitely generated cancellative commutative semigroups

� A commutative semigroup S has an internal associative and commutative operation + with a zero

element 0

� Semigroup homomorphisms preserve both the operation + and the zero element 0

� Cancellative means S isomorphic to a subsemigroup of an abelian group. In other words . . .

� The semigroup homomorphism S → G(S) is injective

� G(S) denotes the abelian group generated by S, i.e.

S × S modulo the relation

(m, n) ∼ (m′, n′)⇔ m + n′ = m′ + n

TORIC GEOMETRY 8 / 120

Semigroups

� We consider S with a finite number of generators . . .

� This means we can find a finite set {n1, . . . , nh}
so that every m ∈ S can be written as

m = λ1n1 + · · ·+ λhnh

for some non-negative integers λi

� This is equivalent to fix a surjective semigroup homomorphism

π0 : INh → S

� Toric Mathematics is essentially reduced to understanding of the structure and behavior of the fibers

π−1
0 (m)

� This is a difficult problem that becomes the key tool for many purposes in Toric Geometry

TORIC GEOMETRY 9 / 120
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Semigroups

� The first remark is that it would be desirable some kind of finiteness hypothesis, namely all the fibers

π−1
0 (m) to be finite for all m ∈ S

This finiteness hypothesis is characterized in the following result

� PROPOSITION: Let π0 : INh → S be a surjective semigroup homomorphism, S being a cancellative

commutative semigroup

The following conditions are equivalent:

1. π−1
0 (m) is finite for all m ∈ S

2. There is no infinite sequence

m ∈ S, m1, . . . , mi, . . . ∈ S \ {0} such that

m−m1 − · · · −mi ∈ S for all i

3. S ∩ (−S) = {0}

4. There exists a semigroup homomorphism λ : S → IN

such that λ(m) = 0 if and only if m = 0

TORIC GEOMETRY 10 / 120

Semigroups

� Semigroups satisfying the condition of the previous result are called with different names in the literature,

according to which condition is emphasized:

1. Combinatorially finite: finite fibers

2. Nakayama: The non-existence of those infinite sequences . . .

3. Strongly convex: S ∩ (−S) = {0}

4. Positive: Existence of λ : S → IN s.t. λ(m) = 0 iff m = 0

� Describing the fibers of π0 is related to computing the relations between the fixed generators of S

� Since the “kernel” is not well-defined in the category of semigroups, these relations must be defined through

the so-called “congruence” Γ of π0 . . .

TORIC GEOMETRY 11 / 120
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Semigroups

� The congruence Γ of π0 INh → S is the binary relation on INh given by pairs (u,v) ∈ INh × INh such that

u and v lie on the same fiber π−1
0 (m) for some m ∈ S

� Congruences give a semigroup structure on the quotient INn/Γ, since (u + w,v + w) ∈ Γ if (u,v) ∈ Γ
and w ∈ INh

� Since S is finitely generated, so it is Γ as a congruence, i.e. Γ = Γ(R) for a finite set R of relations

In other words, we can say that S is finitely presented

� Toric Mathematics exploit the information in a semigroup concerning generators and relations

� This involves different fields in Mathematics, giving different perspectives and techniques . . .

TORIC GEOMETRY 12 / 120
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Groups and Lattices

� Consider again the above map π0 : INh → S

� Since the assignment

S 7→ G(S)

is functorial, the following exact sequence of abelian groups

0→ L→ G(INh) ≡ ZZh → G(S)→ 0

is induced, where L is a subgroup of ZZh and so it is

finitely generated and torsion free

� L is the lattice associated to π0

� It is just the kernel of the map π : ZZh → G(S)
associated to π0

� Thus, L keeps the information about the group theoretical relations between the semigroup generators

n1, . . . , nh

TORIC GEOMETRY 14 / 120

Groups and Lattices

� The relation between the congruence Γ and the lattice L is a follows

� If (u,v) ∈ Γ there is a unique w ∈ INh such that (u−w,v −w) ∈ Γ and the supports of u−w

and v −w are disjoint, where the support of a vector in ZZh is defined by the set of indices whose

coordinates are nonzero.

� Notice that if ≤ denotes the componentwise product ordering on ZZh then

w = inf
≤
{u,v}

� Thus, the map
b : Γ → INh × L

(u,v) 7→ (w,u− v)

is well-defined

TORIC GEOMETRY 15 / 120
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Groups and Lattices

� PROPOSITION: The map b is a bijection

� PROOF: If (w, l) ∈ INh × L we set

l = l+ − l−

where l+ := sup(l,0) and l− := sup(−l,0)

� Then, the assignment

(w, l) 7→ (l+ + w, l− + w)

is, by construction, the inverse of b

� It follows from the above Proposition that Γ and L contain the same information about S, and it tells how to

get such information from one to the other

TORIC GEOMETRY 16 / 120

Groups and Lattices

� Moreover, from abelian groups and lattices we can obtain the semigroups we are interested in

� In fact, if L ⊆ ZZh is a lattice, from the exact sequence

0→ L→ ZZh π
→ ZZh/L→ 0

we can consider the subsemigroup S of ZZh/L given by the image of the semigroup INh, and generators

given by the images of the canonical basis e1, . . . , eh

� Note that the condition of S being positive is equivalent to

L ∩ INh = (0)

TORIC GEOMETRY 17 / 120
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Groups and Lattices

� In general G(S) = ZZh/L may have torsion and so S

� It means that there may be m, n ∈ S, m 6= n and a ∈ ZZ such that

am = an

� If T ⊆ G(S) is the torsion subgroup, the image of S in G(S)/T is a new semigroup S of the same type as

S

� Notice that S is positive iff so is S, since

L ∩ INh = (0)⇔ L ∩ INh = (0)

L being the lattice for the induced map π0 : INh → S

TORIC GEOMETRY 18 / 120

Groups and Lattices

� Notice that S is not only π(INh), but also the image of other subsets of ZZh, in particular of INh + L

� INh + L is also a semigroup

� As a semigroup, it is NOT positive except for the trivial case L = 0

� However, if S is positive then INh + L has a property analogous to the non-existence of infinite sequences,

i.e.

m = m0 > m1 > · · · > mi > . . . ∈ INh + L

� In other words, if S is positive then INh + L is generated by its minimal elements with respect to the

ordering ≤

� Such minimal elements are are just the primitive elements of the set INh + L, i.e. those which are not sum

of a nonzero element of INh and another one in INh + L

TORIC GEOMETRY 19 / 120
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Semigroup Ideals and Algebras

� In this section, fix a commutative field k

� Define a functor from the category of semigroups to that of k-algebras, assigning to S its semigroup

k-algebra

� For a semigroup S, the semigroup k-algebra k[S] is defined as the k-vector space freely generated by the

symbols χm for each m ∈ S, with a multiplication for symbols given by the rule

χm · χn := χm+n m, n ∈ S

� At the homomorphism level, the functor is defined in a natural way (Exercise)

TORIC GEOMETRY 20 / 120

Semigroup Ideals and Algebras

� Consider the map π0 : INh → S as in the previous section

� By applying the above functor, one gets the the exact sequence

0→ I → A = k[INh]
ϕ0
→ R = k[S]→ 0

where I is the kernel of the k-algebra homomorphism ϕ0 associated to π0

� I is called the semigroup ideal relative to the generators n1, . . . , nh

� Note that if X1, . . . , Xh are variables corresponding to the coordinates in INh, one has the canonical

identification A ≡ k[X1, . . . , Xh]

� Moreover, R and A are graded over S (S-graded) . . .

TORIC GEOMETRY 21 / 120
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Semigroup Ideals and Algebras

� We give degree

� m to the symbol χm

� ni to the variable Xi

� We have a decomposition into homogeneous components

A =
⊕

m∈S

Am

R =
⊕

m∈S

k · χm

� Am is the vector space generated by the monomials of degree m, i.e. Xu := Xu1

1 · · ·X
uh

h with
h
∑

i=1

uini = m

TORIC GEOMETRY 22 / 120

Semigroup Ideals and Algebras

� The homomorphism

A = k[INh]
ϕ0
→ R = k[S]

becomes graded of degree zero

� Thus, the semigroup ideal I is S-homogeneous, i.e.

I =
⊕

m∈S

Im

with Im = I ∩Am

TORIC GEOMETRY 23 / 120
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Semigroup Ideals and Algebras

� Notice that R is generated, as a k-algebra, by the symbols

χn1 , . . . , χnh

so that I can be regarded as the ideal of polynomial relations among these symbols

� I is a binomial ideal, since it is generated by Xu −Xv

for (u,v) ∈ Γ

� By using the previous bijection b, I is also generated by

Xl+ −Xl− for l in the lattice L

� Anyway, I is generated by a finite number of binomials, choosing (u,v) ∈ Γ generating the congruence Γ

TORIC GEOMETRY 24 / 120

Semigroup Ideals and Algebras

� Assume now that S is positive

� First, by using S ∩ (−S) = {0} one has

� MR :=
⊕

m6=0

k · χm is an ideal of R

� MA :=
⊕

m6=0

Am is an ideal of A

� Secondly, by using the finiteness of the fibers, each Am is a vector space of finite dimension

� Third, by using Nakayama’s lemma for S-graded modules, we can speak of minimal systems of generators

for I , which are those inducing a basis of the vector space I/(MAI)

� Obviously, we can consider minimal sets of binomial generators for I

TORIC GEOMETRY 25 / 120
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Semigroup Ideals and Algebras

� In fact, we can consider S-graded free resolutions of R as an A-module

� If S is positive, Nakayama’s lemma shows that one can take the minimal free resolution (unique up to

isomorphism), i.e.

0→ Fp
ϕp
→ · · · → F2

ϕ2
→ F1

ϕ1
→ F0 = A

ϕ0
→ R→ 0

where

� Fi is a free S-graded finite A-module

� ϕi is S-graded of degree 0

� p is the projective dimension of R, i.e. the largest integer p so that Fp 6= 0

TORIC GEOMETRY 26 / 120

Semigroup Ideals and Algebras

� The Auslander-Buchsbaum theorem shows the relation p + r = h, where r is the depth of R

� The integer r ranges over the values 0 ≤ r ≤ d, d being the Krull dimension of R = k[S]

� Note that the Krull dimension of R equals to the rank of the abelian group G(S)

� This fact comes from the computations of dimensions by means of transcendence degrees

� It implies, in particular, that the dimension d of the k-algebra k[S] does not depend on the base field k

� This is not true for r, which may depend on the field k

TORIC GEOMETRY 27 / 120
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Semigroup Ideals and Algebras

� Commutative Algebra provides interesting particular cases . . .

� If r = d the ring k[S] is called Cohen-Macaulay

� If moreover Fp has rank 1 as an A-module, k[S] is called Gorenstein

� In this case the minimal resolution is self-dual, i.e. by applying the functor Hom(−, A) and

considering the natural grading, the induced exact sequence

0→ Hom(F0, A)→ Hom(F1, A)→ · · ·

· · · → Hom(Fp, A)→ Coker(ϕt
p)→ 0

is S-graded isomorphic to the minimal resolution of R

� These two properties depend only on S (and k) but not on the map π0

TORIC GEOMETRY 28 / 120

Semigroup Ideals and Algebras

� Commutative Algebra provides interesting particular cases . . .

� Finally, if I can be generated by exactly h− d homogeneous polynomials (actually binomials) k[S] is

called “complete intersection”

� Equivalently, complete intersection means that the congruence Γ can be generated by exactly h− d
pairs

� The complete intersection property only depends on the semigroup S (not on the map π0, but not

even on the field k), and implies in particular the Gorenstein property

TORIC GEOMETRY 29 / 120
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Cones and Fans

� The next object we can associate to a semigroup S is a cone

� The cone C(S) generated by S is the cone generated by the image of S in the Q-vector space

VQ := G(S)⊗ZZ Q

� Since the base ring extension from ZZ to Q kills the torsion, this cone coincides with that of S in

G(S)/T

� If S is not positive, then C(S) is equal to the whole VQ, so that it contains trivial information, and the

interesting case is S positive

� S is positive if and only if C(S) is a strongly convex cone:

C(S) ∩ −C(S) = 0

� This justifies the terminology “strongly convex semigroup”

TORIC GEOMETRY 30 / 120

Cones and Fans

� Considering generators for S, the cone C(S) is the rational polyhedral cone generated by the images of

the generators n1, . . . , nh in VQ

� That is the cone generated by the convex hull of such images

� Thus, Convex Geometry becomes a useful technique in Toric Mathematics

� There is a very important case where the cone C(S) determines the semigroup S itself . . .

TORIC GEOMETRY 31 / 120
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Cones and Fans

� S is said to be normal if it is torsion free and moreover

S = C(S) ∩G(S)

� It is well-known that S is a normal semigroup iff k[S] is an integrally closed domain (i.e. a normal ring)

� Hochster’s theorem shows that S normal actually implies k[S] Cohen-Macaulay

� A trivial example of normal semigroups are free semigroups, i.e. isomorphic to INt for some integer t

� In fact, free semigroups are the only ones such that k[S] is a regular ring

TORIC GEOMETRY 32 / 120

Cones and Fans

� The terminology regular is coherent with that used in Convex Geometry

� A cone in Qt is regular if it is generated by a basis of the lattice ZZt

� A semigroup S is free if and only if

1. S is normal, and

2. C(S) is regular

� Toric Geometry appears initially as the study of normal toric varieties

� In this way, normal toric varieties are based on Convex Geometry, and Toric Mathematics is equivalent

to that of Convex Geometry

TORIC GEOMETRY 33 / 120
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Cones and Fans

� Coming back to the general case, the convex cone C(S) provides new interesting invariants for a

semigroup S, vgr. the number of edges e of that cone

� Comparing with the dimension d we have

e ≥ d

and equality holds if C(S) is a simplicial cone

� If e = d the semigroups will be called simplicial

� Free semigroups are a very special case of simplicial semigroups

TORIC GEOMETRY 34 / 120

Cones and Fans

� Toric varieties may be affine or not

� Affine toric varieties are nothing but affine varieties X with coordinate k-algebra k[X] equal to k[S] for

some semigroup S, according to the previous terminology

� General toric varieties are algebraic varieties that can be covered by affine toric varieties with overlappings

which are also affine toric varieties

� Projective toric varieties are a particular case

� Normal toric varieties are usually given in terms of Convex Geometry . . .

TORIC GEOMETRY 35 / 120
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Cones and Fans

� This is not the usual definition of toric variety, but it is equivalent . . .

� A toric variety over the field k is an irreducible variety V such that

1. The algebraic torus (k∗)n is a Zariski open subset of V

2. The action of (k∗)n on itself extends to an action of (k∗)n on the whole V

� Examples: (k∗)n, kn and IPn(k) are toric varieties

� Property (1) is obvious; the extended action for the projective case is given by

(t1, . . . , tn) · (a0 : a1 : . . . : an) = (a0 : t1a1 : . . . : tnan)

under the identification (t1, . . . , tn) ≡ (1 : t1 : . . . : tn)

TORIC GEOMETRY 36 / 120

Cones and Fans

� Another example: Consider the cuspidal plane cubic C = V (y2 − x3) ⊆ C2

1. C contains the torus k∗ via the map t 7→ (t2, t3)

2. k∗ acts on C via the map t · (u, v) = (t2u, t3v)

� This is a non normal variety of dimension one, but gives the idea of the connection between toric varieties

and semigroups . . .

TORIC GEOMETRY 37 / 120
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Cones and Fans

� If we have a semigroup S ⊆ ZZd generated by m1, . . . ,mh, we obtain a (normal) toric variety as follows:

� Consider the map ϕ : (k∗)d → kh given by

ϕ(t1, . . . , td) = (tm1 , . . . , tmh)

� The affine toric variety is the Zariski closure V of the image of ϕ

� ϕ is injective, so that the torus can be considered as an open set of V

� The extended action on V is left as an exercise

TORIC GEOMETRY 38 / 120

Cones and Fans

� Another example is V = V (xy − zw) in C4

� It is a 3-dimensional toric variety containing the torus (C∗)3 via

(t1, t2, t3) 7→ (t1, t2, t3, t1t2t
−1
3 )

� The generators of the semigroup are

m1 = (1, 0, 0) m2 = (0, 1, 0)
m3 = (0, 0, 1) m4 = (1, 1,−1)

� The above map corresponds to

(t1, t2, t3) 7→ (tm1 , tm2 , tm3 , tm4) = (t1, t2, t3, t1t2t
−1
3 )

� The implicit equation comes from the equality w = t1t2t
−1
3

TORIC GEOMETRY 39 / 120
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Cones and Fans

� The given data for a normal variety consist of a fan Φ of rational polyhedral cones in Qn, i.e.

� A finite set Φ = {σ} where each σ is a strongly convex polyhedral cone in Qn

� The faces of each σ ∈ Φ is also a are also in the set Φ

� The intersection of any two cones in Φ is a common face of both of them

TORIC GEOMETRY 40 / 120

Cones and Fans

� The normal variety is constructed in the following way

� For each σ ∈ Φ consider Sσ the semigroup of integer coordinate points lying inside the dual cone of σ

σ∨ := {m ∈ Qh | 〈m,u〉 ≥ 0, ∀u ∈ σ}

� Let Xσ be the affine toric variety given by Sσ

� The variety X is the join of such Xσ ’s, and Xσ ∩Xτ = Xσ∩τ

TORIC GEOMETRY 41 / 120
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Cones and Fans

� In this way, for a normal toric variety the fan Φ not only determines the variety, but also shows its geometry

� In fact, cones correspond to affine charts in such a way that intersections of cones correspond to

overlappings of the corresponding charts

� For non normal toric varieties one can proceed in a similar way, but taking a further precision on the

semigroups

� Together with the fan Φ we need, for each σ, a subsemigroup S ′
σ of Sσ so that the intersection of any

two such charts with coordinate algebras k[S ′
σ] and k[S′

τ ] is the affine chart given by k[S ′
σ∩τ ]

� This involves not only Convex Geometry, but also finitely generated cancellative semigroups

TORIC GEOMETRY 42 / 120

Cones and Fans

� The support of a fan Φ is defined by the union of the supports of its cones.

� The fan is called complete if its support is Qn

� Complete toric varieties are those built from complete fans

� The next section is devoted to projective toric varieties, which are a subclass of the complete toric case

TORIC GEOMETRY 43 / 120
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Toric Varieties

� Toric varieties (affine and projective, in particular) are algebraic varieties, so that Algebraic Geometry is a

natural frame for Toric Mathematics

� When the data π0 : INh → S is given, the semigroup S leads to the (abstract affine) toric variety

X = Spec(k[S])

� The choice of generators provided by π0 corresponds to an embedding of X into some affine space Ah

� The dimension of the variety X is just the rank d of G(S)

� We describe later how abstract and embedded projective toric varieties can also be described in nice terms

TORIC GEOMETRY 44 / 120

Toric Varieties

� Let S be a finitely generated cancellative commutative semigroup

� Assume that S is provided with a semigroup morphism λ : S → IN such that S is generated by the

elements in the set S1 := λ−1(1)

� The elements of S1 are irreducible, a posteriori

� Then for any choice of field k, the couple (S, λ) gives rise to an abstract (d− 1)-dimensional

projective algebraic scheme, namely Z = Proj(k[S]), where k[S] is now regarded as an IN-graded

algebra by relaxing its natural S-grading via the map λ, i.e. homogeneous elements of degree i ∈ IN

are the sum of homogeneous elements of S-degrees in λ−1(i)

� Couples (S, λ) are referred as polarized semigroups
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Toric Varieties

� For a polarized semigroup (S, λ), m ∈ S is a sum of i ≥ 0 elements of S1 iff λ(m) = i

� This fact has two consequences:

� The set S1 is finite (and so any fiber λ−1(i)), since S1 is nothing but the set of irreducible elements in

S

� S is positive (a posteriori), since λ−1(0) = 0
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Toric Varieties

� PROPOSITION: Let (S, λ) be a polarized semigroup such that S is torsion free. Then the projective

algebraic scheme Z = Proj(k[S]) is a projective toric variety

� Proof (sketch): Notice first that k[S] is a domain

� Since S is torsion free, it can be viewed as a subset of VQ

� On the other hand, the map λ can be extended to a group homomorphism

λZZ : G(S)→ ZZ

and to an IR-linear map

λIR : VIR → IR

where VIR := G(S)⊕ZZ IR
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Toric Varieties

� PROPOSITION: Let (S, λ) be a polarized semigroup such that S is torsion free. Then the projective

algebraic scheme Z = Proj(k[S]) is a projective toric variety

� Proof (continued): Let Ω1 be the convex hull of S1 in VIR

� Let S0
1 ⊂ S1 be the set of vertices of S1

� Notice that S0
1 , S1 and Ω1 lie on the affine hyperplane in VIR given by λ−1

IR (1)

� Fix m0 ∈ S0
1 . Then the semigroup S(m0) generated by the set of elements of the type m−m0 with

m ∈ S1 is a new finitely generated semigroup whose associated group is λ−1
ZZ (0)
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Toric Varieties

� PROPOSITION: Let (S, λ) be a polarized semigroup such that S is torsion free. Then the projective

algebraic scheme Z = Proj(k[S]) is a projective toric variety

� Proof (end): It follows that the dimension of the affine toric variety X(m0) given by the semigroup

S(m0) is d− 1, where

d = rank G(S)

i.e. the dimension of the projective variety Z

� Moreover, since X = Spec(k[S]) is the projecting cone of Z , the construction shows that the affine

toric varieties

X(m0) for m0 ∈ S0
1

is a covering of Z by affine charts, i.e. Z is a projective variety

2
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Toric Varieties

� For projective normal varieties it is possible to describe conditions for Cartier divisors to be ample or very

ample

� A polarization of a projective variety means to pick a very ample Cartier divisor class

� It provides an embedding of the variety in a projective space

� When the variety is toric, the polarization gives rise to a polarized semigroup (S, λ), so that the variety

is isomorphic to that given by the couple (S, λ) [see Fulton]

� Thus, it is equivalent to give an embedded projective toric variety and a polarized semigroup
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Toric Varieties

� Notice that, for a given polarized semigroup (S, λ), the set S1 is the set of irreducible elements of S, so that

there is no other generator system contained in S1 giving the embedding of the affine toric variety

X = Spec(k[S]), which is the projecting cone of Z

� Thus, a polarized semigroup provides a canonical embedding of the projective toric variety into IPh−1,

where h := ](S1)

� We remark that the fan producing the projective variety Z lies in the dual space of the hyperplane λ−1
Q (0)

� That is, the cones of the fan are exactly the duals of the cones generated by the semigroups S(m0)

� By construction, it is easy to see that such a fan is a complete fan corresponding to the algebraic

geometric fact that “every projective variety is complete”
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Toric Varieties

� In the same way as for affine toric varieties, the main algebraic geometric characteristics of projective toric

varieties can be described in terms of the polarized semigroup (S, λ)

� Z = Proj(k[S]) is said to be arithmetically Cohen-Macaulay (resp. Gorenstein) if k[S] is

Cohen-Macaulay (resp. Gorenstein)

� Z is projectively normal if k[S] is normal

(i.e. the semigroup S is normal)

� Finally, Z is normal (resp. regular) if every semigroup S(m0) is normal (resp. free), for all m0 ∈ S0
1

� Notice that projectively normal means Si = Si, where Si := λ−1(i) and Si := C(S) ∩ Si, for all i
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Toric Varieties

� Normalness can be characterized in a similar way in terms of the Ehrhart and Hilbert functions

� The Ehrhart function is the map E : IN→ IN given by E(i) := ](Si)

� The Hilbert function is the map H : IN→ IN given by H(i) := ](Si)

� Both coincide with a polynomial map of degree d− 1 and coefficients in Q for i >> 0

� Under very general conditions, the leading terms of both “polynomials” E and H are equal, and the

projective variety Z is normal exactly when both polynomials are the same

� In the same way, projective normalness is characterized by the equality of the functions E = H
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Polytopes and Complexes

� If we have an embedded affine or projective toric variety, we would like to describe or compute (if possible)

equations and syzygies for such embedding

� Most results use combinatorial techniques, such as simplicial and cellular complexes or polytopes

� Note that the projective case is reduced to the affine one, since from a polarized semigroup, the equations

and syzygies of the projective variety defined by such a semigroup are the same as those of its projecting

cone affine variety

� Such an affine variety is exactly the affine toric variety given by the semigroup S of the polarization

with S1 as chosen system of generators
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Polytopes and Complexes

� In the sequel, consider the map π0 : INh → S
where S is a positive semigroup

� Λ is the generator system given by π0

� Π is the set of primitive elements of M := INh + L

� For every m ∈ S, Υm is the set of monomials of S-degree equal to m

� Note that Υm can be identified to the fiber π−1
0 (m)

� Remember that S positive implies M generated by Π and each Υm is finite

� There are several combinatorial objects with vertex set equal to either Λ, either Π or Υm, which are

naturally associated to π0 . . .
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Polytopes and Complexes

� Associated to every fixed m ∈ S we have the simplicial complexes ∆m and Θm, and the polytope Ωm,

defined as follows

1. ∆m is the simplicial subcomplex of parts F of Λ such that m− nF ∈ S, where nF :=
∑

n∈F

n

2. Θm is the simplicial subcomplex of parts G of Υm such that all the monomials of G have a non unit

GCD

(i.e. monomials sharing at least one variable)

3. Ωm is the polytope in VIR := ZZh ⊗ZZ IR given by the convex hull of the set Υm = π−1
0 (m)

� We can consider on S the ordering defined by m′ � m iff m−m′ ∈ S

� If m′ � m then ∆m′ ⊆ ∆m, and the translation of Ωm′ by any vector in the fiber π−1
0 (m−m′) is a

subset of Ωm
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Polytopes and Complexes

� Associated to S as a whole, one has two useful regular cellular subcomplexes of parts of Π, namely . . .

� The so-called Taylor complex Ξ, that is the (simplicial) complex of all parts of Π

� The hull complex Σ, whose faces are the subsets of Π corresponding to some bounded face of the

convex hull defined by the set of points of VIR of type ta = (ta1 , . . . , tah) for a = (a1, . . . , ah) ∈M
where t >> 0 is a positive real number

� The mentioned correspondence is the obvious one, by taking into account that any vertex of the

above convex hull is necessarily one of type tb with b ∈ Π
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Polytopes and Complexes

� Sometimes a subcomplex of Σ is considered, namely the so-called Scarf complex, which is defined as a

simplicial complex to be the set of parts H of Π satisfying the property aH 6= aH′ for every H 6= H ′,

where aH stands for the supremum of the elements in H for the ordering ≤ (componentwise product

ordering in ZZh)

� The hull and the Scarf complexes coincide when the data π0 is “generic”, i.e. the congruence Γ can be

generated by couples (u,v) such that the union of the supports of u and v is the set {1, 2, . . . , h}

� In the sequel, we will often use reduced homology with values in the field k for simplicial and cellular

complexes

� The corresponding i-th reduced homology vector spaces will be denoted by H̃i
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Polytopes and Complexes

� Equations have to do, in practice, with computing sets of binomial generators of the semigroup ideal I

� In fact, we would have to compute either a minimal set of generators or a Gröbner basis

� For each monomial ordering, i.e. total order on the set of monomials for which the monomial 1 is the

minimum and which is compatible with multiplication by monomials, one has a well defined reduced

Gröbner basis with respect to such an ordering

� In our situation, this Gröbner basis consists of binomials

� Thus, such a reduced Gröbner basis can be regarded as a subset of either the congruence Γ or the

lattice L
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Polytopes and Complexes

� The union of the reduced Gröbner bases for all possible (monomial) orderings is called a universal Gröbner

basis, and it has the property of being simultaneously a Gröbner basis of I for all orderings

� Again a universal Gröbner basis of binomials can be seen as a subset of either Γ or L

� A reduced Gröbner basis w.r.t. a concrete ordering can be computed from any other generator system by

means of the well known Buchberger algorithm

� The computation of a universal Gröbner basis becomes much more difficult . . .
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Polytopes and Complexes

� Consider the subset U of S consisting of those elements m ∈ S such that the polytope Ωm has an edge

which is not parallel to some edge of a certain Ωm′ , for some m′ � m

� Then, for each m ∈ U consider the binomials of type Xu −Xv, where the coordinates of u− v are

relatively prime and the segment [u,v] is an edge of Ωm

� A result by Sturmfels, Weismantel and Ziegler shows that the set of all such binomials (m ranging over

U ) is precisely a universal Gröbner basis of the ideal semigroup I

� Such universal basis is finite, since one can see that it is contained in the so-called Graver basis,

which is actually finite

� The Graver basis consists of the binomials corresponding to the primitive elements of the lattice L, i.e.

those elements l = l+ − l− in L for which there is no other l′ = l′+ − l′−

in L such that l 6= l′, l′+ ≤ l+ and l′− ≤ l−
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Polytopes and Complexes

� In order to find minimal sets of homogeneous generators for I one can proceed as follows . . .

� Consider the set C of elements m ∈ S s.t. H̃0(Θm) 6= 0
i.e. those elements whose complex Θm is not connected

� The set C is finite

� For each m ∈ C pick a monomial Xu in each connected component of Θm and distinguish the

monomial Xv picked for one concrete component

� Then, the binomials Xu −Xv, where Xu ranges over the picked monomials for the other

components, are the degree m terms of a minimal system of homogeneous generators of I

� Thus, when m ranges over the set C , the whole set of binomials obtained in this way is a minimal set

of homogeneous generators for I
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Polytopes and Complexes

� An alternative way to find homogeneous generators for I , involving the complexes ∆m, is available for

higher order syzygies, and it will be discussed below

� Maybe it is also possible the same discussion for Θm ?

� Can Θm or ∆m be used to find a universal Gröbner basis ?

� The description of syzygies consists of obtaining either the minimal S-graded resolution, or concrete

resolutions with special properties

� For example, the property of preserving the symmetries relative to the action of the lattice L
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Polytopes and Complexes

� Under the above notations

0→ Fp
ϕp
→ · · · → F2

ϕ2
→ F1

ϕ1
→ F0 = A

ϕ0
→ R→ 0

the i-th order syzygy module is the S-graded module Ni := ker(ϕi)

� Notice that N0 = I

� For each degree m ∈ S the number of generators of degree m in any minimal set of generators for

Ni is equal to the dimension of the k-vector space

Vi(m) := (Ni)m/(MANi)m

(Nakayama’s lemma)
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Polytopes and Complexes

� A first and key connection between syzygies and toric geometry is a result by Hochster which states that

one has an explicit and natural vector space identification

Vi ≡ H̃i(∆m)

H̃i means reduced simplicial homology with coefficients in k

� Moreover, such an isomorphism can be explicitly computed for direct and inverse images

� This results illustrates how combinatorics play a natural role for describing syzygies, and thus one

should include combinatorics in the useful techniques in Toric Mathematics

� As an application, there is an effective algorithm to compute minimal sets of binomial generators for I
(Briales, Campillo, Marijuán, Pisón)
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Polytopes and Complexes

� The main involved computational problems are:

1. Find the values m ∈ S such that H̃i(∆m) 6= 0

2. Compute the homology

� If one is able to solve both problems, since the above isomorphisms are explicit one can successively

construct minimal sets of generators for the syzygy modules in the minimal resolution of R

� Concerning the first problem, Briales, Pisón and Vigneron determine suitable finite subsets Ci of S
with the property

m /∈ Ci ⇒ H̃i(∆m) 6= 0

obtaining an algorithm for computing the minimal resolution
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Polytopes and Complexes

� The second problem is better understood from a computational point of view, since concrete homologies

can be calculated by means of both linear algebra and integer linear programming

� However, also toric geometry itself helps to solve integer programming, so that it is better to try a better

understanding of the explicit structure of the homologies H̃(∆m)
(Campillo and Gimenez)

� Consider a partition Λ = E ∪ C where E is a subset of generators whose image in VQ minimally

generates the cone C(S)

� This means: for each edge of C(S), E contains exactly one element whose image generates such an

edge

� Note that e = ](E) equals to the number of edges of C(S), that is an invariant of S
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Polytopes and Complexes

� From an algebraic viewpoint, k[S] becomes a finite extension of k[E ]

� Thus, the minimal graded resolution of k[S] as an A-module can be compared to its minimal resolution as a

B-module

� Remember that A := k[X1, . . . , Xh]

� Now B := k[INe] and corresponds to the semigroup generated by the set E

� This puts in evidence two kind of objects . . .
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Polytopes and Complexes

� First is the Apéry set Q relative to E

� Q is the set of elements q ∈ S such that q − n /∈ S for all n ∈ E

� In other words, Q is the set of exponents whose corresponding symbols minimally generate k[S] as a

k[E ]-module

� In particular, Q is finite

� Secondly, for each m ∈ S one has the analog of ∆m for this situation, namely the simplicial subcomplex

Tm of parts J of E such that m− nJ ∈ S

� One can see that dim H̃i(Tm) is exactly the number of degree m elements in a minimal set of

E -homogeneous generators of the i-th order syzygy module in the minimal resolution of k[S] as a

B-module
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Polytopes and Complexes

� Now for a fixed m ∈ S one has a key long exact sequence of type

· · · → Hi+1(Qm)→ Ki → H̃i(∆m)→ Hi(Qm)→ Ki−1 → · · ·

� H∗(Qm) is the homology of a complex associated to the vertex m of a graph GQ (Apéry Graph) with

colored edges constructed from the knowledge of Q and C as color set

� The vertex set of GQ consists of the elements m of type q + nI where q ∈ Q and I ⊆ C

� Edges of color n ∈ C joint a vertex m′ with another m provided m−m′ = n

� The complex associated to m has as i-th chain space the one freely generated by the subsets I ⊆ C
of cardinality i + 1 such that m− nI ∈ Q

� The boundary map is the projection of the usual simplicial one
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Polytopes and Complexes

� Now for a fixed m ∈ S one has a key long exact sequence of type

· · · → Hi+1(Qm)→ Ki → H̃i(∆m)→ Hi(Qm)→ Ki−1 → · · ·

� The vector spaces K∗ are much more complicate to describe in detail, but they can be stepwise

computed in two alternative ways

� One way is in terms of graphs similar to Apéry’s but with some sets different from Q

� Another in terms of homologies of type H̃∗(Tm′) where m′ = m− nI with I ⊆ C

� See [Campillo,Gimenez] for further details
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Polytopes and Complexes

� As an application of the complexes Tm we get a characterization for the depth r of the ring k[S]

� Recall that the integers r ≤ d ≤ e are associated to a positive semigroup S

� d and e are easily obtained from S

� To obtain r, we have that for an integer 1 ≤ r0 ≤ d, the inequality r ≥ r0 is equivalent to

H̃e−r0
(Tm) = 0 for all m ∈ S

� In particular, for r0 = d, the Cohen-Macaulay property is characterized by

H̃e−d(Tm) = 0, ∀m ∈ S

� For the simplicial case e = d, this means that all the complexes Tm are connected
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Polytopes and Complexes

� From this fact, we easily recover the well known characterization for simplicial semigroups that the

Cohen-Macaulay property is equivalent to

m ∈ G(S), n, n′ ∈ E , n 6= n′, m + n ∈ S, m + n′ ∈ S ⇒ m ∈ S

� There are other characterizations of the Cohen-Macaulay property for non-simplicial cases in the

literature
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Polytopes and Complexes

� A standard application of the above techniques (long exact sequences) is for the case of simplicial

Cohen-Macaulay semigroups (r = d = e)

� In this case, since the complexes Tm are connected one can deduce that Ki = 0 for all i and hence

from

· · · → Hi+1(Qm)→ Ki → H̃i(∆m)→ Hi(Qm)→ Ki−1 → · · ·

we get H̃i(∆m) ≡ Hi(Qm) for every m and i

� Thus, the minimal resolution for the simplicial Cohen-Macaulay case can be derived from the

combinatorial object GQ (Apéry graph)

� For the general case, there are other ways to derive free resolutions for R from a unique combinatorial

object, namely either the Taylor Ξ or the hull Σ complexes
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Multinumerical Semigroups

� In practice, the “toric data” π0 (S with given generators) is often described in arithmetical terms

� In fact the commutative finitely generated group G(S) is

G(S) ∼= ZZd × ZZ/(g1)× · · · × ZZ/(gl)

for some integers d, l and gi’s

� If such an isomorphism is given, π0 becomes equivalent to the specification of the coordinate

(d + l)-tuples (in the above group product) of the generators n1, . . . , nh of S

� A semigroup given by such a specification is called a multinumerical semigroup

� For the simplest case d = 1 and l = 0, they are referred in the literature as numerical semigroups
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Multinumerical Semigroups

� The purpose is then to study toric varieties from arithmetics of multinumerical semigroups, i.e. deduce

geometrical properties of toric varieties from arithmetic properties of the generators of S as tuples in the

product description of G(S)

� This becomes difficult, and remains as an open problem except for a few special cases

� The reason lies on the connections between combinatorics and toric geometry

� In fact, by using polytopes, simplicial or cellular complexes, one avoids the dealing with delicate

relations among numbers
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Multinumerical Semigroups

� However, provided combinatorial techniques have produced nice results, one can hope to interpret them in

the framework of arithmetics

� This has been done for concrete cases (affine and projective toric curves, or affine and simplicial

projective toric surfaces)

� There are also nice results for more general cases

� To illustrate this strategy, we explicit now some results for toric curves
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Multinumerical Semigroups

� An affine toric curve is given by a numerical semigroup S, generated by a set Λ of h non-negative integers

� Obviously r = d = 1 and, since the cone C(S) has an only edge, also e = 1 so that this is a simplicial

Cohen-Macaulay case

� Fix a partition Λ = E ∪ C where E has a single element s ∈ S and C contains the remaining h− 1
elements

� Consider the Apéry set Q consisting of those integers in q ∈ S such that q − s /∈ S, and construct the

colored graph GQ

� It is not difficult to translate the graph structure into arithmetical relations, so that the homologies

H̃i(∆m) = Hi(Qm) for the vertices m ∈ GQ can be derived from such relations

� The conclusion is that the minimal resolution for affine toric curves can be computed just in

arithmetical terms from the generators of the numerical semigroup S
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Multinumerical Semigroups

� A projective toric curve of degree s is given by a subsemigroup S of IN2 generated by a set Λ = E ∪ C,

where

� E consists of the two elements (s, 0) and (0, s)

� C consists of the elements (c1, s− c1), . . . , (ch−2, s− ch−2) for different values 0 < ci < s

� The semigroup can be polarized by the function λ(c, c′) := (c + c′)/s

� Thus, S defines an embedding of the projective toric curve into IPh−1

� Notice that d = e = 2 and r = 1, 2 depending on whether the projective curve is arithmetically

Cohen-Macaulay or not
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Multinumerical Semigroups

� Let S1 be the numerical semigroup generated by s, c1, . . . , ch−2

� For each c ∈ S1 denote by µ(c) the smallest number of the above generators of S1 which are needed

to obtain c as a sum

� Notice that the function µ satisfies the property

µ(c) ≤ µ(c− s) + 1

for every c ∈ S1 such that c− s ∈ S1

� One can prove that the projective toric curve is arithmetically Cohen-Macaulay if and only if

µ(c) = µ(c− s) + 1

for every c ∈ S1 such that c− s ∈ S1
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Multinumerical Semigroups

� In general, if we know µ it is not difficult to find the Apéry set Q relative to the above partition Λ = E ∪ C,

as well as the set D consisting of those elements m ∈ S such that

� m− (s, 0) ∈ S

� m− (0, s) ∈ S

� m− (s, s) /∈ S

� One can consider a colored graph GD similar to the Apéry one but replacing Q by D

� One can prove that the vector space Ki can be identified to the homology Hi(Dm) (analogous to that

with Q)
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Multinumerical Semigroups

� Thus, one deduces the long exact sequence

· · · → Hi+1(Qm)→ Hi(Dm)→ H̃i(∆m)→ Hi(Qm)→ · · ·

� The involved homologies, as well as the image maps in this exact sequence, can be computed in

arithmetical terms from the given data s, c1, . . . , ch−2

� The same holds for the reduced homologies H̃∗(∆m)

� Hence, the minimal resolution for a projective toric curve can be obtained just from arithmetics
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Some Applications

� The development of toric geometry has provided applications to many problems in algebra and geometry,

since toric varieties describe the main ingredients involved in such problems

� There are also some applications outside geometry and algebra, so that toric geometry is becoming an

interesting topic in applied mathematics

� Those external applications are related to applied combinatorics, computational geometry, statistics,

operations research or coding theory

� We introduce in this section some illustrating applications of current interest
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Coin exchange problem

� This is a classical problem in applied combinatorics

(we follow the results of [Campillo and Revilla])

� PROBLEM: Given a system of coins with values

c1 < c2 < · · · < ch−1

and a exchange value c, find an algorithm to achieve the value c the minimum possible number of

coins

� Setting s := ch−1, we have a projective toric curve Z of degree s given by the (polarized) semigroup S of

IN2 generated by

(0, s), (c1, s− c1), . . . , (ch−1, s− ch−1), (s, 0)

� The problem is then to achieve c ∈ S1 (generated by the coin values) in a minimal way, i.e. with minimum

µ(c)
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Coin exchange problem

� Coin systems considered in practice have a strong property:

The greedy algorithm for achieving all the possible values c obtains a configuration with µ(c) coins

� The greedy algorithm works as follows:

� Input: c ∈ S1

� Find the largest coin cj ≤ c and

� Update c := c− cj and restart the procedure until c = 0

� From the discussion in the previous section, if the greedy algorithm “works” then Z has to be arithmetically

Cohen-Macaulay

� Then, the natural thing is to use arithmetically C-M coin systems

� In general, the greedy algorithm does not work, but there is an alternative algorithm
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Counting points in polyhedra

� Given a (convex) polytope P with integer vertices, count the number of integer points in the polytope

� Example of application: coding theory (toric codes)

Toric (error-correcting) codes are constructed as follows:

� Fix a (rational) polytope P defined over a finite field IFq , with dimension r ≥ 2

� Consider the IFq-vector space of finite dimension VP , with basis {χu | u ∈ P ∩ ZZr}, i.e the

monomials whose exponents are inside the polytope P (and the lattice ZZr)

� For any t ∈ T = (IF∗
q)

r in the algebraic torus, evaluate each element of VP at all the points t
obtaining codewords of length (q − 1)r (toric code associated to P)

� Under certain conditions this evaluation map is injective, so that the dimension of the code is precisely

the number of (integer/rational) points inside the polytope
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Counting points in polyhedra

� We show how to compute the number of points in a polytope by means of the so-called Brion’s formula

� Let’s start with a intuitive introduction . . .

� If we want to list all positive integers, we can place them as exponents of an infinite series, and write

this series in a compact way in the form of a generating function

x1 + x2 + x3 + · · · =
∑

k≥1

xk =
x

1− x

� In a similar way, we can list all integers less than or equal to 5 as

· · ·+ x−1 + x0 + x1 + x2 + x3 + x4 + x5 =
∑

k≤5

xk =
x5

1− x−1
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Counting points in polyhedra

� Adding the two generating rational functions, we get a miraculous cancellation

x

1− x
+

x5

1− x−1
=

x

1− x
+

x6

x− 1
=

x− x6

1− x
= x + x2 + x3 + x4 + x5

� The sum of two rational functions representing two infinite series collapses into a polynomial representing a

finite series

� This is a 1-dimensional version of the Brion’s formula

� We list separately the integer points in the rays [1,∞) and (−∞, 5]

� By adding both functions, we get the list of integer points in the intersection interval [1, 5]

� We get not only the number of points, but actually the list of points
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� Let’s move up one dimension: consider the quadrilateralQ with vertices (0, 0), (2, 0), (0, 2), (4, 2)

� The analog of the 1-dimensional generating functions of the rays are now the generating functions of the

cones at each of the (four) vertices generated by the edges incident to such vertex

� For example, the two edges touching the origin generate the nonnegative quadrant, with generating function

∑

m,n≥0

xmyn =
∑

m≥0

xm ·
∑

n≥0

yn =
1

1− x
·

1

1− y

� In a similar way, the cone at (0, 2) has generating function

∑

m≥0,n≤2

xmyn =
y2

(1− x)(1− y−1)
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� The cone at vertex (2, 0) has generating function

x2

(1− xy)(1− x−1)

� And finally the cone at vertex (4, 2) corresponds to

x4y2

(1− x−1)(1− x−1y−1)

� The sum of these four rational functions leads to a polynomial, encoding precisely the list of integer points

contained inQ

(1 + x + x2) + (y + xy + x2y + x3y) + (y2 + xy2 + x2y2 + x3y2 + x4y2)

TORIC GEOMETRY 91 / 120

Counting points in polyhedra

� In the general case, this “magic” happens for any polytope P in any dimension d provided P is rational

(either vertices have integer coordinates, or edges have rational directions)

� Let Kv the cone at vertex v with directions given by the edges of the polytope P

� The generating function of Kv is

σKv
(x) :=

∑

m∈Kv∩ZZd

xm

where we abbreviate xm ≡ xm1

1 xm2

2 · · ·x
md

d

� This is a rational function, provided P is rational
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Counting points in polyhedra

� Let finally σP(x) the (polynomial) generating function of the polytope P , that is

σP(x) :=
∑

m∈P∩ZZd

xm

� Brion’s formula states that:

σP(x) =
∑

v vertex of P

σKv
(x)

� That is, again the sum of some infinite series collapses into a (finite) polynomial
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� So the problem is to compute the generating function of a cone

� This is feasible for the so-called simple cones, generated by d directions (in d dimensions)

K :=

{

v +
d
∑

i=1

λiwi |λi ∈ IR≥0

}

= v +
d
∑

i=1

IR≥0wi

where w1, . . . ,wd ∈ ZZd are linearly independent

� This cone is tiled by lattice-translations of the half-open (fundamental) parallelepiped

P0 :=

{

v +
d
∑

i=1

λiwi | 0 ≤ λi < 1

}
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Counting points in polyhedra

� The generating function for P0 is the polynomial

σP0
(x) :=

∑

m∈P0∩ZZd

xm

� Thus, the generating function for K is

σK(x) =
∑

α∈INw1+···+INwd

α · σP0
(x) =

σP0
(x)

(1− xw1) · · · (1− xwd)

� This is a rational function

� It is even better is the simple d-cone is unimodular . . .
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� We say that a rational d-cone K = v +
d
∑

i=1

IR≥0wi is unimodular if w1, . . . ,wd ∈ ZZd generate the

integer lattice ZZd

� The significance of such an unimodular coneK for us is that its fundamental (half-open) parallelepiped

contains exactly one integer point p0

� Thus, the generating function of K has a very simple and short form

σK(x) =
xp0

(1− xw1) · · · (1− xwd)

� Now the natural question is: Can every cone be efficiently decomposed somehow into simple unimodular

cones?
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Counting points in polyhedra

� Theorem (Barvinok): For a fixed dimension d, the generating function σK for any rational cone K ⊆ IRd

can be decomposed into generating functions of unimodular simple cones in polynomial time

i.e. A polynomial-time algorithm finds polynomially-many unimodular cones Kj such that

σK(x) =
∑

j

εjσKj
(x)

where ε = ±1

� From here, one can see that it is possible to count integer points in a rational polytope in polynomial

time (w.r.t. the input length of the description of K)
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� Let’s see an example in dimension d = 2

� Consider the cone K with vertex at the origin and edge directions (1, 0) and (1, 4)

� K can be either the difference of 2 unimodular cones
{

〈(1, 0), (0, 1)〉
〈(1, 4), (0, 1)〉

� or a sum of 4 unimodular cones














〈(1, 0), (1, 1)〉
〈(1, 1), (1, 2)〉
〈(1, 2), (1, 3)〉
〈(1, 3), (1, 4)〉
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Algebraic Statistics and Models

� In mathematical terms, a statistical model is frequently thought as a parameterized set of probability

distributions
Θ → P
θ 7→ Pθ

� Θ is called a parameter space, that is usually a subset of IRn

� Consider discrete data and suppose that both the parameter space and the parametrization map are

described by polynomials

� Let’s precise this with three-way contingency tables . . .
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� Let X, Y, Z be random variables having a, b, c states respectively

� A probability distribution P is an a× b× c-table of non-negative real numbers that sum to one

The entries of such a table are the probabilities

Pijk := Prob(X = i, Y = j, Z = k)

� The set of all distributions is a simplex ∆ of dimension abc− 1

� A statistical model is a subsetM⊆ ∆ which can be described by polynomial equations and inequalities in

the coordinates Pijk

� Typically,M is presented as the image of a polynomial map

P : Θ→ ∆

where Θ ⊆ IRn is described by polynomial equations
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Algebraic Statistics and Models

� The distribution P is called independent if each probability is the product of the corresponding marginal

probabilities

Pijk = Pi++ · P+j+ · P++k

where

Pi++ := Prob(X = i) =
b
∑

j=1

c
∑

k=1

Pijk

and so on

� The independence model has a parametric representation

Θ = ∆a−1 ×∆b−1 ×∆c−1 → ∆ = ∆abc−1

(α, β, γ) 7→ (Pijk) = (αi · βj · γk)

� The image is known as the Segre variety in Algebraic Geometry
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� For example, if a = b = c = 2 the independence model (Segre variety) is the threefold in ∆7 (or in IP7)

having the parametrization

P000 = αβγ P001 = αβ(1− γ)
P010 = α(1− β)γ P011 = α(1− β)(1− γ)
P100 = (1− α)βγ P101 = (1− α)β(1− γ)
P110 = (1− α)(1− β)γ P111 = (1− α)(1− β)(1− γ)

� This threefold is cut out by the trivial constraint

P000 + P001 + P010 + P011 + P100 + P101 + P110 + P111 = 1

� A Markov basis consists of nine quadratic binomials

P100P111 − P101P110 P010P111 − P011P110 P010P101 − P011P100

P001P111 − P011P101 P011P110 − P011P100 P000P111 − P011P100

P000P110 − P010P100 P000P101 − P001P100 P000P011 − P001P010
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Algebraic Statistics and Models

� Markov bases make sense for every exponential family

(log-linear model)

� They are interesting for graphical models and hierarchical models

� They minimally generate the corresponding toric ideal

� They give Markov chains for sampling from conditional distributions

� They can be effectively computed by using software packages

� Theorem: The Markov basis for the independence model on 3 random variables consists of quadratic

binomials as above

• The number of binomials in such s basis equals

1

8
abc(3abc− ab− ac− bc− a− b− c + 3)
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� Let’s define properly what a Markov basis is

� Let A be a d× n integer matrix

� A finite set of vectors B ⊆ kerZZ(A) is called a Markov basis if for any couple of vectors with nonnegative

integer coordinates u,v such that Au = Av, there exists a sequence of elements {mi}
l
i=1 such that

� u +
∑l

i=1 mi = v

� u +
∑j

i=1 mi ≥ 0 for each 0 ≤ j ≤ l

� The elements of a Markov basis are often called moves

� A priori, it is not clear that a finite Markov basis should exist, but one has the following result . . .
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Algebraic Statistics and Models

� Theorem: A collection of binomials in the toric ideal of A

{Xm+

−Xm−

|m ∈ B} ⊆ IA

is a generator system for IA iff ±B is a Markov basis for A

� In particular, since every toric ideal has a finite generating set of binomials, we conclude that Markov

bases exist

� We say that a Markov basis is minimal if the corresponding collection of binomials generating the toric

ideal is minimal as generator system

� Unfortunately, minimal Markov bases are not generally unique

� We can also consider the universal Markov basis, to be union of all possible minimal Markov bases of

A

� Universal Markov bases can be characterized in terms of primitive elements, in a similar way as in

semigroup theory
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� A typical problem is statistical inference

� Given a point q ∈ ∆ and a modelM, find the point p ∈M which “best agrees” with q

� “Best agrees” usually means maximum likelihood estimate

� Toric models are the “positive part” of a toric variety

� For toric models there is a explicit solution for the MLE problem
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Integer Linear Programming

� Another application is the classical problem of applied optimization

� Integer Linear Programming is related to multinumerical subsemigroups of ZZd which, for simplicity, we

assume to be positive

� Let S be such a semigroup and assume that it is generated by the elements n1, . . . , nh ∈ ZZd

� We are interested in finding the “optimal” solution with nonnegative integer coordinates satisfying the

constraint
h
∑

i=1

xini = b

optimizing the (objective) linear function

ρ(x1, . . . , xh) = ρ1x1 + · · ·+ ρhxh

where the coefficients are ρi ∈ IR
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� An integer (linear) program can be seen as a specification (π0, ρ) where π0 gives the data about S and its

generators, and ρ the objective function (normally minimizing the cost)

� For each b ∈ S the feasible solutions of the IP for b are among the elements of the fiber π−1
0 (b) and,

moreover, among the vertices of the polytope Ωb, and the optimal(s) solution(s) in particular

� Notice now that, once any monomial ordering on the variables x1, . . . , xh is fixed (for instance the reverse

lexicographical ordering), the objective function gives rise to another monomial ordering, namely a weighted

ordering with weight ρ, as follows:

1. First compare the monomials by the value of ρ at the exponents

2. In case of tie, look at the previously fixed monomial ordering

TORIC GEOMETRY 108 / 120

53



Integer Linear Programming

� In this way, one can prove that the reduced Gröbner basis of the ideal I given by π0 relative to this new

monomial ordering provides a minimal test set for the IP problem, as described in the sequel

� In fact, such reduced Gröbner basis is generated by binomials, and thus it can be seen as a subset Uρ

of the lattice L

� On the other hand, we have the property that if x = (x1, . . . , xh) ∈ INh is in a fiber and l ∈ L is a

feasible solution then x− l is again a feasible solution, provided x− l ∈ INh

� Hence Uρ is a test set for the proposed IP, for it satisfies the two following conditions . . .
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1. If x is a feasible solution which is not optimal, there exists l ∈ Uρ with l �ρ 0 such that x− l is also a

feasible solution

2. If x is an optimal solution, then x− l is not feasible, for every l ∈ Uρ

� The condition on the Gröbner basis to be reduced implies that the test set Uρ is minimal among all the

possible test sets

� Test sets provide nice algorithms to solve integer linear programming problems, in the obvious way

suggested by the definition of test set

� Non reduced Gröbner bases provide non minimal test sets

� In particular, the set U giving the universal Gröbner basis in one of the previous sections, which is finite and

it is the union of all the Uρ for all possible objective functions ρ, is a test set for all possible IP problems

(varying ρ)
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� In the sequel we give some more explicit details about solving integer programming with Gröbner bases

� We start with the Conti-Traverso algorithm . . .

� We first need to characterize the feasible (integer) solutions

� Our aim is to find an optimal solution of the “standard problem” of minimization (i.e. ρ is a cost function)

� Consider an integer linear program

{

Minimize ρ1α1 + · · ·+ ρhαh

subject to Aα = b, α ∈ INh
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� We introduce a variable for each constraint and write such restrictions in polynomial form

h
∏

j=1

(

d
∏

i=1

Y
aij

i

)αj

=
d
∏

i=1

Y bi

i

� Since exponents may be negative, we must interpret this equality in the Laurent Polynomial ring

k[Y1, . . . , Yd, Y
−1
1 , . . . , Y −1

d ]/〈YiY
−1
i − 1〉|1 ≤ i ≤ d〉

� We can save variables by using an isomorphic k-algebra

k[Y1, . . . , Yd, T ]/〈Y1 · . . . · Yd · T − 1〉

TORIC GEOMETRY 112 / 120

55



Integer Linear Programming

� A monomial like Y a has a representative like T r(a)Y ã where

r(a) := max{|ai| : ai < 0} and ã := a + (r(a), . . . , r(a))

� Thus, considering the k-algebra homomorphism

ϕA : k[X1, . . . , Xh] → k[Y1, . . . , Yd, T ]/〈Y1 · . . . · Yd · T − 1〉

Xj 7→ T r(Aj)Y Ãj + 〈Y1 · . . . · Yd · T − 1〉

where Aj stands for the j-th column of A,

we can characterize feasible solutions as follows

� Proposition: α is a feasible solution iff ϕA(Xα) ≡ T r(b)Y b̃ modulo (Y1 · . . . · Yd · T − 1)

� This can be solved with the aid of Gröbner bases . . .
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� Algorithm (Conti-Traverso)

Input: (A,b,≺), where ≺ is a monomial ordering over k[X1, . . . , Xh, Y1, . . . , Yd, T ] which is an elimination

ordering for {Y1, . . . , Yd, T}

Step 1: Compute G a Gröbner basis w.r.t. ≺ of the ideal

J := 〈T r(A1)Y Ã1 −X1, . . . , T
r(Ah)Y Ãh −Xh, Y1 · . . . · Yd · T − 1〉

Step 2: Compute the normal form h of T r(b)Y b̃ modulo G

Output: A feasible solution α if h = Xα, or ∅ otherwise

� If we want moreover α to be an optimal solution, we need a special type of monomial ordering . . .
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� A monomial ordering ≺ over k[X1, . . . , Xh, Y1, . . . , Yd, T ] is said to be adapted to the IP problem given

by (A,b, ρ) if

1. It is an elimination ordering for {Y1, . . . , Yd, T}

2. It is compatible with the objective function ρ w.r.t. the matrix A, i.e.

Aα = Aα′ and 〈ρ, α〉 < 〈ρ, α′〉 ⇒ Xα ≺ Xα′

� If such an ordering exists, the IP problem has a solution iff Conti-Traverso algorithm returns a vector α
which is, in that case, the optimal solution for the IP problem

� We will see now how to find an adapted ordering, if possible . . .
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� Consider the free ZZ-module (lattice) LA := {u ∈ ZZh|Au = 0}

� The feasible set of IP is bounded (or empty) iff LA ∩ INh = {0}

� This condition implies the existence of a linear combination d > 0 of the rows of A and, in particular,

d is orthogonal to all vectors in LA

� This is the key to construct an adapted ordering:

1. Take any ≺ over k[X1, . . . , Xh, Y1, . . . , Yd, T ]

2. Choose µ >> 0 so that ρ + µ · d > 0 and define

u1 := (0, . . . , 0, 1, . . . , 1) ∈ INh+(d+1)

u2 := (ρ + µ · d,0) ∈ IR
h+(d+1)
≥0

3. Consider (adapted) the monomial ordering ≺u1,u2
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� Now we give details how universal test sets can solve families of integer programming problems, where the

cost vector b and the objective function ρ vary

� Consider an IP problem given by a full-rank matrix A together with b and ρ, and assume LA ∩ INh = {0}

� Denote byA := {A1, . . . , Ah} the set of columns of A

� Consider the semigroup in ZZd generated byA that is

S ≡ SA := {Aα|α ∈ INh} ⊆ ZZd

� Denote by IPA,ρ the family of problems IPA,ρ(b) where b varies in S, and by IPA the family where only

A is fixed

� Under these assumptions, all such IP problems are feasible and bounded
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� If we have a test set that works simultaneously for all possible b’s (universal), and we have a concrete

feasible solution for a concrete b, we can solve the IP problem with the following

test-set algorithm . . .

� Successively subtract to the initial feasible solution elements of the test set to obtain a decreasing

chain of vectors

� The condition LA ∩ INh = {0} (i.e. S positive) guarantees that this procedure terminates after a finite

number of steps, and obtains an optimal solution for such IP

� Such universal test set can be found from either a universal Gröbner basis or a Graver basis, and only

depends on A (i.e. the semigroup S) and not on b nor ρ

� Alternative: for A and ρ fixed we can compute a Gröbner basis Gρ of the toric ideal IA w.r.t the ordering

≺ρ, and then if we have a feasible u then the remainder of the division of Xu by Gρ is optimal
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SINGULAR

� There are some SINGULAR libraries to work with Toric Geometry . . . but not too much

� toric.lib Compute Gröbner bases of toric ideals

� lll.lib Compute a reduced basis for a lattice

� intprog.lib Solve Integer Linear Programming problems using Gröbner bases

� polymake.lib Computations with polytopes and fans

� homolog.lib and other general procedures for Algebraic Geometry and Commutative Algebra:

Homological Algebra, Krull dimension, Gröbner bases . . .

TORIC GEOMETRY 119 / 120

TORIC GEOMETRY 120 / 120

59


	Table of Contents
	Basic References
	Introduction and Overview
	Introduction and Overview (I)
	Introduction and Overview (II)

	Toric Mathematics from Semigroups
	Semigroups
	Semigroups
	Semigroups
	Semigroups
	Semigroups
	
	Groups and Lattices
	Groups and Lattices
	Groups and Lattices
	Groups and Lattices
	Groups and Lattices
	Groups and Lattices
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Semigroup Ideals and Algebras
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Cones and Fans
	Toric Varieties
	Toric Varieties
	Toric Varieties
	Toric Varieties
	Toric Varieties
	Toric Varieties
	Toric Varieties
	Toric Varieties
	Toric Varieties
	Toric Varieties
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Polytopes and Complexes
	Multinumerical Semigroups
	Multinumerical Semigroups
	Multinumerical Semigroups
	Multinumerical Semigroups
	Multinumerical Semigroups
	Multinumerical Semigroups
	Multinumerical Semigroups
	Multinumerical Semigroups

	Applications
	Some Applications
	Coin exchange problem
	Coin exchange problem
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Counting points in polyhedra
	Algebraic Statistics and Models
	Algebraic Statistics and Models
	Algebraic Statistics and Models
	Algebraic Statistics and Models
	Algebraic Statistics and Models
	Algebraic Statistics and Models
	Algebraic Statistics and Models
	Algebraic Statistics and Models
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Singular
	


