The Key Equation for Hermitian codes

Michael E. O'Sullivan
San Diego State University

July 11, 2008, S ${ }^{3}$ CM, Soria, Spain

The Hermitian curve and points

- $y^{q}+y=x^{q+1}$ over $\mathbb{F}_{q^{2}}$.
- $n=q^{3}$ points over $\mathbb{F}_{q^{2}}$.
- Let $P_{k}=\left(\alpha_{k}, \beta_{k}\right)$, and $D=P_{1}+\cdots+P_{n}$.
- Let $P_{\infty}=[0: 1: 0]$ be the point on L_{∞}.

The ring of functions

- $R=\mathbb{F}_{q^{2}}[x, y] /\left\langle y^{q}+y-x^{q+1}\right\rangle$.
- x has a pole of order q at P_{∞}.
- y has a pole of order $q+1$ at P_{∞}.
- The pole order of $x^{i} y^{j}$ is $\rho\left(x^{i} y^{j}\right)=i q+j(q+1)$.
- Treat R as an $\mathbb{F}_{q^{2}}[x]$-module with basis $1, \ldots, y^{q-1}$.
- R has an $\mathbb{F}_{q^{2}}$-basis $\left\{x^{i} y^{j}\right\} \underset{\substack{0 \leq j<q \\ 0 \leq q}}{ }$.
- $\Lambda=\{i q+j(q+1): 0 \leq i, 0 \leq j<q\}$ is the set of nongaps.
- $\Lambda^{c}=\mathbb{Z} \backslash \Lambda$.

The codes

- Recall the definition of evaluation codes

$$
\begin{aligned}
& R \stackrel{e V}{\longrightarrow} \mathbb{F}_{q^{2}}^{n} \\
& f \mapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \\
& L\left(m P_{\infty}\right) \mapsto C_{L}\left(D, \bar{m} P_{\infty}\right)
\end{aligned}
$$

- Codewords from $C_{\Omega}\left(D, \bar{m} P_{\infty}\right)=C_{L}\left(D, \bar{m} P_{\infty}\right)^{\perp}$ are sent.
- Suppose $\bar{m}=i q+j(q+1)$. The check matrix is

$$
H=\left[\begin{array}{c}
e v(1) \\
e v(x) \\
e v(y) \\
e v\left(x^{2}\right) \\
\cdots \\
e v\left(x^{i} y^{j}\right)
\end{array}\right]
$$

- Send $c \in C_{\Omega}\left(D, \bar{m} P_{\infty}\right)$.
- Receive $v \in \mathbb{F}_{q^{2}}^{n}$.
- Error is $e=v-c$.
- The error locator ideal is $l^{e}=\left\{f: f\left(P_{k}\right)=0\right.$: when $\left.e_{k} \neq 0\right\}$.
- The syndrome is

$$
S=\sum_{i=1}^{n} e_{k} \frac{x^{q+1}-\alpha_{k}^{q+1}}{\left(x-\alpha_{k}\right)\left(y-\beta_{k}\right)}
$$

- I'll argue that this is the right definition!

Note!

$$
\begin{aligned}
\frac{x^{q+1}-\alpha^{q+1}}{x-\alpha} & =\alpha^{q} \frac{\left(\frac{x}{\alpha}\right)^{q+1}-1}{\frac{x}{\alpha}-1} \\
& =\alpha^{q}\left(\left(\frac{x}{\alpha}\right)^{q}+\left(\frac{x}{\alpha}\right)^{q-1}+\cdots+\frac{x}{\alpha}+1\right) \\
& =x^{q}+\alpha x^{q-1}+\cdots+\alpha^{q-1} x+\alpha^{q}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{y^{q}+y-\beta^{q}-\beta}{y-\beta} & =1+\frac{y^{q}-\beta^{q}}{y-\beta} \\
& =1+y^{q-1}+\beta y^{q-2}+\cdots+\beta^{q-2} y+\beta^{q-1}
\end{aligned}
$$

Product of a locator with the syndrome

Lemma
If $f \in I^{e}$ then $f S \in \mathbb{F}_{q^{2}}[x, y]$.
Proof.
Enough to show for any position k,

$$
(\star) \quad f \frac{x^{q+1}-\alpha_{k}^{q+1}}{\left(x-\alpha_{k}\right)\left(y-\beta_{k}\right)} \in R
$$

Since $f \in I^{e}$, there exist g and h in $\mathbb{F}_{q^{2}}[x, y]$ such that $f=g\left(x-\alpha_{k}\right)+h\left(y-\beta_{k}\right)$ Hence, (\star) is

$$
g\left(\frac{y^{q}+y-\beta_{k}^{q}-\beta_{k}}{y-\beta_{k}}\right)+h\left(\frac{x^{q+1}-\alpha_{k}^{q+1}}{x-\alpha_{k}}\right)
$$

which belongs to $\mathbb{F}_{q^{2}}[x, y]$.

Error evaluation

Lemma

Let $f \in I^{e}$ and $\varphi=f S$.
If P_{k} is an error position then $e_{k} f^{\prime}\left(P_{k}\right)=f S\left(P_{k}\right)$.
So if $f^{\prime}\left(P_{k}\right) \neq 0$ we can solve for e_{k}.

- φ is the error evaluator associated to f.
- f^{\prime} means $d f / d x$.
- We use $d\left(x^{i} y^{j}\right)=i x^{i-1} y^{j}+x^{i} j y^{j-1}(d y / d x)$,
- From the equation of the curve

$$
\begin{aligned}
\left(q y^{q-1}+1\right) d y & =(q+1) x^{q} d x \\
d y / d x & =x^{q}
\end{aligned}
$$

- $\varphi=f S=\sum_{j=1}^{n} e_{j} \frac{x^{q+1}-\alpha_{j}^{q+1}}{\left(x-\alpha_{j}\right)\left(y-\beta_{j}\right)} f$.
- Suppose e_{k} is not zero. The fraction in the sum may be evaluated for $j \neq k$, and f vanishes at P_{k}.
- So the only term that contributes is the k th.
- Using $f=g\left(x-\alpha_{k}\right)+h\left(y-\beta_{k}\right)$ as before,

$$
\begin{aligned}
\varphi\left(P_{k}\right) & =e_{k}\left(g\left(P_{k}\right)+h\left(P_{k}\right) \alpha_{k}^{q}\right) \\
f^{\prime}\left(P_{k}\right) & =g\left(P_{k}\right)+h\left(P_{k}\right) \alpha_{k}^{q}
\end{aligned}
$$

Expansion of the syndrome

Lemma

Let $S_{a, b}=e v\left(x^{a} y^{b}\right) \cdot e=\sum_{k} e_{k} \alpha_{k}^{a} \beta_{k}^{b}$. Then

$$
S=\frac{1}{x} \sum_{b=0}^{q-1} \sum_{a=0}^{\infty} s_{a, b} x^{-a}\left(y^{q-1-b}+\delta_{b}\right)
$$

where δ_{b} is 1 when $b=0$ and 0 otherwise.
Proof.
A computation.
Let $z_{j}^{*}=y^{q-1-j}+\delta_{j}$.
This gives a dual basis for $\left\{y^{b}: b=0, \ldots, q-1\right\}$ relative to the trace map: $K(R) \rightarrow \mathbb{F}(x)$.

Characterization of I^{e}

Using the set Δ^{e} from the order domains lecture we have a corollary to the earlier result that $f^{e} S \in R$.

Proposition

If the expansion of $f S$ in the $*$-basis has zero coefficients for all $x^{-a-1} z_{b}^{*}$ such that $a q+b(q+1) \in \Delta^{e}$ then $f \in I^{e}$.

Proof.
Suppose $e_{k} \neq 0$; show $f\left(P_{k}\right)=0$.
Trick: Look at $g f S$ where g has support in Δ^{e} and g vanishes at all error locations $P_{j} \neq P_{k}$.

Data for the algorithm

- Data: For each i from 0 to $q-1$ we have a matrix

$$
B_{i}=\left(\begin{array}{cc}
f_{i} & \varphi_{i} \\
g_{i} & \psi_{i}
\end{array}\right)
$$

- Each entry is an element of $R=\mathbb{F}_{q^{2}}[x, y]$ where $y^{q}=x^{q+1}-y$.
- Initialize: For $i=0$ to $q-1$, set

$$
B_{i}^{(0)}=\left(\begin{array}{cc}
f_{i}^{(0)} & \varphi_{i}^{(0)} \\
g_{i}^{(0)} & \psi_{i}^{(0)}
\end{array}\right)=\left(\begin{array}{cc}
y^{i} & 0 \\
0 & -z_{i}^{*}
\end{array}\right)
$$

- Recall $z_{i}^{*}=y^{q-1-i}+\delta_{0}$.

Algorithm

- For $m=0$ to M, and for each pair i, j such that $m \equiv i+j$ $\bmod q$,
- Compute shifts:

$$
\begin{array}{rlrl}
d_{i} & =\rho\left(f_{i}^{(m)}\right) & d_{j}=\rho\left(f_{j}^{(m)}\right) \\
r_{i} & =\frac{m-d_{i}-j(q+1)}{q} & r_{j}=\frac{m-d_{j}}{} \\
p & =\frac{d_{i}+d_{j}-m}{q}-1 & &
\end{array}
$$

- Compute discrepancies

$$
\begin{aligned}
\tilde{f}_{i} & =y^{j} f_{i} & \tilde{f}_{j} & =y^{i} f_{j} \\
\mu_{i} & =\sum_{c=0}^{q-1} \sum_{a}\left(\tilde{f}_{i}\right)_{a, c} s_{a+r_{i}, c} & \mu_{j} & =\sum_{c=0}^{q-1} \sum_{a}\left(\tilde{f}_{j}\right)_{a, c} s_{a+r_{j}, c}
\end{aligned}
$$

Algorithm: Update

- The update for j is analogous to the one for i given below.

- Compute the update matrix

$$
U_{i}^{(m)}= \begin{cases}\left(\begin{array}{cc}
1 & -\mu_{i} x^{p} \\
0 & 1
\end{array}\right) & \text { if } \mu_{i}=0 \text { or } p \geq 0 \\
\left(\begin{array}{cc}
x^{-p} & -\mu_{i} \\
1 / \mu_{i} & 0
\end{array}\right) & \text { otherwise }\end{cases}
$$

- Update

$$
\left(\begin{array}{cc}
f_{i}^{(m+1)} & \varphi_{i}^{(m+1)} \\
g_{j}^{(m+1)} & \psi_{j}^{(m+1)}
\end{array}\right)=U_{i}^{(m)}\left(\begin{array}{cc}
f_{i}^{(m)} & \varphi_{i}^{(m)} \\
g_{j}^{(m)} & \psi_{j}^{(m)}
\end{array}\right)
$$

- Output: $f_{i}^{(M+1)}, \varphi_{i}^{(M+1)}$ for $0 \leq i<q$.

Theorem

For $m \geq 0$,

1. $f_{i}^{(m)}$ is monic and $\rho\left(f_{i}^{(m)}\right) \equiv i \bmod q$.
2. $f_{i}^{(m)}, \varphi_{i}^{(m)}$ satisfy the $m-\rho\left(f_{i}^{(m)}\right)$ approximation of the key equation.
3. $g_{i}^{(m)}, \psi_{i}^{(m)}$ satisfy the $\rho\left(f_{i}^{(m)}\right)-q$ approximation of the key equation and $g_{i}^{(m)} S-\psi_{i}^{(m)}$ is monic of order $q^{2}-1-\rho\left(f_{i}^{(m)}\right)$.
4. $\rho\left(g_{i}^{(m)}\right)<m-\rho\left(f_{i}^{(m)}\right)+q$.

The Key Equation

- We say that $f, \varphi \in \mathbb{F}_{q^{2}}[x, y]$ solve the key equation for syndrome S when $f S=\varphi$.
- We say that f and φ in $\mathbb{F}_{q^{2}}[x, y]$, with f nonzero, solve the K th approximation of the key equation for syndrome S when the following two conditions hold.

1. $\rho(f S-\varphi) \leq q^{2}-q-1-K$,
2. φ, written in the z^{*}-basis, is a sum of terms whose order is at least $q^{2}-q-K$.

- We will also say that 0 and $x^{-a-1} z_{b}^{*}$, for $a<0$, solve the $a q+b(q+1)$ key equation.

Stopping criteria

As in the order domains lecture, let $\Sigma=\left\{\rho(f): f \in I^{e}\right\}$ and $\sigma=\min _{\preccurlyeq} \Sigma$.
Let $\Delta=\Lambda \backslash \Sigma$ and $\delta=\max _{\preccurlyeq} \Delta$.
Proposition
Let $\sigma_{\max }=\max \left\{\sigma_{i}: 0 \leq i \leq q-1\right\}$ and let $\delta_{\max }=\max \left\{c \in \Delta^{e}\right\}$.
(max and min in the usual sense in \mathbb{N}.)
For $m>\sigma_{\max }+\delta_{\max }$, each of the polynomials $f_{i}^{(m)}$ belongs to I^{e}.
Let $M=\sigma_{\max }+\max \left\{\delta_{\max }, q^{2}-q-1\right\}$. Each of the pairs $f_{i}^{(M+1)}, \varphi_{i}^{(M+1)}$ satisfies the key equation.

Generalization of Horiguchi's formula

We don't need the error evaluator polynomials!
Proposition
Let $B_{i}^{(M)}=\left(\begin{array}{ll}f_{i}^{(m)} & \varphi_{i}^{(m)} \\ g_{i}^{(m)} & \psi_{i}^{(m)}\end{array}\right)$. Then for all m,

$$
\begin{equation*}
\sum_{i=0}^{q-1} \operatorname{det} B_{i}^{(m)}=-\sum_{i=0}^{q-1} y^{i} z_{i}^{*}=-1 \tag{1}
\end{equation*}
$$

Proof This took some work.
Theorem
If P_{k} is an error position.

$$
\begin{equation*}
e_{k}=\left(\sum_{i=0}^{q-1} f_{i}^{\prime}\left(P_{k}\right) g_{i}\left(P_{k}\right)\right)^{-1} \tag{2}
\end{equation*}
$$

One-point codes

- \mathcal{X}, a projective (smooth absolutely irreducible) curve over \mathbb{F}.
- Q, an \mathbb{F}-point on \mathcal{X}.
- $K(\mathcal{X})$ the function field of \mathcal{X}.
- Let R be the ring of functions with poles only at Q.

$$
R=\left\{f \in K(\mathcal{X}): v_{P}(f) \geq 0 \text { for } P \neq Q\right\}
$$

- We have the evaluation map

$$
\begin{aligned}
e v: R & \longrightarrow \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

- Let $L(m Q)$ be the elements of R with pole order at most m at Q.

$$
\begin{aligned}
& E(D, m)=e v(L(m Q)) \\
& C(D, m)=E(D, m)^{\perp}
\end{aligned}
$$

Dual bases

- Let κ be the smallest positive element of Λ.
- For $j=0, \ldots, \kappa-1$ let $\lambda_{j} \in \Lambda$ be the smallest element congruent to j modulo κ.
- Let x have pole order κ and let z_{j} have pole order λ_{j}.
- z_{j} is a basis for R as $\mathbb{F}_{q}[x]$ module (and for K over $\mathbb{F}[x]$).
- The dual basis to $\left\{z_{b}\right\}_{b=0}^{k-1}$ is the unique set of elements of K, $z_{0}^{*}, \ldots, z_{\kappa-1}^{*}$ such that $\operatorname{Tr}\left(z_{b} z_{j}^{*}\right)$ is 1 if $b=j$ and 0 otherwise.

Dual basis and differentials

Proposition

For each $b \in\{0, \ldots, \kappa-1\}, \quad z_{b}^{*} d x$ is an element of $\Omega(-\infty Q)$, $-z_{b}^{*} d x$ is monic, relative to t_{Q}, and $\nu_{Q}\left(z_{b}^{*} d x\right)=\lambda_{b}-\kappa-1$. Additionally,

$$
\operatorname{res}_{Q}\left(z_{j} z_{b}^{*} x^{a} d x\right)= \begin{cases}-1 & \text { when } a=-1 \text { and } j=b \\ 0 & \text { otherwise }\end{cases}
$$

The syndrome

Definition

For a point P, let

$$
h_{P}=\frac{1}{x-x(P)} \sum_{b=0}^{\kappa-1} z_{b}(P) z_{b}^{*}
$$

We define the syndrome of e to be

$$
S=\sum_{k=1}^{n} e_{k} h_{P_{k}} .
$$

Lemma
Let $s_{a, b}=\sum_{k=1}^{n} e_{k}\left(x\left(P_{k}\right)\right)^{a}\left(z_{b}\left(P_{k}\right)\right)$. Then

$$
S=\frac{1}{x} \sum_{b=0}^{\kappa-1} \sum_{a=0}^{\infty} s_{a, b} x^{-a} z_{b}^{*}
$$

Conclusions

- The decoding algorithm given earlier applies to one point codes with some minor change of notation.
- The algorithm computes successively better approximations to the key equation.
- In the update of polynomials the only computations are multiplication by x and field elements: amenable to hardware.
- The only multiplication by y is in the computation of \tilde{f} to get discrepancies.
- The algorithm requires iterations for each $m \in \mathbb{N}_{0}$; not just $m \in \Lambda$.
- Caution: Majority voting may be necessary to compute all the syndromes $s_{a, b}$ needed.

References

These notes are based on the presentation of the key equation in

- Bras-Amorós, O'Sullivan, "The Key Equation for One-point Codes" in Advances in Algebraic Geometry Codes, Martinez-Moro, Munuera, Ruano eds., Series on Coding and Cryptology, World Scientific, 2008.
There are many references to the development of the subject in that chapter. In particular, we mention
- Ralf Kötter. A fast parallel implementation of a Berlekamp-Massey algorithm for algebraic-geometric codes. IEEE Trans. Inform. Theory, 44(4):1353-1368, 1998.

