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The Hermitian curve and points

> y9+y=x9" over F .
» n = g° points over Fgo.
> Let Py, = (Ozk,ﬁk), and D=Py+---+ P,.

> Let Poo = [0:1:0] be the point on L.



The ring of functions

R = Fgalx, y]/{y% + y — xI*1).

x has a pole of order g at P...

y has a pole of order g + 1 at P..

The pole order of x'y’ is p(x'y/) = iq + j(q + 1).
Treat R as an F2[x]-module with basis 1,...,y9"%.
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R has an F 2-basis {x'y/} 0<i -
0<j<qg

» A={ig+j(g+1):0<i,0<j<q} is the set of nongaps.
» N =Z\ A

The codes

» Recall the definition of evaluation codes
R <% Fr,
fi (f(P1),...,f(Pn))
L(mPy) — C (D, mPy,)

» Codewords from Cq(D, mPs) = Ci(D, mPs)t are sent.
» Suppose m = ig + j(q + 1). The check matrix is
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Decoding Problem

Send ¢ € Cqo(D, mP).

Receive v € ng.

Error is e =v — c.

The error locator ideal is 1€ = {f : f(Px) = 0: when e # 0}.

The syndrome is
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> = ;ek(x — ap)(y — B«)

» |'ll argue that this is the right definition!
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Product of a locator with the syndrome

Lemma
If f € 1° then fS € F 2[x, y].

Proof.

Enough to show for any position k,
xatl o911
* f k €ER
) (x — o)y — Bk)

Since f € /¢, there exist g and h in F2[x, y] such that
f =g(x —ax)+ h(y — Bk) Hence, (%) is
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which belongs to F2[x, y]. H

Error evaluation

Lemma

Let f € 1° and o = 1S.

If Py is an error position then exf'(Py) = fS(Py).
So if f'(Py) # 0 we can solve for e.

> (o is the error evaluator associated to f.

» f’ means df /dx.
> We use d(x'y/) = ix'~1y) + x'jy/=1(dy/dx),

» From the equation of the curve

(qy?™' +1)dy = (g + 1)x%dx
dy/dx = x9



Proof

1
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» Suppose ek is not zero. The fraction in the sum may be
evaluated for j # k, and f vanishes at P,.

» So the only term that contributes is the kth.
» Using f = g(x — ax) + h(y — Bx) as before,

o(Pe) = ex(g(Pe) + h(Pi)af)
f'(Px) = g(Pk) + h(Pr)e,

Expansion of the syndrome

Lemma
Let S,p = ev(x?yP) - e =", exai3L. Then
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where dp is 1 when b = 0 and 0 otherwise.

Proof.
A computation. Il

Let z7 = y9717/ + ;.
This gives a dual basis for {y?: b=0,...,q — 1} relative to the
trace map: K(R) — F(x).



Characterization of /€

Using the set A€ from the order domains lecture we have a
corollary to the earlier result that €S € R.

Proposition
If the expansion of S in the x-basis has zero coefficients for all
x~27 1z such that ag+ b(q + 1) € A® then f € ¢,

Proof.

Suppose e, # 0; show f(Pyx) = 0.

Trick: Look at gfS where g has support in A€ and g vanishes at
all error locations P; # Py. Il

Data for the algorithm

» Data: For each / from 0 to g — 1 we have a matrix

fi @i)
B; =
(gi (IF

> Each entry is an element of R = F2[x, y] where
y9 = xq+1 _ y.

» Initialize: For i =0to g — 1, set

O _ (O O\ o
i g_(O) wlgO) 0 -z

1

> Recall zF = y97177 4 6.



Algorithm

» For m =0 to M, and for each pair i,j such that m=/7+
mod q,
» Compute shifts:

di = p(7") 4= (")
r__m—d,-—j(q+1) r__m—dj—i(q—|—1)
' q / q
p= d,'—|—dj—m_1

q

» Compute discrepancies

fi = y/f; =y
g—1 q—1

i = Z Z(fi)a,csa—i-ri,c Hj = 2(6)37C53+U,C
c=0 a c=0 a

Algorithm: Update

» The update for j is analogous to the one for i given below.

» Compute the update matrix

P
) ((1) ,ul,x ) if uy=0o0r p>0
T ( X ) otherwise
1/pi 0 '
» Update

» Output: fi(MH),gpl(-MH) for0 <i<aq.



Theorem

For m > 0,
1. fi(m) is monic and p(f( )) =/ mod gq.

2. fi(m), gpl(- m) satisfy the m — p(fi(m)) approximation of the key
equation.

3. gi(m),wf m) satisfy the p(f( )) — g approximation of the key
equation and g( )s - w( ™ is monic of order q>—1— ,o(f,-(m)).

4. p(g™) < m—p(f™) +q.

The Key Equation

> We say that f, ¢ € F2[x, y] solve the key equation for
syndrome S when 5 = ¢.

> We say that f and ¢ in F2[x, y], with f nonzero, solve the
Kth approximation of the key equation for syndrome S when
the following two conditions hold.
L p(fS—9p)<qg*°—qg—1-K,
2. ¢, written in the z*-basis, is a sum of terms whose order is at
least ¢g° — g — K.

_a_

» We will also say that 0 and x 12,’;, for a < 0, solve the

aq + b(q + 1) key equation.



Stopping criteria

As in the order domains lecture, let ¥ = {p(f) : f € I¢} and
o = ming .

Let A=A\ X and § = maxg A.

Proposition

Let omax = max{o; : 0 < i < qg— 1} and let dmax = max{c € A°}.
(max and min in the usual sense in N.)

For m > omax + dmax, €ach of the polynomials f,-(m) belongs to /€.

Let M = 0max + max{dmax, q° —q— 1}. Each of the pairs

fl_(lVH'l)’ ¢§M+1) satisfies the key equation.

Generalization of Horiguchi’s formula

We don’t need the error evaluator polynomials!

Proposition
my _ (£ o™
Let B/ = ’(m) ’(m) . Then for all m,
8i Vi
g—1 qg—1
S det B =N yizr =1 (1)
i=0 i=0

Proof This took some work.

Theorem
If Py is an error position.
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ek = ( /(Pk)gi(Pk)> (2)
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One-point codes

» X, a projective (smooth absolutely irreducible) curve over F.
» @, an F-point on X.

» K(X) the function field of X.

>

Let R be the ring of functions with poles only at Q.
R={f € K(X):vp(f) >0 for P# Q}
» We have the evaluation map

ev: R — Ty
f— (f(P1),...,f(Pn))

> Let L(mQ) be the elements of R with pole order at most m at
Q.
E(D, m) = ev(L(mQ))
C(D,m) = E(D, m)*

Dual bases

» Let k be the smallest positive element of A.

» For j=0,...,k—1let A\; € A be the smallest element
congruent to j modulo k.

» Let x have pole order k
and let z; have pole order A;.

> Zzj is a basis for R as Fq[x] module (and for K over F[x]).

» The dual basis to {zb}’g;é is the unique set of elements of K,
z5,...,2,_q such that Tr(zszfk) is 1 if b=, and 0 otherwise.



Dual basis and differentials

Proposition

For each b€ {0,...,k — 1}, Zz}dx is an element of Q(—o0Q),
—z}dx is monic, relative to tg, and vo(zjdx) = Ap — kK — 1.
Additionally,

—1 whena=—-1landj=0>b

respo(ziz:x?dx) =
a Job ) {0 otherwise

The syndrome

Definition
For a point P, let
1 k—1
hp = P
P x= x(P) bz:%zb( )25

We define the syndrome of e to be

S= Z ekhpk.
k=1

Lemma
Let Sab = ZZ:l ek(X(Pk))a(Zb(Pk)). Then

k—1 oo

S= % Z Z Sa.bX 2},

b:o a:o



Conclusions

» The decoding algorithm given earlier applies to one point
codes with some minor change of notation.

» The algorithm computes successively better approximations to
the key equation.

» In the update of polynomials the only computations are
multiplication by x and field elements: amenable to hardware.

» The only multiplication by y is in the computation of f to get
discrepancies.

» The algorithm requires iterations for each m € Np; not just
m € A.

» Caution: Majority voting may be necessary to compute all the
syndromes s, , needed.
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