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Reed-Solomon codes

Let α1, . . . , αn ∈ Fq and consider the evaluation map.

ev : Fq[x ] −→ Fn
q

f 7−→ (f (α1), . . . , f (αn))

Let Lm be the set of polynomials of degree m.
Define the codes:

E (ᾱ,m) = ev(Lm)

C (ᾱ,m) = E (ᾱ,m)⊥



One-point codes

I X , a projective (smooth absolutely irreducible) curve over F.

I Q, an F-point on X .

I K (X ) the function field of X .

I Let R be the ring of functions with poles only at Q.

R = {f ∈ K (X ) : vP(f ) ≥ 0 for all P 6= Q}

I L(mQ) elements of R with pole order at most m at Q.

I For X the projective line, R is a polynomial ring in one
variable. The space L(mQ) contains polynomials of degree at
most m.

One-point codes

Let P1,P2, . . . ,Pn be F-points of X and D = P1 + · · ·+ Pn

We have the evaluation map

ev : R −→ Fn
q

f 7−→ (f (P1), . . . , f (Pn))

Define:

E (D,m) = ev(L(mQ))

C (D,m) = E (D,m)⊥

This gives a nice family of codes generalizing RS codes amenable
to Sakata’s generalization of Berlekamp-Massey.



Order domains

The natural setting for Sakata’s algorithm is order domains.

Definition
Let F be a field and let R be an F-algebra. An order function on R
is a map

ρ : R −→ N−1

which satisfies the following.

O1. The set Lm = {f ∈ R | ρ(f ) ≤ m} is an m + 1
dimensional vector space over F.

O2. If f , g , z ∈ R and z is nonzero then
ρ(f ) > ρ(g) =⇒ ρ(zf ) > ρ(zg)

The pair R, ρ is called an order domain.

Examples

I F[x , y ] with grevlex.
x iy j 1 x y x2 xy y 2 . . .
ρ 0 1 2 3 4 5 . . .

I F[x , y ] with lex is NOT.
The space of elements smaller than y is infinite dimensional.

I Proposition For f , g with ρ(f ) > 1, there exists n such that
ρ(f n) > ρ(g).

I Proof:
ρ(1) < ρ(f ) < ρ(f 2) · · · < ρ(f n)



Example from a curve, point

I Let R = L(∞Q) be the ring of functions with poles only at Q.

I Enumerate the Weierstrass semigroup Λ = {−vQ(f ) : f ∈ R}.
0 = λ0 < λ1 < λ2 < λ3, . . . are the elements of Λ.

I Define an order function by

ρ : R → N−1

0→ −1

f 7→ i such that − vQ(f ) = λi

Equivalent formulation

Proposition

Property O1 is equivalent to all of the following being true.

1. ρ is surjective.

2. ρ(a) = −1 if and only if a = 0.

3. ρ(αf ) = ρ(f ) for all α ∈ F.

4. ρ(f + g) ≤ max(ρ(f ), ρ(g)).

5. If f , g 6= 0 and ρ(f ) = ρ(g), there exists some α ∈ F such
that ρ(f − αg) < ρ(f ).

Alternative definition of order domain:
Replace O1 by properties 2-5 above. ρ is not necessarily surjective.



Observations

I ρ−1(0) = F.

I R must be a domain.

I Proposition ρ induces a semigroup structure on N0 in which
0 is the identity, and there is a well defined operation ⊕.

ρ(f )⊕ ρ(g) = ρ(fg)

I Proposition ρ induces a partial order on N0.
a 4 b when there exists a c such that a⊕ c = b.

Example

Let R = F[x , y ] with glex.
We have

1⊕ 1 = 3

1 64 2

1 4 3

2⊕ 2 = 5

2 64 3

2 4 4, 5

This is most easily seen using the isomorphism of the semigroup
N0,⊕ with N2

0,+ that is induced by ρ.



Back to valuations

Theorem
ρ determines a unique valuation on K (R).
The residue field of this valuation is F.

Proof.

I Let S = {f /g : ρ(f ) ≤ ρ(g)}.
I This is a local ring with maximal ideal

n = {f /g : ρ(f ) < ρ(g)}.
I If f /g ∈ K (R) is not in S then g/f is.

I Therefore S is a valuation ring.

I Equivalently, there is a totally ordered group Γ and a map
v : K (R)∗ −→ Γ such that S = v−1(Γ≥0).

Surface examples

Valuations on surfaces are interesting! See Zariski, “Reduction of
singularities of an algebraic surface.”

I X an algebraic surface over F.
I C a smooth curve on X defines a valuation, but

I The residue field is not F.
I The codimension L(mC ) ⊆ L((m + 1)C ) can grow without

bound.

I So, let Q be a point on C .

I Q and C together define a valuation with residue field F.

I There are quirkier examples!



Examples on the affine plane

I glex on F[x , y ] is from C = L∞ and Q = [0 : 1 : 0].

I weighted lex orders on F[x , y ] come from blowing up Q and
points above Q to obtain some exceptional curve E and a
point Q on this curve, which define the valuation.

I Let p < q be coprime positive integers.

What is the valuation ring for the monomial order

[
p q
0 1

]
?

Describe the geometry.

I Let τ > 1 be irrational.
What is the valuation ring for the monomial order defined by
[1, τ ]?
Describe the geometry.

Order domains: recall

Definition
Let F be a field and let R be an F-algebra. An order function on R
is a map

ρ : R −→ N−1

which satisfies the following.

O1. The set Lm = {f ∈ R | ρ(f ) ≤ m} is an m + 1
dimensional vector space over F.

O2. If f , g , z ∈ R and z is nonzero then
ρ(f ) > ρ(g) =⇒ ρ(zf ) > ρ(zg)

The pair R, ρ is called an order domain.

Let zb ∈ R satisfy ρ(zb) = b.
This is a basis for R.



Properties of order domains: recall

I Proposition ρ induces a semigroup structure on N0 in which
0 is the identity, and there is a well defined operation ⊕.

ρ(f )⊕ ρ(g) = ρ(fg)

I Proposition ρ induces a partial order on N0.
a 4 b when there exists a c such that a⊕ c = b.

Grobner bases

I Let I be an ideal in R.

I Definitions:

Σ(I ) = {ρ(f ) : f ∈ I},
σ(I ) = min4 Σ(I ),
F (I ) = {fa : ρ(fa) = a, fa ∈ I}a∈σ(I )

∆(I ) = N0 \ Σ(I ).



Theorem
F (I ) is a Grobner basis for I .

1. F (I ) generates I .

2. Given any h ∈ I , ρ(h) 4 a for some a ∈ σ(I ).
So ρ(f − βfazb) < ρ(h) for some β ∈ F and b ∈ N0.

3. {zc : c ∈ ∆(I )} is a basis for R/I .

Codes from order domains

I Let P1, . . . ,Pn be F-points on the variety defined by R.
Equivalently, maximal ideals of R with residue field F.

I The evaluation map:

ev : R −→ Fn

f 7−→ (f (P1), . . . f (Pn))

I Let Em = ev(Lm) and let Cm = E⊥m .

I A check matrix for Cm is

H =



ev(1)
ev(z1)
ev(z2)
ev(z3)
. . .

ev(zm)





The decoding problem

I Send c ∈ Cm̄.

I Receive v ∈ Fn.

I Error is e = v − c .

I The error locator ideal is
I e = {f ∈ R : f (Pk) = 0 for all k such that ek 6= 0}.

I Decode by finding a Grobner basis for I e .

I Notation: Σe = ΣI e and similarly, σe , ∆e ,
δe = max4{c ∈ ∆e}.

The syndrome as a function

I Let s = Hv = H(c + e) = He.

I Extend the notion of syndrome to a function:

Se : R −→ F
h 7−→ ev(h) · e

I Then zm maps to sm for m ≤ m̄.

I Define sm = Se(zm) for all m ∈ N0.



Two cooperative algorithms for decoding

I Berlekamp-Massey-Sakata: Process sequence s0, . . . , sm̄, . . .
to get a Grobner basis for I e .

I Feng-Rao/Duursma majority voting: Compute sm+1 from
sm, sm−1, sm−2, . . . and data from the mth iteration of the
algorithm.

I If the error vector is “not too bad” we can compute sm for
enough m > m̄ to find a Grobner basis for I e .

I Majority voting gives get better decoding capability than BMS
alone.

Crucial concepts

I Notice: For f ∈ I e , Se(fg) = 0 for all g .

I For f 6∈ I e , define

span(f ) = min{c ∈ N0 : Se(fzc) 6= 0}
fail(f ) = ρ(f )⊕ span(f )

I An f with large span is “pretending” to be in I e .



Approximations to I e , etc.

Definitions:

I m = {f : fail(f ) > m}
Σm = {ρ(f ) : f ∈ I m}
σm = min

4
Σm

∆m = N0 \ Σm

δm = max
4

∆m

Proposition

∆m = {span(f ) : fail(f ) ≤ m}.

Berlekamp-Massey-Sakata

Given sm = Se(zm).

Data σm and δm and sets of functions:

F m = {fa : ρ(fa) = a, fail(fa) > m}a∈σm

Gm = {gc : span(gc) = c , fail(gc) ≤ m}c∈δm

Initialize For m = −1, σ−1 = {0}, F−1 = {1 ∈ R} δ−1 = ∅.
For m = 0 to m large enough, compute Data(m)
from Data(m − 1).



How to compute Data(m)?

I Test each fa ∈ F m−1 to see if fail fa > m.

I If fa fails and m− a 6∈ ∆m−1 then m− a ∈ δm and fa becomes
gm−a ∈ Gm (case (?)).
Compute new δm,Gm from δm−1,Gm−1

and failures of such fa.

I Compute σm using Σm = N0 \∆m.

I Compute F m using combinations like

zi fa + µgc in case (?)

fa + µzigc else

Stopping criteria

Proposition

Let cmax be the largest integer in ∆e . Then, for m ≥ cmax ⊕ cmax ,
∆m = ∆e .

Proposition

Let smax be the largest integer in σe and let
M = cmax ⊕max{cmax , smax}.

For any m ≥ M, if F mm is a Gröbner subset of I m, then F m is a
Gröbner basis of I e .



Majority voting: preliminaries

Consider the change in the set ∆.

I Notice that ∆m ) ∆m−1 iff for some a ∈ σm−1,
fail(fa) = m and span(fa) 6∈ ∆m−1.
In this case a 4 m.

I Set Nm = {a ∈ N0 : a ≤ m}
(defined just by arithmetic of N0,⊕).

I Then ∆m \∆m−1 ⊆ Nm
⋂

Σm−1.

I Let Γm = Nm
⋂

Σm−1.

Main theorem for majority voting

I Suppose s0, s1, . . . , sm−1 are known, but not sm.

I Elements of Γm will vote for the value of sm.

Theorem
If |Nm| > 2|Nm

⋂
∆e | then |Σm

⋂
Γm| > |∆m ∩ Γm|.

I That is: More than half of Γm is in Σm.



Algorithm

I For each fa ∈ F m−1, find αa such that sm = αa implies
fail(f ) > m.

I For each b ∈ Γm choose some a ∈ σm−1 such that a 4 b.

I b votes for αa.

I If the conditions of the proposition are satisfied, a majority
will vote for the correct value for sm.

A bound on the minimimum distance

Here is the order bound, also called the Feng-Rao bound.

Proposition

The minimum distance of Cm̄ is at least

dm̄ = min{|Nm| : m > m̄}

One can also improve on the codes Cm by designing a code to have
a specified minimum distance.
Let M = {m : |Nm| > d} and let C be the code orthogonal to the
space spanned by {ev(zm) : m ∈ M}. The minimum distance of C
is at least d .



Correction beyond the minimum distance bound

I The main theorem allows us to show that decoding well
beyond half the minimum distance is possible for high rate
Hermitian codes.

I Some examples:

# Check Code Correction
Symbols [n,k,d]

10 [ 64, 54, 5] 3

36 [ 512, 476, 9] 10
48 [ 512, 464, 24] 13, 14

126 [4096,3970, 16] 34
192 [4096,3904, 80] 53
225 [4096,3871,112] 64

I An overwhelming proportion of vectors with weights less than
the right hand column are correctable.

Generic points

I Suppose F is algebraically closed.
A set V of t points will almost always have
∆I (V ) = {0, 1, . . . , t − 1} (this is an open condition).
Call this “generic.”

I For general F, we may expect that “most” sets of t points will
be generic.

I Experiments with Hermitian curves over Fq2 suggest the
proportion sets of t points which are non-generic is 1/(q − 1).

I The worst case scenario for t errors—those for which majority
voting requires many check symbols—are exceedingly rare.

I Minimum distance is less important than the capability of
decoding algorithm!
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