Order domains, Sakata's algorithm and majority voting

Michael E. O'Sullivan

San Diego State University
July 11, 2008, S3 CM, Soria, Spain

Reed-Solomon codes

Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{q}$ and consider the evaluation map.

$$
\begin{aligned}
e v: \mathbb{F}_{q}[x] & \longrightarrow \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)
\end{aligned}
$$

Let L_{m} be the set of polynomials of degree m.
Define the codes:

$$
\begin{aligned}
& E(\bar{\alpha}, m)=e v\left(L_{m}\right) \\
& C(\bar{\alpha}, m)=E(\bar{\alpha}, m)^{\perp}
\end{aligned}
$$

One-point codes

- \mathcal{X}, a projective (smooth absolutely irreducible) curve over \mathbb{F}.
- Q, an \mathbb{F}-point on \mathcal{X}.
- $K(\mathcal{X})$ the function field of \mathcal{X}.
- Let R be the ring of functions with poles only at Q.

$$
R=\left\{f \in K(\mathcal{X}): v_{P}(f) \geq 0 \text { for all } P \neq Q\right\}
$$

- $L(m Q)$ elements of R with pole order at most m at Q.
- For \mathcal{X} the projective line, R is a polynomial ring in one variable. The space $L(m Q)$ contains polynomials of degree at most m.

One-point codes

Let $P_{1}, P_{2}, \ldots, P_{n}$ be \mathbb{F}-points of \mathcal{X} and $D=P_{1}+\cdots+P_{n}$ We have the evaluation map

$$
\begin{aligned}
e v: R & \longrightarrow \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

Define:

$$
\begin{aligned}
& E(D, m)=e v(L(m Q)) \\
& C(D, m)=E(D, m)^{\perp}
\end{aligned}
$$

This gives a nice family of codes generalizing RS codes amenable to Sakata's generalization of Berlekamp-Massey.

Order domains

The natural setting for Sakata's algorithm is order domains.

Definition

Let \mathbb{F} be a field and let R be an \mathbb{F}-algebra. An order function on R is a map

$$
\rho: R \longrightarrow \mathbb{N}_{-1}
$$

which satisfies the following.
O1. The set $L_{m}=\{f \in R \mid \rho(f) \leq m\}$ is an $m+1$ dimensional vector space over \mathbb{F}.

O2. If $f, g, z \in R$ and z is nonzero then

$$
\rho(f)>\rho(g) \Longrightarrow \rho(z f)>\rho(z g)
$$

The pair R, ρ is called an order domain.

Examples

- $\mathbb{F}[x, y]$ with grevlex.

$$
\begin{array}{rrrrrrrr}
x^{i} y^{j} & 1 & x & y & x^{2} & x y & y^{2} & \ldots \\
\rho & 0 & 1 & 2 & 3 & 4 & 5 & \ldots
\end{array}
$$

- $\mathbb{F}[x, y]$ with lex is NOT.

The space of elements smaller than y is infinite dimensional.

- Proposition For f, g with $\rho(f)>1$, there exists n such that $\rho\left(f^{n}\right)>\rho(g)$.
- Proof:

$$
\rho(1)<\rho(f)<\rho\left(f^{2}\right) \cdots<\rho\left(f^{n}\right)
$$

- Let $R=L(\infty Q)$ be the ring of functions with poles only at Q.
- Enumerate the Weierstrass semigroup $\Lambda=\left\{-v_{Q}(f): f \in R\right\}$. $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\lambda_{3}, \ldots$ are the elements of Λ.
- Define an order function by

$$
\begin{aligned}
\rho: R & \rightarrow \mathbb{N}_{-1} \\
0 & \rightarrow-1 \\
f & \mapsto i \text { such that }-v_{Q}(f)=\lambda_{i}
\end{aligned}
$$

Equivalent formulation

Proposition

Property $\mathbf{0 1}$ is equivalent to all of the following being true.

1. ρ is surjective.
2. $\rho(a)=-1$ if and only if $a=0$.
3. $\rho(\alpha f)=\rho(f)$ for all $\alpha \in \mathbb{F}$.
4. $\rho(f+g) \leq \max (\rho(f), \rho(g))$.
5. If $f, g \neq 0$ and $\rho(f)=\rho(g)$, there exists some $\alpha \in \mathbb{F}$ such that $\rho(f-\alpha g)<\rho(f)$.

Alternative definition of order domain:
Replace $\mathbf{0 1}$ by properties 2-5 above. ρ is not necessarily surjective.

Observations

- $\rho^{-1}(0)=\mathbb{F}$.
- R must be a domain.
- Proposition ρ induces a semigroup structure on \mathbb{N}_{0} in which 0 is the identity, and there is a well defined operation \oplus.

$$
\rho(f) \oplus \rho(g)=\rho(f g)
$$

- Proposition ρ induces a partial order on \mathbb{N}_{0}. $a \preccurlyeq b$ when there exists a c such that $a \oplus c=b$.

Example

Let $R=\mathbb{F}[x, y]$ with glex.
We have

$$
\begin{aligned}
1 \oplus 1 & =3 \\
1 & \nprec 2 \\
1 & \preccurlyeq 3 \\
2 \oplus 2 & =5 \\
2 & \nprec 3 \\
2 & \preccurlyeq 4,5
\end{aligned}
$$

This is most easily seen using the isomorphism of the semigroup \mathbb{N}_{0}, \oplus with $\mathbb{N}_{0}^{2},+$ that is induced by ρ.

Back to valuations

Theorem

ρ determines a unique valuation on $K(R)$.
The residue field of this valuation is \mathbb{F}.
Proof.

- Let $S=\{f / g: \rho(f) \leq \rho(g)\}$.
- This is a local ring with maximal ideal

$$
\mathfrak{n}=\{f / g: \rho(f)<\rho(g)\} .
$$

- If $f / g \in K(R)$ is not in S then g / f is.
- Therefore S is a valuation ring.
- Equivalently, there is a totally ordered group 「 and a map $v: K(R)^{*} \longrightarrow \Gamma$ such that $S=v^{-1}\left(\Gamma_{\geq 0}\right)$.

Surface examples

Valuations on surfaces are interesting! See Zariski, "Reduction of singularities of an algebraic surface."

- \mathcal{X} an algebraic surface over \mathbb{F}.
- C a smooth curve on \mathcal{X} defines a valuation, but
- The residue field is not \mathbb{F}.
- The codimension $L(m C) \subseteq L((m+1) C)$ can grow without bound.
- So, let Q be a point on C.
- Q and C together define a valuation with residue field \mathbb{F}.
- There are quirkier examples!

Examples on the affine plane

- glex on $\mathbb{F}[x, y]$ is from $C=L_{\infty}$ and $Q=[0: 1: 0]$.
- weighted lex orders on $\mathbb{F}[x, y]$ come from blowing up Q and points above Q to obtain some exceptional curve E and a point Q on this curve, which define the valuation.
- Let $p<q$ be coprime positive integers.

What is the valuation ring for the monomial order $\left[\begin{array}{ll}p & q \\ 0 & 1\end{array}\right]$? Describe the geometry.

- Let $\tau>1$ be irrational.

What is the valuation ring for the monomial order defined by $[1, \tau]$?
Describe the geometry.

Order domains: recall

Definition

Let \mathbb{F} be a field and let R be an \mathbb{F}-algebra. An order function on R is a map

$$
\rho: R \longrightarrow \mathbb{N}_{-1}
$$

which satisfies the following.
O1. The set $L_{m}=\{f \in R \mid \rho(f) \leq m\}$ is an $m+1$ dimensional vector space over \mathbb{F}.

O2. If $f, g, z \in R$ and z is nonzero then

$$
\rho(f)>\rho(g) \Longrightarrow \rho(z f)>\rho(z g)
$$

The pair R, ρ is called an order domain.
Let $z_{b} \in R$ satisfy $\rho\left(z_{b}\right)=b$.
This is a basis for R.

- Proposition ρ induces a semigroup structure on \mathbb{N}_{0} in which 0 is the identity, and there is a well defined operation \oplus.

$$
\rho(f) \oplus \rho(g)=\rho(f g)
$$

- Proposition ρ induces a partial order on \mathbb{N}_{0}. $a \preccurlyeq b$ when there exists a c such that $a \oplus c=b$.

Grobner bases

- Let $/$ be an ideal in R.

- Definitions:

$$
\begin{aligned}
& \Sigma(I)=\{\rho(f): f \in I\}, \\
& \sigma(I)=\min _{\preccurlyeq} \Sigma(I), \\
& F(I)=\left\{f_{a}: \rho\left(f_{a}\right)=a, f_{a} \in I\right\}_{a \in \sigma(I)} \\
& \Delta(I)=\mathbb{N}_{0} \backslash \Sigma(I) .
\end{aligned}
$$

Theorem
$F(I)$ is a Grobner basis for I.

1. $F(I)$ generates I.
2. Given any $h \in I, \rho(h) \preccurlyeq$ a for some $a \in \sigma(I)$.

So $\rho\left(f-\beta f_{a} z_{b}\right)<\rho(h)$ for some $\beta \in \mathbb{F}$ and $b \in \mathbb{N}_{0}$.
3. $\left\{z_{c}: c \in \Delta(I)\right\}$ is a basis for R / I.

Codes from order domains

- Let P_{1}, \ldots, P_{n} be \mathbb{F}-points on the variety defined by R. Equivalently, maximal ideals of R with residue field \mathbb{F}.
- The evaluation map:

$$
\begin{aligned}
e v: R & \longrightarrow \mathbb{F}^{n} \\
f & \longmapsto\left(f\left(P_{1}\right), \ldots f\left(P_{n}\right)\right)
\end{aligned}
$$

- Let $E_{m}=e v\left(L_{m}\right)$ and let $C_{m}=E_{m}^{\perp}$.
- A check matrix for C_{m} is

$$
H=\left[\begin{array}{c}
\operatorname{ev}(1) \\
\operatorname{ev}\left(z_{1}\right) \\
\operatorname{ev}\left(z_{2}\right) \\
\operatorname{ev}\left(z_{3}\right) \\
\cdots \\
\operatorname{ev}\left(z_{m}\right)
\end{array}\right]
$$

The decoding problem

- Send $c \in C_{\bar{m}}$.
- Receive $v \in \mathbb{F}^{n}$.
- Error is $e=v-c$.
- The error locator ideal is $\rho^{e}=\left\{f \in R: f\left(P_{k}\right)=0\right.$ for all k such that $\left.e_{k} \neq 0\right\}$.
- Decode by finding a Grobner basis for I^{e}.
- Notation: $\Sigma^{e}=\Sigma_{1 e}$ and similarly, σ^{e}, Δ^{e}, $\delta^{e}=\max _{\preccurlyeq}\left\{c \in \Delta^{e}\right\}$.

The syndrome as a function

- Let $s=H v=H(c+e)=H e$.
- Extend the notion of syndrome to a function:

$$
\begin{aligned}
S^{e}: R & \longrightarrow \mathbb{F} \\
h & \longmapsto e v(h) \cdot e
\end{aligned}
$$

- Then z_{m} maps to s_{m} for $m \leq \bar{m}$.
- Define $s_{m}=S^{e}\left(z_{m}\right)$ for all $m \in \mathbb{N}_{0}$.

Two cooperative algorithms for decoding

- Berlekamp-Massey-Sakata: Process sequence $s_{0}, \ldots, s_{\bar{m}}, \ldots$ to get a Grobner basis for I^{e}.
- Feng-Rao/Duursma majority voting: Compute s_{m+1} from $s_{m}, s_{m-1}, s_{m-2}, \ldots$ and data from the m th iteration of the algorithm.
- If the error vector is "not too bad" we can compute s_{m} for enough $m>\bar{m}$ to find a Grobner basis for I^{e}.
- Majority voting gives get better decoding capability than BMS alone.

Crucial concepts

- Notice: For $f \in I^{e}, S^{e}(f g)=0$ for all g.
- For $f \notin I^{e}$, define

$$
\begin{aligned}
\operatorname{span}(f) & =\min \left\{c \in \mathbb{N}_{0}: S^{e}\left(f z_{c}\right) \neq 0\right\} \\
\operatorname{fail}(f) & =\rho(f) \oplus \operatorname{span}(f)
\end{aligned}
$$

- An f with large span is "pretending" to be in I^{e}.

Approximations to I^{e}, etc.

Definitions:

$$
\begin{aligned}
I^{m} & =\{f: \operatorname{fail}(f)>m\} \\
\Sigma^{m} & =\left\{\rho(f): f \in I^{m}\right\} \\
\sigma^{m} & =\min _{\preccurlyeq} \Sigma^{m} \\
\Delta^{m} & =\mathbb{N}_{0} \backslash \Sigma^{m} \\
\delta^{m} & =\max _{\preccurlyeq} \Delta^{m}
\end{aligned}
$$

Proposition
$\Delta^{m}=\{\operatorname{span}(f):$ fail $(f) \leq m\}$.

Berlekamp-Massey-Sakata

Given $s_{m}=S^{e}\left(z_{m}\right)$.
Data σ^{m} and δ^{m} and sets of functions:

$$
\begin{aligned}
& F^{m}=\left\{f_{a}: \rho\left(f_{a}\right)=a, \text { fail }\left(f_{a}\right)>m\right\}_{a \in \sigma^{m}} \\
& G^{m}=\left\{g_{c}: \operatorname{span}\left(g_{c}\right)=c, \text { fail }\left(g_{c}\right) \leq m\right\}_{c \in \delta^{m}}
\end{aligned}
$$

Initialize For $m=-1, \sigma^{-1}=\{0\}, F^{-1}=\{1 \in R\} \delta^{-1}=\emptyset$.
For $m=0$ to m large enough, compute Data(m) from Data $(m-1)$.

- Test each $f_{a} \in F^{m-1}$ to see if fail $f_{a}>m$.
- If f_{a} fails and $m-a \notin \Delta^{m-1}$ then $m-a \in \delta^{m}$ and f_{a} becomes $g_{m-a} \in G^{m}$ (case (\star)).
Compute new δ^{m}, G^{m} from δ^{m-1}, G^{m-1} and failures of such f_{a}.
- Compute σ^{m} using $\Sigma^{m}=\mathbb{N}_{0} \backslash \Delta^{m}$.
- Compute F^{m} using combinations like

$$
\begin{array}{ll}
z_{i} f_{a}+\mu g_{c} & \text { in case }(\star) \\
f_{a}+\mu z_{i} g_{c} & \text { else }
\end{array}
$$

Stopping criteria

Proposition

Let $c_{\text {max }}$ be the largest integer in Δ^{e}. Then, for $m \geq c_{\max } \oplus c_{\text {max }}$, $\Delta^{m}=\Delta^{e}$.

Proposition

Let $s_{\text {max }}$ be the largest integer in σ^{e} and let
$M=c_{\text {max }} \oplus \max \left\{c_{\text {max }}, s_{\max }\right\}$.

For any $m \geq M$, if $F^{m} m$ is a Gröbner subset of I^{m}, then F^{m} is a Gröbner basis of I^{e}.

Majority voting: preliminaries

Consider the change in the set Δ.

- Notice that $\Delta^{m} \supsetneq \Delta^{m-1}$ iff for some $a \in \sigma^{m-1}$, fail $\left(f_{a}\right)=m$ and $\operatorname{span}\left(f_{a}\right) \notin \Delta^{m-1}$. In this case $a \preccurlyeq m$.
- Set $N_{m}=\left\{a \in \mathbb{N}_{0}: a \leq m\right\}$ (defined just by arithmetic of \mathbb{N}_{0}, \oplus).
- Then $\Delta^{m} \backslash \Delta^{m-1} \subseteq N_{m} \bigcap \Sigma^{m-1}$.
- Let $\Gamma^{m}=N_{m} \bigcap \Sigma^{m-1}$.

Main theorem for majority voting

- Suppose $s_{0}, s_{1}, \ldots, s_{m-1}$ are known, but not s_{m}.
- Elements of Γ^{m} will vote for the value of s_{m}.

Theorem

If $\left|N_{m}\right|>2\left|N_{m} \cap \Delta^{e}\right|$ then $\left|\Sigma^{m} \bigcap \Gamma^{m}\right|>\left|\Delta^{m} \cap \Gamma^{m}\right|$.

- That is: More than half of Γ^{m} is in Σ^{m}.

Algorithm

- For each $f_{a} \in F^{m-1}$, find α_{a} such that $s_{m}=\alpha_{a}$ implies fail $(f)>m$.
- For each $b \in \Gamma^{m}$ choose some $a \in \sigma^{m-1}$ such that $a \preccurlyeq b$.
- b votes for α_{a}.
- If the conditions of the proposition are satisfied, a majority will vote for the correct value for s_{m}.

A bound on the minimimum distance

Here is the order bound, also called the Feng-Rao bound.

Proposition

The minimum distance of $C_{\bar{m}}$ is at least

$$
d_{\bar{m}}=\min \left\{\left|N_{m}\right|: m>\bar{m}\right\}
$$

One can also improve on the codes C_{m} by designing a code to have a specified minimum distance.
Let $M=\left\{m:\left|N_{m}\right|>d\right\}$ and let C be the code orthogonal to the space spanned by $\left\{\operatorname{ev}\left(z_{m}\right): m \in M\right\}$. The minimum distance of C is at least d.

Correction beyond the minimum distance bound

- The main theorem allows us to show that decoding well beyond half the minimum distance is possible for high rate Hermitian codes.
- Some examples:

\# Check Symbols	Code $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$	Correction
10	$[64,54,5]$	3
36	$[512,476,9]$	10
48	$[512,464,24]$	13,14
126	$[4096,3970,16]$	34
192	$[4096,3904,80]$	53
225	$[4096,3871,112]$	64

- An overwhelming proportion of vectors with weights less than the right hand column are correctable.

Generic points

- Suppose \mathbb{F} is algebraically closed.

A set V of t points will almost always have
$\Delta_{I(V)}=\{0,1, \ldots, t-1\}$ (this is an open condition).
Call this "generic."

- For general \mathbb{F}, we may expect that "most" sets of t points will be generic.
- Experiments with Hermitian curves over $\mathbb{F}_{q^{2}}$ suggest the proportion sets of t points which are non-generic is $1 /(q-1)$.
- The worst case scenario for t errors-those for which majority voting requires many check symbols-are exceedingly rare.
- Minimum distance is less important than the capability of decoding algorithm!

References

An extensive exposition of the subject is in

- Tom Høholdt, Jacobus H. van Lint, and Ruud Pellikaan. "Algebraic geometry of codes." In Handbook of coding theory, pages 871-961. North-Holland, Amsterdam, 1998. Vol. I.
Some recent results are found in
- Bras-Amorós, O'Sullivan, "The Correction Capability of the Berlekamp-Massey-Sakata Algorithm with Majority Voting," Applicable Algebra in Engineering, Communications and Computing 17 (2006), no. 5, 315-335.
- Geil, Pellikaan, "On the structure of order domains," Finite Fields Applic. 8 (2002) no. 3, 369-396.
- Little, The ubiquity of order domains for the construction of error control codes. Adv. Math. Commun. 1 (2007), no. 1, 151-171.
- O'Sullivan, "New codes for the Berlekamp-Massey-Sakata algeorithm," Finite Fields and Their Applications, vol. 7, pp. 293-317, 2001.

Original discoveries

- Sakata, "Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array." J. Symbolic Comput. 5 (1988), no. 3, 321-337.
- Feng, Rao, Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inform. Theory 39 (1993), no. 1, 37-45.
- Feng, Rao, "Improved geometric Goppa codes. I. Basic theory." Special issue on algebraic geometry codes. IEEE Trans. Inform. Theory 41 (1995), no. 6, part 1, 1678-1693.
- Kirfel, Pellikaan, "The minimum distance of codes in an array coming from telescopic semigroups." IEEE Trans. Inform. Theory 41 (1995), no. 6, part 1, 1720-1732.

