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Reed-Solomon codes

Let a1,...,a, € gy and consider the evaluation map.

ev : Fg[x] — g
f— (f(a1),...,f(an))

Let L,, be the set of polynomials of degree m.
Define the codes:



One-point codes

X, a projective (smooth absolutely irreducible) curve over F.
@, an F-point on X .

K(X) the function field of X.
Let R be the ring of functions with poles only at Q.
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R={f € K(X):vp(f) >0 forall P# Q}

» L(mQ) elements of R with pole order at most m at Q.

» For X the projective line, R is a polynomial ring in one
variable. The space L(mQ@) contains polynomials of degree at
most m.

One-point codes
Let P1, P, ..., P, be F-points of X and D = Py +--- + P,
We have the evaluation map

ev: R — T,
f— (f(P1),...,f(Py))

Define:

E(D, m) = ev(L(mQ))
C(D,m) = E(D, m)*

This gives a nice family of codes generalizing RS codes amenable
to Sakata's generalization of Berlekamp-Massey.



Order domains

The natural setting for Sakata's algorithm is order domains.

Definition
Let I be a field and let R be an [F-algebra. An order function on R
is a map

p:R— N_4

which satisfies the following.

Ol. Theset L, ={f € R| p(f) <m}isan m+1
dimensional vector space over F.

02. If f,g,z € R and z is nonzero then
p(f) > p(g) = p(zf) > p(zg)
The pair R, p is called an order domain.

Examples

> [F[x, y] with grevlex.
X'yl 1 x y x* xy y?
P o 1 2 3 4 5
» [F[x, y] with lex is NOT.
The space of elements smaller than y is infinite dimensional.

» Proposition For g with p(f) > 1, there exists n such that
p(f") > p(g).
» Proof:
p(1) < p(f) < p(f?)--- < p(f")



Example from a curve, point

> Let R = L(c0Q) be the ring of functions with poles only at Q.

» Enumerate the Weierstrass semigroup A = {—vg(f) : f € R}.
0= X < A1 < A < Az,... are the elements of A.

» Define an order function by

p:R—N_;
0— -1
f +— i such that — vg(f) = A;

Equivalent formulation

Proposition

Property O1 is equivalent to all of the following being true.
1. p is surjective.

p(a) = —1 if and only if a= 0.

plaf) = p(f) for all a € F.

p(f +g) < max(p(f), p(g))-

If f,g # 0 and p(f) = p(g), there exists some o € F such
that p(f — ag) < p(f).

ARl

Alternative definition of order domain:
Replace O1 by properties 2-5 above. p is not necessarily surjective.



Observations

» p~1(0) =TF.
» R must be a domain.

» Proposition p induces a semigroup structure on Ng in which
0 is the identity, and there is a well defined operation .

p(f) @ pg) = pfg)

» Proposition p induces a partial order on Np.
a < b when there exists a ¢ such that ac® ¢ = b.

Example

Let R = F[x, y] with glex.
We have

141 =3
142
1<3

2®2=5
243
2<4,5

This is most easily seen using the isomorphism of the semigroup
Ng, ® with Ng,—l- that is induced by p.



Back to valuations

Theorem
p determines a unique valuation on K(R).
The residue field of this valuation is F.

Proof.

> Let S={f/g: p(f) < p(g)}

» This is a local ring with maximal ideal
n={f/g:p(f) <p(g)}

» If f/g € K(R) is not in S then g/f is.

» Therefore S is a valuation ring.

» Equivalently, there is a totally ordered group I' and a map
v : K(R)* — T such that S = v~ 1(I'>o).

[

Surface examples

Valuations on surfaces are interesting! See Zariski, “Reduction of
singularities of an algebraic surface.”

» X an algebraic surface over F.

» (C a smooth curve on X defines a valuation, but

» The residue field is not F.
» The codimension L(mC) C L((m+ 1)C) can grow without
bound.

» So, let Q be a point on C.
» @ and C together define a valuation with residue field F.

» There are quirkier examples!



Examples on the affine plane

> glex on F[x, y] is from C = L and Q =[0:1:0].
> weighted lex orders on FF[x, y] come from blowing up Q and

points above @ to obtain some exceptional curve E and a
point @ on this curve, which define the valuation.

» Let p < g be coprime positive integers.

What is the valuation ring for the monomial order ['g 617] ?

Describe the geometry.

» Let 7 > 1 be irrational.

What is the valuation ring for the monomial order defined by
[L,7]?
Describe the geometry.

Order domains: recall

Definition
Let F be a field and let R be an [F-algebra. An order function on R
iIs a map

p:R— N_4

which satisfies the following.

Ol. Theset L, ={f € R| p(f) <m}isan m+1
dimensional vector space over F.

02. If f,g,z € R and z is nonzero then
p(f) > p(g) = p(zf) > p(zg)
The pair R, p is called an order domain.

Let z, € R satisfy p(zp) = b.
This is a basis for R.



Properties of order domains: recall

» Proposition p induces a semigroup structure on Ng in which
0 is the identity, and there is a well defined operation &.

p(f) @ p(g) = r(fe)

» Proposition p induces a partial order on Np.
a < b when there exists a ¢ such that ac® ¢ = b.

Grobner bases

» Let / be an ideal in R.

» Definitions:

S(1) = {olf) - F € 1,

a(l) = ming X(/),

F(I)={fa: p(fa) = a,13 € I }acon)
A(l) =No \ Z(/)



Theorem
F(I) is a Grobner basis for I.

1. F(Il) generates |I.

2. Given any h € I, p(h) < a for some a € o(l).
So p(f — Bfazp) < p(h) for some 5 € F and b € Ny.

3. {zc:ce A(l)} is a basis for R/I.

Codes from order domains

» Let Pq,..., P, be F-points on the variety defined by R.
Equivalently, maximal ideals of R with residue field F.

» The evaluation map:

ev: R— F"

f— (f(P1),...f(Pn))

> Let E,, = ev(Ly) and let C,, = E;.
» A check matrix for C,, is




The decoding problem

» Send c € Cg,.
» Receive v € F".
» Errorise=v —c.
» The error locator ideal is
I¢ ={f € R: f(Px) =0 for all k such that e, # 0}.
» Decode by finding a Grobner basis for /€.

» Notation: ¥€ = Y /e and similarly, ¢, A€,
0¢ = maxg{c € A°}.

The syndrome as a function

» Let s = Hv = H(c + e) = He.
» Extend the notion of syndrome to a function:
S¢*:R—F

h+— ev(h)-e

» Then z, maps to s,, for m < m.

» Define s,, = $¢(z,) for all m € Np.



Two cooperative algorithms for decoding

» Berlekamp-Massey-Sakata: Process sequence sp, ..., Sm,. ..
to get a Grobner basis for /€.

» Feng-Rao/Duursma majority voting: Compute sp,41 from
SmsSm—1,Sm—2, ... and data from the mth iteration of the
algorithm.

» |f the error vector is “not too bad” we can compute s, for
enough m > m to find a Grobner basis for /€.

» Majority voting gives get better decoding capability than BMS
alone.

Crucial concepts

» Notice: For f € /¢, S¢(fg) = 0 for all g.
» For f ¢ ¢, define

span(f)
fail(f)

min{c € Ny : §¢(fz.) # 0}
p(f) & span(f)

» An f with large span is “pretending” to be in /€.



Approximations to /¢, etc.

Definitions:
I = {f :fail(f) > m}
YT ={p(f):fel™}
o™ =minX"
4
A" =Np\ X"
0™ = max A"
—\<
Proposition

A™ = {span(f) : fail(f) < m}.

Berlekamp-Massey-Sakata

Given s, = S¢(zm).

Data o™ and 6™ and sets of functions:
F™ = {f;: p(fy) = a,fail(f3) > m}eom
G™ = {gc : span(gc) = ¢, fail(ge) < m}cegm
Initialize For m= -1, 071 = {0}, F 1 ={1e R} 671 =0.

For m = 0 to m large enough, compute Data(m)
from Data(m —1).



How to compute Data(m)?

» Test each f, € F™ ! to see if fail f, > m.

> If £, failsand m—a & A" then m— a € 6™ and f, becomes
8m—a € G™ (case (*)).
Compute new 8™, G™ from §7~1, G 1
and failures of such f;.

» Compute ¢ using X = Ny \ A",

» Compute F™ using combinations like

zifa+ pge  in case (%)
fa+ pzige  else

Stopping criteria

Proposition

Let chax be the largest integer in A®. Then, for m > Cmax ® Cmax,
A = A°€.

Proposition

Let smax be the largest integer in o€ and let
M = cmax @ maX{Cmaxa Smax}-

For any m > M, if F"m is a Grobner subset of I, then F™ is a
Grobner basis of €.



Majority voting: preliminaries

Consider the change in the set A.

» Notice that A™ O A™~1 iff for some a € o™ 1,
fail(f;) = m and span(f;) ¢ A™ 1.
In this case a < m.

> Set Ny, ={aeNp:a<m}
(defined just by arithmetic of Ny, ®).

> Then A™\ A1 C N, Em L.
> Let ™ = N, =™ L.

Main theorem for majority voting

» Suppose sg, S1, ..., Sm—1 are known, but not s,.

» Elements of " will vote for the value of s.,.

Theorem
If INm| > 2|Np (AS| then [Z™ (T > |A™NT™M|.

» That is: More than half of ™ is in X™.



Algorithm

» For each f, € F™1, find a, such that s, = a, implies
fail(f) > m.

» For each b € T'™ choose some a € 0™ ! such that a < b.

» b votes for «,.

» |If the conditions of the proposition are satisfied, a majority
will vote for the correct value for s,,.

A bound on the minimimum distance

Here is the order bound, also called the Feng-Rao bound.

Proposition
The minimum distance of Cg, is at least

dm = min{|Np| : m > m}

One can also improve on the codes C,, by designing a code to have
a specified minimum distance.

Let M ={m: |Ny| > d} and let C be the code orthogonal to the
space spanned by {ev(zy) : m € M}. The minimum distance of C
is at least d.



Correction beyond the minimum distance bound

» The main theorem allows us to show that decoding well
beyond half the minimum distance is possible for high rate
Hermitian codes.

# Check | Code Correction
Symbols | [n,k,d]
10 [ 64, 54, 5] 3
» Some examples: || 36 [ 512, 476, 9] 10
48 [512, 464, 24] | 13, 14
126 [4096,3970, 16] | 34
192 [4096,3904, 80] | 53
225 [4096,3871,112] | 64

» An overwhelming proportion of vectors with weights less than
the right hand column are correctable.

Generic points

» Suppose [F is algebraically closed.
A set V of t points will almost always have
Ajvy=10,1,...,t — 1} (this is an open condition).
Call this “generic.”

» For general I, we may expect that “most” sets of t points will
be generic.

> Experiments with Hermitian curves over IF > suggest the
proportion sets of t points which are non-generic is 1/(q — 1).

» The worst case scenario for t errors—those for which majority
voting requires many check symbols—are exceedingly rare.

» Minimum distance is less important than the capability of
decoding algorithm!
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