Order domains, Sakata's algorithm and majority voting

Michael E. O'Sullivan

San Diego State University

July 11, 2008, S³CM, Soria, Spain

Reed-Solomon codes

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$ and consider the evaluation map.

$$ev : \mathbb{F}_q[x] \longrightarrow \mathbb{F}_q^n$$

 $f \longmapsto (f(\alpha_1), \dots, f(\alpha_n))$

Let L_m be the set of polynomials of degree m. Define the codes:

$$egin{array}{ll} E(arlpha, {\it m}) = {\it ev}({\it L}_{\it m}) \ C(arlpha, {\it m}) = E(arlpha, {\it m})^ot \end{array}$$

One-point codes

- \mathcal{X} , a projective (smooth absolutely irreducible) curve over \mathbb{F} .
- ▶ Q, an \mathbb{F} -point on \mathcal{X} .
- $K(\mathcal{X})$ the function field of \mathcal{X} .
- Let R be the ring of functions with poles only at Q.

$$R = \{f \in K(\mathcal{X}) : v_P(f) \ge 0 \text{ for all } P \neq Q\}$$

- L(mQ) elements of R with pole order at most m at Q.
- For X the projective line, R is a polynomial ring in one variable. The space L(mQ) contains polynomials of degree at most m.

One-point codes

Let P_1, P_2, \ldots, P_n be \mathbb{F} -points of \mathcal{X} and $D = P_1 + \cdots + P_n$ We have the evaluation map

$$ev: R \longrightarrow \mathbb{F}_q^n$$

 $f \longmapsto (f(P_1), \dots, f(P_n))$

Define:

$$E(D, m) = ev(L(mQ))$$

 $C(D, m) = E(D, m)^{\perp}$

This gives a nice family of codes generalizing RS codes amenable to Sakata's generalization of Berlekamp-Massey.

Order domains

The natural setting for Sakata's algorithm is order domains.

Definition

Let \mathbb{F} be a field and let R be an \mathbb{F} -algebra. An *order function* on R is a map

$$\rho: R \longrightarrow \mathbb{N}_{-1}$$

which satisfies the following.

- O1. The set $L_m = \{f \in R \mid \rho(f) \leq m\}$ is an m+1 dimensional vector space over \mathbb{F} .
- O2. If $f, g, z \in R$ and z is nonzero then $\rho(f) > \rho(g) \Longrightarrow \rho(zf) > \rho(zg)$

The pair R, ρ is called an *order domain*.

Examples

• $\mathbb{F}[x, y]$ with grevlex. $x^{i}y^{j}$ 1 x y x^{2} xy y^{2} ... ρ 0 1 2 3 4 5 ...

F[x, y] with lex is NOT.
 The space of elements smaller than y is infinite dimensional.

Proposition For f, g with ρ(f) > 1, there exists n such that ρ(fⁿ) > ρ(g).

Proof:

$$\rho(1) < \rho(f) < \rho(f^2) \cdots < \rho(f^n)$$

Example from a curve, point

- Let $R = L(\infty Q)$ be the ring of functions with poles only at Q.
- Enumerate the Weierstrass semigroup Λ = {−v_Q(f) : f ∈ R}.
 0 = λ₀ < λ₁ < λ₂ < λ₃,... are the elements of Λ.
- Define an order function by

$$egin{aligned} &
ho: R o \mathbb{N}_{-1} \ &0 o -1 \ &f \mapsto i ext{ such that } - v_Q(f) = \lambda_i \end{aligned}$$

Equivalent formulation

Proposition

Property **O1** is equivalent to all of the following being true.

- 1. ρ is surjective.
- 2. $\rho(a) = -1$ if and only if a = 0.
- 3. $\rho(\alpha f) = \rho(f)$ for all $\alpha \in \mathbb{F}$.
- 4. $\rho(f + g) \le \max(\rho(f), \rho(g)).$
- 5. If $f, g \neq 0$ and $\rho(f) = \rho(g)$, there exists some $\alpha \in \mathbb{F}$ such that $\rho(f \alpha g) < \rho(f)$.

Alternative definition of order domain:

Replace **O1** by properties 2-5 above. ρ is not necessarily surjective.

Observations

- $\blacktriangleright \ \rho^{-1}(0) = \mathbb{F}.$
- ▶ *R* must be a domain.
- **Proposition** ρ induces a semigroup structure on \mathbb{N}_0 in which 0 is the identity, and there is a well defined operation \oplus .

$$\rho(f) \oplus \rho(g) = \rho(fg)$$

Proposition ρ induces a partial order on N₀.
a ≼ b when there exists a c such that a ⊕ c = b.

Example

Let $R = \mathbb{F}[x, y]$ with glex. We have

$$1 \oplus 1 = 3$$
$$1 \not\preccurlyeq 2$$
$$1 \preccurlyeq 3$$
$$2 \oplus 2 = 5$$
$$2 \not\preccurlyeq 3$$
$$2 \preccurlyeq 4, 5$$

This is most easily seen using the isomorphism of the semigroup \mathbb{N}_0, \oplus with \mathbb{N}_0^2 , + that is induced by ρ .

Back to valuations

Theorem

 ρ determines a unique valuation on K(R). The residue field of this valuation is \mathbb{F} .

Proof.

- Let $S = \{f/g : \rho(f) \le \rho(g)\}.$
- If $f/g \in K(R)$ is not in S then g/f is.
- Therefore S is a valuation ring.
- Equivalently, there is a totally ordered group Γ and a map $v : K(R)^* \longrightarrow \Gamma$ such that $S = v^{-1}(\Gamma_{\geq 0})$.

Surface examples

Valuations on surfaces are interesting! See Zariski, "Reduction of singularities of an algebraic surface."

- \mathcal{X} an algebraic surface over \mathbb{F} .
- C a smooth curve on \mathcal{X} defines a valuation, but
 - The residue field is not \mathbb{F} .
 - The codimension L(mC) ⊆ L((m+1)C) can grow without bound.
- So, let Q be a point on C.
- ▶ Q and C together define a valuation with residue field \mathbb{F} .
- There are quirkier examples!

Examples on the affine plane

- glex on $\mathbb{F}[x, y]$ is from $C = L_{\infty}$ and Q = [0:1:0].
- weighted lex orders on F[x, y] come from blowing up Q and points above Q to obtain some exceptional curve E and a point Q on this curve, which define the valuation.
- Let p < q be coprime positive integers.

What is the valuation ring for the monomial order $\begin{bmatrix} p & q \\ 0 & 1 \end{bmatrix}$?

Describe the geometry.

Let τ > 1 be irrational. What is the valuation ring for the monomial order defined by [1, τ]?

Describe the geometry.

Order domains: recall

Definition

Let \mathbb{F} be a field and let R be an \mathbb{F} -algebra. An order function on R is a map

$$\rho: R \longrightarrow \mathbb{N}_{-1}$$

which satisfies the following.

O1. The set $L_m = \{f \in R \mid \rho(f) \leq m\}$ is an m+1 dimensional vector space over \mathbb{F} .

O2. If
$$f, g, z \in R$$
 and z is nonzero then
 $\rho(f) > \rho(g) \Longrightarrow \rho(zf) > \rho(zg)$

The pair R, ρ is called an order domain.

Let $z_b \in R$ satisfy $\rho(z_b) = b$. This is a basis for R.

Properties of order domains: recall

• **Proposition** ρ induces a semigroup structure on \mathbb{N}_0 in which 0 is the identity, and there is a well defined operation \oplus .

$$\rho(f) \oplus \rho(g) = \rho(fg)$$

Proposition ρ induces a partial order on N₀.
a ≼ b when there exists a c such that a ⊕ c = b.

Grobner bases

• Let *I* be an ideal in *R*.

Definitions:

$$\Sigma(I) = \{\rho(f) : f \in I\},\$$

$$\sigma(I) = \min_{\prec} \Sigma(I),\$$

$$F(I) = \{f_a : \rho(f_a) = a, f_a \in I\}_{a \in \sigma(I)}\$$

$$\Delta(I) = \mathbb{N}_0 \setminus \Sigma(I).$$

Theorem

F(I) is a Grobner basis for I.

- 1. F(I) generates I.
- 2. Given any $h \in I$, $\rho(h) \preccurlyeq a$ for some $a \in \sigma(I)$. So $\rho(f - \beta f_a z_b) < \rho(h)$ for some $\beta \in \mathbb{F}$ and $b \in \mathbb{N}_0$.
- 3. $\{z_c : c \in \Delta(I)\}$ is a basis for R/I.

Codes from order domains

- Let P₁,..., P_n be F-points on the variety defined by R. Equivalently, maximal ideals of R with residue field F.
- The evaluation map:

$$ev: R \longrightarrow \mathbb{F}^n$$

 $f \longmapsto (f(P_1), \dots f(P_n))$

- Let $E_m = ev(L_m)$ and let $C_m = E_m^{\perp}$.
- A check matrix for C_m is

$$H = egin{bmatrix} ev(1) \ ev(z_1) \ ev(z_2) \ ev(z_3) \ \dots \ ev(z_m) \end{bmatrix}$$

The decoding problem

- Send $c \in C_{\overline{m}}$.
- Receive $v \in \mathbb{F}^n$.
- Error is e = v c.
- The error locator ideal is $I^e = \{f \in R : f(P_k) = 0 \text{ for all } k \text{ such that } e_k \neq 0\}.$
- Decode by finding a Grobner basis for I^e .
- Notation: $\Sigma^e = \Sigma_{I^e}$ and similarly, σ^e , Δ^e , $\delta^e = \max_{\preccurlyeq} \{ c \in \Delta^e \}.$

The syndrome as a function

- Let s = Hv = H(c + e) = He.
- Extend the notion of syndrome to a function:

$$S^e: R \longrightarrow \mathbb{F}$$

 $h \longmapsto ev(h) \cdot e$

- Then z_m maps to s_m for $m \leq \bar{m}$.
- Define $s_m = S^e(z_m)$ for all $m \in \mathbb{N}_0$.

Two cooperative algorithms for decoding

- Berlekamp-Massey-Sakata: Process sequence s₀,..., s_m,... to get a Grobner basis for I^e.
- ▶ Feng-Rao/Duursma majority voting: Compute s_{m+1} from s_m, s_{m-1}, s_{m-2},... and data from the *m*th iteration of the algorithm.
- If the error vector is "not too bad" we can compute s_m for enough $m > \overline{m}$ to find a Grobner basis for I^e .
- Majority voting gives get better decoding capability than BMS alone.

Crucial concepts

- ▶ Notice: For $f \in I^e$, $S^e(fg) = 0$ for all g.
- ▶ For $f \notin I^e$, define

$$\operatorname{span}(f) = \min\{c \in \mathbb{N}_0 : S^e(fz_c) \neq 0\}$$

 $\operatorname{fail}(f) = \rho(f) \oplus \operatorname{span}(f)$

• An f with large span is "pretending" to be in I^e .

Approximations to I^e , etc.

Definitions:

$$I^{m} = \{f : fail(f) > m\}$$
$$\Sigma^{m} = \{\rho(f) : f \in I^{m}\}$$
$$\sigma^{m} = \min_{\preccurlyeq} \Sigma^{m}$$
$$\Delta^{m} = \mathbb{N}_{0} \setminus \Sigma^{m}$$
$$\delta^{m} = \max_{\preccurlyeq} \Delta^{m}$$

Proposition

 $\Delta^m = \{\operatorname{span}(f) : \operatorname{fail}(f) \le m\}.$

Berlekamp-Massey-Sakata

Given $s_m = S^e(z_m)$. Data σ^m and δ^m and sets of functions:

$$F^{m} = \{f_{a} : \rho(f_{a}) = a, \operatorname{fail}(f_{a}) > m\}_{a \in \sigma^{m}}$$
$$G^{m} = \{g_{c} : \operatorname{span}(g_{c}) = c, \operatorname{fail}(g_{c}) \leq m\}_{c \in \delta^{m}}$$

Initialize For m = -1, $\sigma^{-1} = \{0\}$, $F^{-1} = \{1 \in R\}$ $\delta^{-1} = \emptyset$. For m = 0 to m large enough, compute Data(m) from Data(m - 1).

How to compute Data(m)?

- Test each $f_a \in F^{m-1}$ to see if fail $f_a > m$.
- If f_a fails and m − a ∉ Δ^{m−1} then m − a ∈ δ^m and f_a becomes g_{m−a} ∈ G^m (case (★)).
 Compute new δ^m, G^m from δ^{m−1}, G^{m−1} and failures of such f_a.
- Compute σ^m using $\Sigma^m = \mathbb{N}_0 \setminus \Delta^m$.
- Compute F^m using combinations like

 $z_i f_a + \mu g_c$ in case (*) $f_a + \mu z_i g_c$ else

Stopping criteria

Proposition

Let c_{max} be the largest integer in Δ^e . Then, for $m \ge c_{max} \oplus c_{max}$, $\Delta^m = \Delta^e$.

Proposition

Let s_{max} be the largest integer in σ^e and let $M = c_{max} \oplus \max\{c_{max}, s_{max}\}.$

For any $m \ge M$, if $F^m m$ is a Gröbner subset of I^m , then F^m is a Gröbner basis of I^e .

Majority voting: preliminaries

Consider the change in the set Δ .

- Notice that Δ^m ⊋ Δ^{m-1} iff for some a ∈ σ^{m-1}, fail(f_a) = m and span(f_a) ∉ Δ^{m-1}. In this case a ≼ m.
- Set N_m = {a ∈ N₀ : a ≤ m} (defined just by arithmetic of N₀, ⊕).
- Then $\Delta^m \setminus \Delta^{m-1} \subseteq N_m \bigcap \Sigma^{m-1}$.
- Let $\Gamma^m = N_m \bigcap \Sigma^{m-1}$.

Main theorem for majority voting

- Suppose $s_0, s_1, \ldots, s_{m-1}$ are known, but not s_m .
- Elements of Γ^m will vote for the value of s_m .

Theorem

If $|N_m| > 2|N_m \bigcap \Delta^e|$ then $|\Sigma^m \bigcap \Gamma^m| > |\Delta^m \cap \Gamma^m|$.

• That is: More than half of Γ^m is in Σ^m .

Algorithm

- For each f_a ∈ F^{m-1}, find α_a such that s_m = α_a implies fail(f) > m.
- For each $b \in \Gamma^m$ choose some $a \in \sigma^{m-1}$ such that $a \preccurlyeq b$.
- **b** votes for α_a .
- If the conditions of the proposition are satisfied, a majority will vote for the correct value for s_m.

A bound on the minimimum distance

Here is the order bound, also called the Feng-Rao bound.

Proposition

The minimum distance of $C_{\bar{m}}$ is at least

$$d_{\bar{m}} = \min\{|N_m| : m > \bar{m}\}$$

One can also improve on the codes C_m by designing a code to have a specified minimum distance.

Let $M = \{m : |N_m| > d\}$ and let C be the code orthogonal to the space spanned by $\{ev(z_m) : m \in M\}$. The minimum distance of C is at least d.

Correction beyond the minimum distance bound

The main theorem allows us to show that decoding well beyond half the minimum distance is possible for high rate Hermitian codes.

Some examples:	# Check Symbols	Code [n,k,d]	Correction
	10	[64, 54, 5]	3
	36	[512, 476, 9]	10
	48	[512, 464, 24]	13, 14
	126	[4096,3970, 16]	34
	192	[4096,3904, 80]	53
	225	[4096,3871,112]	64

An overwhelming proportion of vectors with weights less than the right hand column are correctable.

Generic points

- Suppose 𝑘 is algebraically closed.
 A set V of t points will almost always have
 Δ_{I(V)} = {0,1,...,t-1} (this is an open condition).
 Call this "generic."
- For general 𝔽, we may expect that "most" sets of t points will be generic.
- ► Experiments with Hermitian curves over F_{q²} suggest the proportion sets of t points which are non-generic is 1/(q 1).
- The worst case scenario for t errors—those for which majority voting requires many check symbols—are exceedingly rare.
- Minimum distance is less important than the capability of decoding algorithm!

References

An extensive exposition of the subject is in

Tom Høholdt, Jacobus H. van Lint, and Ruud Pellikaan. "Algebraic geometry of codes." In *Handbook of coding theory*, pages 871–961. North-Holland, Amsterdam, 1998. Vol. I.

Some recent results are found in

- Bras-Amorós, O'Sullivan, "The Correction Capability of the Berlekamp-Massey-Sakata Algorithm with Majority Voting," Applicable Algebra in Engineering, Communications and Computing 17 (2006), no. 5, 315–335.
- Geil, Pellikaan, "On the structure of order domains," Finite Fields Applic. 8 (2002) no. 3, 369-396.
- Little, The ubiquity of order domains for the construction of error control codes. Adv. Math. Commun. 1 (2007), no. 1, 151–171.
- O'Sullivan, "New codes for the Berlekamp-Massey-Sakata algeorithm," Finite Fields and Their Applications, vol. 7, pp. 293-317, 2001.

Original discoveries

- Sakata, "Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array." J. Symbolic Comput. 5 (1988), no. 3, 321–337.
- Feng, Rao, Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inform. Theory 39 (1993), no. 1, 37–45.
- Feng, Rao, "Improved geometric Goppa codes. I. Basic theory." Special issue on algebraic geometry codes. IEEE Trans. Inform. Theory 41 (1995), no. 6, part 1, 1678–1693.
- Kirfel, Pellikaan, "The minimum distance of codes in an array coming from telescopic semigroups." IEEE Trans. Inform. Theory 41 (1995), no. 6, part 1, 1720–1732.