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Introduction

Introduction

@ The work on decoding of algebraic geometry codes started in
1986 and in the following 10 years a lot of papers appeared. In
the Handbook on Coding Theory The paper all ( or most of )
the work on decoding until 1997 is surveyed.

@ These lectures present decoding algorithms using recent ideas
and methods.

e The basic algorithm for decoding general algebraic geometry
codes

Syndrome formulation of the basic algorithm

Generalized order bound and majority voting

List decoding

Syndrome formulation of list decoding
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The basic algorithm

Decoding

@ When an (n, k) code C is used for correcting errors, one of
the important problems is the design of a decoder.
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@ When an (n, k) code C is used for correcting errors, one of
the important problems is the design of a decoder.

@ A decoder is ?
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The basic algorithm

Decoding

@ When an (n, k) code C is used for correcting errors, one of
the important problems is the design of a decoder.

@ A decoder is ?

@ One way of stating the objective of the decoder is: for a
received vector r, select a codeword ¢ that minimizes d(r, c).
This is called maximum likelihood decoding. It is clear that if
the code is t-error correcting, i.e t < % and r = ¢ + e with
w(e) < t then the output of such a decoder is c.
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The basic algorithm

Decoding

@ When an (n, k) code C is used for correcting errors, one of
the important problems is the design of a decoder.

@ A decoder is ?

@ One way of stating the objective of the decoder is: for a
received vector r, select a codeword ¢ that minimizes d(r, c).
This is called maximum likelihood decoding. It is clear that if
the code is t-error correcting, i.e t < % and r = ¢ + e with
w(e) < t then the output of such a decoder is c.

@ It is often difficult to design a maximum likelihood decoder,
but if we only want to correct t errors where t < % it is
sometimes easier to get a good algorithm.
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The basic algorithm

Minimum distance and list decoders

Definition

A minimum distance decoder is a decoder that, given a received
word r, selects the codeword c that satisfies d(r, ¢) < d"2"'" if such
a codeword exists, and otherwise declares failure.
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The basic algorithm

Minimum distance and list decoders

Definition

A minimum distance decoder is a decoder that, given a received
word r, selects the codeword c that satisfies d(r, ¢) < dfg"" if such
a codeword exists, and otherwise declares failure.

Definition
Let 0 <7 < n. A 7 list decoder is a decoder that, given a received
word r, outputs all codewords ¢ such that d(r,c) < 7.
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Minimum distance and list decoders

Definition

A minimum distance decoder is a decoder that, given a received
word r, selects the codeword c that satisfies d(r, ¢) < dfg"" if such
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The basic algorithm

The basic algorithm

@ Let x be an algebraic curve, i.e. an absolutely irreducible and
nonsingular affine or projective variety of dimension one,
whose defining equations are (homogeneous) polynomials with
coefficients in a finite field F.
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The basic algorithm

The basic algorithm

@ Let x be an algebraic curve, i.e. an absolutely irreducible and
nonsingular affine or projective variety of dimension one,
whose defining equations are (homogeneous) polynomials with
coefficients in a finite field F.

o Let .# and g denote the function field and genus of x
respectively.
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The basic algorithm

@ Let x be an algebraic curve, i.e. an absolutely irreducible and
nonsingular affine or projective variety of dimension one,
whose defining equations are (homogeneous) polynomials with
coefficients in a finite field F.

o Let .# and g denote the function field and genus of x
respectively.

@ Let G and D = P; + - -+ + P, be F-rational divisors on x with
supp D Nsupp G = @.
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The basic algorithm

The basic algorithm

@ Let x be an algebraic curve, i.e. an absolutely irreducible and
nonsingular affine or projective variety of dimension one,
whose defining equations are (homogeneous) polynomials with
coefficients in a finite field F.

o Let .# and g denote the function field and genus of x
respectively.

@ Let G and D = P; + - -+ + P, be F-rational divisors on x with
supp D Nsupp G = @.

@ Define the functions
Evp : L(G) = F", f s (F(P1),...,f(Pn))

Resp : Q(G — D) = F", w (resp,(w),..., resp,(w))
that are used to construct the codes C; (D, G) and Cq(D, G).
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The basic algorithm

Interpolation polynomial

e We wish to decode C;(D, G). Say we have received the word
(ri,...,rn) containing at most t errors.
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The basic algorithm

Interpolation polynomial

e We wish to decode C;(D, G). Say we have received the word
(ri,...,rn) containing at most t errors.

@ The idea of the algorithm is to find an interpolation
polynomial Q(y) € F[y] \ {0}, such that:

(1) Q(y) = Qo + Quy where Qo € L(4) and Q1 € L(A ~ G)
(i) Qo(P)+r@u(P) =0j=1....n
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The basic algorithm

@ The basic algorithm works with a divisor A with
supp A Nsupp D = & satisfying
Q degA<n—t
Q degA> "HIEC | o
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The basic algorithm

@ The basic algorithm works with a divisor A with
supp A Nsupp D = & satisfying
Q degA<n—t
Q degA> "HIEC | o
0 Ift < % — g one can show that such a divisor A exists.
We will see later that condition (2) can be relaxed and then
we can work with larger t.
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The basic algorithm

Interpolation polynomial

Lemma

Suppose the transmitted word is evp(f) with f € L(G) and Q(y)
satisfy (i) and (ii) then f = Q1
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The basic algorithm

Interpolation polynomial

Lemma

Suppose the transmitted word is evp(f) with f € L(G) and Q(y)
satisfy (i) and (ii) then f = Q1
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The basic algorithm

Existence of Q(y)

RENEILS

Note that Q(y) = Q1 - (y — f) and thus Q1 must have the
error-positions among its zeroes. Hence Q1 is called an
error-locator.
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The basic algorithm

Existence of Q(y)

RENEILS

Note that Q(y) = Q1 - (y — f) and thus Q1 must have the
error-positions among its zeroes. Hence Qy is called an
error-locator.

Lemma

If the divisor A satisfies condition (2) above then there exists a
nonzero Q(y) € Z|y]| satisfying (i) and (ii).
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Existence of Q(y)
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The basic algorithm in pseudo code
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Syndrome formulation of the basic algorithm
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© Syndrome formulation of the basic algorithm
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Syndrome formulation of the basic algorithm

@ Reformulation of the basic algorithm using syndromes.
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Syndrome formulation of the basic algorithm

@ Reformulation of the basic algorithm using syndromes.

@ Easier to find an interpolation polynomial, since its defining
system of linear equations can be reduced.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Syndrome formulation of the basic algorithm

Syndrome formulation of the basic algorithm

@ Reformulation of the basic algorithm using syndromes.

@ Easier to find an interpolation polynomial, since its defining
system of linear equations can be reduced.

@ Also, the basic algorithm for C; (D, G) can correct up to
t < (n—deg G — g)/2 errors, using syndromes.
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Syndrome formulation of the basic algorithm

Syndrome formulation of the basic algorithm

@ Reformulation of the basic algorithm using syndromes.

@ Easier to find an interpolation polynomial, since its defining
system of linear equations can be reduced.

@ Also, the basic algorithm for C; (D, G) can correct up to
t < (n—deg G — g)/2 errors, using syndromes.
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Syndrome formulation of the basic algorithm

Towards syndromes - structured matrices
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Syndrome formulation of the basic algorithm

Reducing the linear system
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Syndrome formulation of the basic algorithm

Reducing the linear system

Lemma

Let A be a non-trivial divisor and write Iy = I(A). Further let
D = P; +---+ P, and suppose that supp ANsupp D = @. Then
there exists differentials w1, . ..,w, such that

(i) The set {Resp (w1),...,Resp (wn)} is a basis for F",

(i) The set {Resp (w1),...,Resp (wn—y)} is a basis of Cq(D, A),

(iii) For all P € suppD and 1 < i < n, we have vp(w;) > —1,
)

(iv) Foranyce C (D,A) and1<j<n-— I, we have
(c,Resp (wj)) = 0.
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Reducing the linear system
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Reducing the linear system
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Reducing the linear system
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Reducing the linear system
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Syndrome formulation of the basic algorithm

Syndromes

Definition

Let G and D = P; + - - - + P, be divisors defining a code as usual.
Given a differential w, a function h, and a word
r=(n,...,r) € F", we define the following syndrome:

So.h(r) :== (r,Resp (hw)).
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Syndrome formulation of the basic algorithm

Properties of syndromes

Proposition

Let G,D and A be as above, let {hy,..., h,} be a basis of
L(A— G), and let w1, ... ,wy_y, € QA — D) be such that
{Resp (w1),...,Resp (wn—_p)} is a basis of Cq(D, A). Then the
system (4) is equivalent to:

Suph (1) - Sw1,hyy (r) qi1 0
: : L= - (9)
Swn—py,h1 (I‘) coe Swp_pLhy (I’) qin 0
The tuple (qi1, - - .,q1y) is a solution of (5) iff there exists a

(unique) solution of (4) of the form (qo1, ..., qol; 911, - - - » 1k )-
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Syndrome formulation of the basic algorithm

Properties of syndromes

@ Let wi,...,w, be differentials satisfying the properties in
Lemma 5.
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Syndrome formulation of the basic algorithm

Properties of syndromes

@ Let wi,...,w, be differentials satisfying the properties in
Lemma 5.

@ From this basis, we define the matrix H by putting the i-th
row of M equal to Resp (w;). We will multiply system (4)
with H from the left.
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Syndrome formulation of the basic algorithm

Properties of syndromes

@ Let wi,...,w, be differentials satisfying the properties in
Lemma 5.

@ From this basis, we define the matrix H by putting the i-th
row of M equal to Resp (w;). We will multiply system (4)
with H from the left.

@ H is regular, implying that the multiplied system has exactly
the same solutions as the original one.
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Syndrome formulation of the basic algorithm

Properties of syndromes

@ Let wi,...,w, be differentials satisfying the properties in
Lemma 5.

@ From this basis, we define the matrix H by putting the i-th
row of M equal to Resp (w;). We will multiply system (4)
with H from the left.

@ H is regular, implying that the multiplied system has exactly
the same solutions as the original one.

@ Since deg A < n, we see that dim C; (D, A) = I(A) = .
Hence the matrix M (and HMy) has rank fp.
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Syndrome formulation of the basic algorithm

Properties of syndromes

@ Let wi,...,w, be differentials satisfying the properties in
Lemma 5.

@ From this basis, we define the matrix H by putting the i-th
row of M equal to Resp (w;). We will multiply system (4)
with H from the left.

@ H is regular, implying that the multiplied system has exactly
the same solutions as the original one.

@ Since deg A < n, we see that dim C.(D, A) = I(A) = k.
Hence the matrix M (and HMy) has rank fp.

@ On the other hand, according to item 4 in Lemma 5, the first
n — Iy rows of HM, are zero. Thus the [y X [y matrix B
obtained by deleting the first n — Iy rows from H My is regular.
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Syndrome formulation of the basic algorithm

Properties of syndromes
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Properties of syndromes
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Syndrome formulation of the basic algorithm

drome matrix
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Syndrome formulation of the basic algorithm

Syndrome matrix

Corollary

The rank of the matrix Ma|D,M,_¢ is at most Iy + t, were t
denotes the number of errors in r.
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Syndrome formulation of the basic algorithm

drome matrix
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drome matrix
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drome matrix
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Syndrome formulation of the basic algorithm

Performance of the basic algorithm

Proposition

Let c = Evp (f) € C.(D, G) be a codeword and e an error-vector
of weight t < (n—deg G — g)/2. Let r = c + e, then there exists
an interpolation polynomial Q(y) = Qo + Q1y and a divisor A such
that

Q@ Q€ L(A) and Q1 € L(A— G),
Q degA<n—t,
Q@ I(A-G)>t,
Q f=-Q/Q1.
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Performance of the basic algorithm
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Performance of the basic algorithm
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Syndrome formulation of the basic algorithm

Example 1
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Example 1
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Syndrome formulation of the basic algorithm

Example 1

e 0<i<q,
o i+ (g+1)e(i,j) > —k;j forall jwith1<j<q,
o ig+ Y7 e(i,))(q+1) < ke
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Example 1
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Syndrome formulation of the basic algorithm

Example 1 and Example 2
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Example 1 and Example 2
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Example 2

x5, with0 < a <2,

- x1x8'/(x2 + 719, with 0 < o < 2,

- X2xS /(X8 + X2+ 1), with 0 < o < 3,
- X3 x8 /(x5 + 1), with 0 <« < 3, and
(

- xXPx8 /(x5 + x2), with 0 < o < 3.
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Example 2
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Example 2
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Syndrome formulation of the basic algorithm

Example 2

- x5, with 0 < a < 4,

- x1x3, with 0 < a < 3,

. x12x20‘, with 0 < o < 2,

- xixs, with 0 < @ < 1, and
. Xfxzo‘, with 0 < a < 1.
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Syndrome formulation of the basic algorithm

Example 2

- x5, with 0 < a < 4,

- x1x3, with 0 < a < 3,

. x12x20‘, with 0 < o < 2,

- xixs, with 0 < @ < 1, and
. Xfxzo‘, with 0 < a < 1.

- (8 + x)x8'w, with 0 < o < 3,

. x1(x23 + 1)xfw, with 0 < a < 3,

- X2 (X3 + x2 + 1)x§w, with 0 < o < 3,

- 33 (2 +719)x5w, with 0 < o < 3, and
. Xfxzo‘w, with 0 < a0 < 4.
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Example 2
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Example 2
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Example 2
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Syndrome formulation of the basic algorithm

Example 2 - The syndrome matrix
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Example 2

P.Beelen a Hgholdt Decoding algebraic geometry codes




Syndrome formulation of the basic algorithm

Example 2
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Example 2
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Syndrome formulation of the basic algorithm

Example 2

- (X8 + x)x§w, with 4 < a <11,

- x1 (3 + 1)xSw, with 4 < a < 11,

. X12(X22 + x2 + 1)x§'w, with 4 < o < 11,

. Xf(Xg + vlo)xzo‘w, with 4 < o < 11, and
. Xfxzo‘w, with 5 < a < 11.
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Example 2
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Syndrome formulation of the basic algorithm

Example 2

x5, with 0 < a <6,
- x1x5 [ (x2 +919), with 0 < a <77,
2X2 /(X2 +x+1), with0 < a <7,
. X1X2 /(X2 +1), with0 < a <7, and
- xS/ (X8 + x2), with 0 < e < 7,
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Example 2

x5, with 0 < a <6,
- x1x5 [ (x2 +919), with 0 < a <77,
2X2 /(X2 +x+1), with0 < a <7,
. X1X2 /(X2 +1), with0 < a <7, and
- xS/ (X8 + x2), with 0 < e < 7,
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Syndrome formulation of the basic algorithm

Example 2
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Contents

@ The generalized order bound
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The generalized order bound

@ The Goppa—bound for C; (D, G) is d > n— deg G.
@ The Goppa—bound for Cq(D, G) is d > deg G — 2g + 2.
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The generalized order bound

The generalized order bound

@ The Goppa—bound for C; (D, G) is d > n— deg G.
@ The Goppa—bound for Cq(D, G) is d > deg G — 2g + 2.

o If deg G <2g — 2 the bound d > deg G — 2g + 2 is trivial,
while if deg G > n, the bound d > n — deg G lower bound is
trivial.
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The generalized order bound

The generalized order bound

@ The Goppa—bound for C; (D, G) is d > n— deg G.

@ The Goppa—bound for Cq(D, G) is d > deg G — 2g + 2.

o If deg G <2g — 2 the bound d > deg G — 2g + 2 is trivial,
while if deg G > n, the bound d > n — deg G lower bound is
trivial.

@ We will see that there exist a bound (the generalized order
bound) that improves the Goppa-bounds in the mentioned
cases, but sometimes also if 2g —2 < deg G < n.
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Weierstrass semigroups
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Weierstrass semigroups
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The generalized order bound

Order modules

An order module M for R(T) is a pair (M, ), where M is an
R(T)-module and ¢ a surjective F-linear map ¢ : M — F" s.t.

Q@ M = ez M;, with M; C M vector spaces such that for all
integers i < j we have that M; ¢ M,,
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The generalized order bound

Order modules

An order module M for R(T) is a pair (M, ), where M is an
R(T)-module and ¢ a surjective F-linear map ¢ : M — F" s.t.

Q@ M = ez M;, with M; C M vector spaces such that for all
integers i < j we have that M; ¢ M,,

@ There exists an integer a such that M; = {0} for all / < a,
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The generalized order bound

Order modules

An order module M for R(T) is a pair (M, ), where M is an
R(T)-module and ¢ a surjective F-linear map ¢ : M — F" s.t.

Q@ M = ez M;, with M; C M vector spaces such that for all
integers i < j we have that M; ¢ M,,

@ There exists an integer a such that M; = {0} for all / < a,
© For any integers / and j, we have that L(iT)M; C M;;,
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The generalized order bound

Order modules

An order module M for R(T) is a pair (M, ), where M is an
R(T)-module and ¢ a surjective F-linear map ¢ : M — F" s.t.

Q@ M = ez M;, with M; C M vector spaces such that for all
integers i < j we have that M; ¢ M,,

@ There exists an integer a such that M; = {0} for all / < a,
© For any integers / and j, we have that L(iT)M; C M;;,

Q For f € R(T), me M it holds ¢(fm) = Evp (f) % ¢(m). Here
x is coordinate-wise product on F”,
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The generalized order bound

Order modules

An order module M for R(T) is a pair (M, ), where M is an
R(T)-module and ¢ a surjective F-linear map ¢ : M — F" s.t.

Q@ M = ez M;, with M; C M vector spaces such that for all
integers i < j we have that M; ¢ M,,

@ There exists an integer a such that M; = {0} for all / < a,

© For any integers / and j, we have that L(iT)M; C M;;,

Q For f € R(T), me M it holds ¢(fm) = Evp (f) % ¢(m). Here
x is coordinate-wise product on F”,

@ For me Mj\M;_; and f € R(T) satisfying p1(f) = j, we
have that fm € M;+j\/\/li+j_1,
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The generalized order bound

Order modules

An order module M for R(T) is a pair (M, ), where M is an
R(T)-module and ¢ a surjective F-linear map ¢ : M — F" s.t.

Q@ M = ez M;, with M; C M vector spaces such that for all
integers i < j we have that M; ¢ M,,

@ There exists an integer a such that M; = {0} for all / < a,

© For any integers / and j, we have that L(iT)M; C M;;,

Q For f € R(T), me M it holds ¢(fm) = Evp (f) % ¢(m). Here
x is coordinate-wise product on F”,

@ For m e M;\M;_1 and f € R(T) satisfying p7(f) = J, we
have that fm € M;+j\/\/li+j_1,

Q For all i, we have that M; = M;_1 or dim M; = dim M;_; + 1.
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The generalized order bound
Order modules

An analogue of the map pT can be defined on M as follows:

pr. M M\{0} = Z, m— min{i|me M;}. (13)

Item (5) of the definition then reads
(5a) For f € R(T)\{0}, m € M\{0} we have that
pr.m(fm) = pr(f) + p1,m(m).
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The generalized order bound
Order modules

An analogue of the map pT can be defined on M as follows:

pr. M M\{0} = Z, m— min{i|me M;}. (13)

Item (5) of the definition then reads
(5a) For f € R(T)\{0}, m € M\{0} we have that
pr.m(fm) = pr(f) + p1,m(m).
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Order modules
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Order modules

Remark

The codes coming from Mq(D, G, T) are the same as those from
M (D,K+ D — G, T), where K = (w) is the divisor of a
differential w that has poles of order one and residues equal to one
in all points of supp D. If one wishes, we can therefore reduce
computations in the module Mq(D, G, T) to ones in

M (D,K+D—-G,T).
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Generalized Weierstrass semigroups and gaps
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Generalized Weierstrass semigroups and gaps
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Generalized Weierstrass semigroups and gaps

Let a=min H(T, M). The set Z>,\H(T, M) is called the set of
gaps of H(T, M). We denote the number of gaps by g(M).
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Definitions for the generalized order bound

@ a=—degG+g—gM)if M =M (D,G,T).
@ a=-n+degG—g—gM)+2if M= Mq(D,G,T).
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Definitions for the generalized order bound

@ a=—degG+g—gM)if M =M (D,G,T).
@ a=-n+degG—g—gM)+2if M= Mq(D,G,T).
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Definitions for the generalized order bound

@ a=—degG+g—gM)if M =M (D,G,T).
@ a=-n+degG—g—gM)+2if M= Mq(D,G,T).

Let pr(t) == Sien(r) t" and prm(t) = Yjpen(t,my t2. Then
v(T, M,i) is the coefficient of t' ™ in pr(t)pT rm(t).
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Counting with series

Let M be an order module and let a = min H(T, M). Then
v(T,M,i)>i—a+2—g—g(M).
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Counting with series

Let M be an order module and let a = min H(T, M). Then
v(T,M,i)>i—a+2—g—g(M).
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Counting with series
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Counting with series
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Shifted order modules

e Given an order module M = (U;M;, ¢), we can shift the order
module by s as follows: M s = (UiMj;s, ). Then
(T, Mis,i) =v(T,M,i+s) implying that
v(T,M,s) =v(T, Mss,0). Therefore it will be practical to
simplify our notation when i = 0 by defining:

N(T,M):=N(T,M,0), v(T,M):=v(T,M,0).

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



The generalized order bound

Shifted order modules

e Given an order module M = (U;M;, ¢), we can shift the order
module by s as follows: M s = (UiMj;s, ). Then
(T, Mis,i) =v(T,M,i+s) implying that
v(T,M,s) =v(T, Mss,0). Therefore it will be practical to
simplify our notation when i = 0 by defining:

N(T,M):=N(T,M,0), v(T,M):=v(T,M,0).

@ We now have the necessary notation to formulate the
following proposition that is essential in order to obtain lower
bounds on the minimum distance of codes coming from order
modules.
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Preparation of the generalized order bound

Proposition

Let M = (M, p) be an order module for R(T) and let
c € (M) \p(M;y1)*. Then wt(c) > v(T, M, i), with wt (c)
the Hamming weight of c.
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Preparation of the generalized order bound

Proposition

Let M = (M, p) be an order module for R(T) and let
c € (M) \p(M;y1)*. Then wt(c) > v(T, M, i), with wt (c)
the Hamming weight of c.

o Let c = (c1,...,¢n) € o(M;j)\@(M;y1)*. We denote by D
the diagonal matrix with ¢, ..., ¢, on its diagonal.
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Preparation of the generalized order bound

Proposition

Let M = (M, p) be an order module for R(T) and let
c € (M) \p(M;y1)*. Then wt(c) > v(T, M, i), with wt (c)
the Hamming weight of c.

o Let c = (c1,...,¢n) € o(M;j)\@(M;y1)*. We denote by D
the diagonal matrix with ¢, ..., ¢, on its diagonal.

o Let H(T) = {p1,p2,...}, such that py < p; if k < I. For
every px € H(T) we choose a function f, € R(T) such that
p1(f) = pk. Further we define v := Evp (fx). Let N be a
natural number such that Evp (L(NT)) = F" and
N > max{k | (pk,!) € N(T, M, i)}.
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Preparation of the generalized order bound

o Let H; be the N x n matrix whose k-th row is Evp (fx) for
1 < k < N. By choice of N, we have that rank H; = n. By
item 2 in Definition 8, there exists an integer Ny such that
Mpy, = 0.
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Preparation of the generalized order bound

o Let H; be the N x n matrix whose k-th row is Evp (fx) for
1 < k < N. By choice of N, we have that rank H; = n. By
item 2 in Definition 8, there exists an integer Ny such that
Mpy, = 0.

@ Since ¢ is assumed to be a surjective linear map to F”, there
exists an Ny such that ¢(My,) = F" and
Ny > max{/|(pk,!) € N(T, M, i)}.
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Preparation of the generalized order bound

o Let H; be the N x n matrix whose k-th row is Evp (fx) for
1 < k < N. By choice of N, we have that rank H; = n. By
item 2 in Definition 8, there exists an integer Ny such that
Mpy, = 0.

@ Since ¢ is assumed to be a surjective linear map to F”, there
exists an Ny such that ¢(My,) = F" and
Ny > max{/|(pk,!) € N(T, M, i)}.

@ The set H(T, M) N[Ny, No] consists of finitely many integers,
say Si,...,S.. Then we can choose my € M \Ms, _1.

@ By the choice of the my we see that p7 v(mk) < p7 m(my)
if k<1
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Preparation of the generalized order bound

o Let H; be the N x n matrix whose k-th row is Evp (fx) for
1 < k < N. By choice of N, we have that rank H; = n. By
item 2 in Definition 8, there exists an integer Ny such that
Mpy, = 0.

@ Since ¢ is assumed to be a surjective linear map to F”, there
exists an Ny such that ¢(My,) = F" and
Ny > max{/|(pk,!) € N(T, M, i)}.

@ The set H(T, M) N[Ny, No] consists of finitely many integers,
say Si,...,S.. Then we can choose my € M \Ms, _1.

@ By the choice of the my we see that p7 v(mk) < p7 m(my)
if k<1

e Now we define hy := p(myg) and Hy the L x n matrix with hy
as k-th row. By our choice of N1, N and by item 5 in
Definition 8, we have that rank Hy, = n.
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Preparation of the generalized order bound

e Consider the matrix S(c) := H;DcH5. Since H; and H; have
full rank, we see that rank S(c) = wt (c). We will also show
that rank S(c) > v(T, M, ).
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Preparation of the generalized order bound

e Consider the matrix S(c) := H;DcH5. Since H; and H; have
full rank, we see that rank S(c) = wt (c). We will also show
that rank S(c) > v(T, M, ).

@ We have

S(c); = D fi(PA)axe(m)a = > axp(fimj)x = (c, p(fimy)).

A=1 A=1
(17)
Let (pi,j) € N(T, M, ). By our choice of N we have that
i < N and therefore v; occurs as a row in Hy. Similarly h;
occurs as a row in Ho.
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Preparation of the generalized order bound

e Consider the matrix S(c) := H;DcH5. Since H; and H; have
full rank, we see that rank S(c) = wt (c). We will also show
that rank S(c) > v(T, M, ).

@ We have

S(c); = D fi(PA)axe(m)a = > axp(fimj)x = (c, p(fimy)).

A=1 A=1
(17)
Let (pi,j) € N(T, M, ). By our choice of N we have that
i < N and therefore v; occurs as a row in Hy. Similarly h;
occurs as a row in Ho.

e Now let t := v(T, M, i) and suppose that
N( T: Ma ’) = {(pipjt)a (pizvjf—l)a ceey (pimjl)}'
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Preparation of the generalized order bound

@ For convenience, we define oy := pj,. Without loss of
generality we can assume that i; < ip < - < i;. This implies
that j1 < jop < --+ <y, since if both k </ and jix > j;, then

I+1l=0wp1 1 +ji<opp1—k+Jji < o1k +jk=1+1
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Preparation of the generalized order bound

@ For convenience, we define oy := pj,. Without loss of
generality we can assume that i; < ip < - < i;. This implies
that j1 < jop < --+ <y, since if both k </ and jix > j;, then

I+1l=0wp1 1 +ji<opp1—k+Jji < o1k +jk=1+1
@ Let H be the t x t matrix obtained from S(c) by choosing all
those entries S(c); with i € {i1,..., it} and j € {j1,...,Jje}.

Clearly rank S(c) > rank H, so the proposition follows if we
show that H has full rank.
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Preparation of the generalized order bound

@ For convenience, we define oy := pj,. Without loss of
generality we can assume that i; < ip < - < i;. This implies
that j1 < jop < --+ <y, since if both k </ and jix > j;, then

I+1l=0wp1 1 +ji<opp1—k+Jji < o1k +jk=1+1

@ Let H be the t x t matrix obtained from S(c) by choosing all
those entries S(c); with i € {i1,..., it} and j € {j1,...,Jje}.
Clearly rank S(c) > rank H, so the proposition follows if we
show that H has full rank.

@ Suppose that k +/ < t 4+ 1. Then ¢(f;, m;) € ¢(M;), since
p1.m(fim) = pr(fi) + p1pa(m;) = o +ji <
Ok t+Jjt+1-k = 1 + L.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



The generalized order bound

Preparation of the generalized order bound

@ By equation (17) this implies that

S(c)ikj, = <c390(ﬁkmj/)> =0.
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Preparation of the generalized order bound

@ By equation (17) this implies that
S(c),,j, = (c,¢(fi,m;)) = 0.
o If k+/=1t+1, then a similar computation shows that

(i, m;) € p(Mit1) and that S(c); ; # 0. This means that H
is of the form

i1
0 *

H= )
*

where a * denotes a nonzero element of F.
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Preparation of the generalized order bound

@ By equation (17) this implies that

S(c)ikj, = <C,<p(f;'kmj,)> =0.

o If k+/=1t+1, then a similar computation shows that
(i, m;) € p(Mit1) and that S(c); ; # 0. This means that H
is of the form

i1
0 *

H= )
*

where a * denotes a nonzero element of F.
@ Thus rankH = t.
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The generalized order bound

@ When using the above proposition, one needs to choose an
order module. For example for the code C;(D, G) we could
choose the module Mq(D, G, T) and for the code Cq(D, G),
we can use the module M, (D, G, T).
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The generalized order bound

@ When using the above proposition, one needs to choose an
order module. For example for the code C;(D, G) we could
choose the module Mq(D, G, T) and for the code Cq(D, G),
we can use the module M, (D, G, T).

@ Now we describe the generalized order bound. Let
D=P;+---+ P, as usual and G a divisor such that
supp G Nsupp D = &. Suppose that the set { T, To,...,}
consists of rational points that do not occur in supp D.
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The generalized order bound

@ When using the above proposition, one needs to choose an
order module. For example for the code C;(D, G) we could
choose the module Mq(D, G, T) and for the code Cq(D, G),
we can use the module M, (D, G, T).

@ Now we describe the generalized order bound. Let
D=P;+---+ P, as usual and G a divisor such that
supp G Nsupp D = &. Suppose that the set { T, To,...,}
consists of rational points that do not occur in supp D.

o Let S =(51,5,,...) be a sequence of points, each of which is
contained in {Ty, To, ..., }.
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The generalized order bound

@ When using the above proposition, one needs to choose an
order module. For example for the code C;(D, G) we could
choose the module Mq(D, G, T) and for the code Cq(D, G),
we can use the module M, (D, G, T).

@ Now we describe the generalized order bound. Let
D =Py +---+ P, as usual and G a divisor such that
supp G Nsupp D = &. Suppose that the set { T, To,...,}
consists of rational points that do not occur in supp D.

o Let S =(51,5,,...) be a sequence of points, each of which is
contained in {Ty, To, ..., }.

@ We also recursively define the divisors Gy := G,

Git+1 = Gj + Siy1, Hy := G, Hiy1 := H; — Sj+1 and modules

Ms(i) == Ma(D, H;, Siy1), Mz(i) := M(D, Gj, Siy1).
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The generalized order bound

T.Hgholdt Decoding algebraic geometry codes



The generalized order bound

The generalized order bound

Theorem (Generalized Order Bound)

Let {T1, Ta,...} be a rational points not occurring in supp D and
let S =(51,52,...) be a subsequence. Then

e min. dist. of C,(D,G) =d > ds(G),
o min. dist. of Co(D, G) = d+ > d&(G).
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Proof of the generalized order bound

@ We will prove the statements about the code C; (D, G). The
results for the code Cq(D, G) can be proved similarly.
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Proof of the generalized order bound

@ We will prove the statements about the code C; (D, G). The
results for the code Cq(D, G) can be proved similarly.

e Recall that v(T, M) :=v(T,M,0). We can write C; (D, G)
as the disjoint union UIZOCL(Da H,)\CL(D, H,'+1). If
C[_(D, H,') 75 CL(D, Hi+]_) and c € CL(D, H,')\CL(D, H,'+1),
then from Proposition 3 we see that wt (c) > v(Sj+1, Ms(i)).
Then it follows that d > min;{v(Si+1, Ms(i))}, if we take
the minimum over all nonnegative i such that

CL(D, H;) # CL(D, Hiy1).
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The Goppa—bound

Corollary (The Goppa—bound)
o min. dist. of C;(D,G) =d > n—degG,
o min. dist. of Co(D,G) = d*+ > deg G —2g + 2.
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The Goppa—bound

Corollary (The Goppa—bound)
o min. dist. of C;(D,G) =d > n—degG,
o min. dist. of Co(D,G) = d*+ > deg G —2g + 2.

o Ms(i) = MQ(D, H,', Si+1) and H,‘ =G - 50 — = 5,'. Using
the notion of gaps and the above lemma gives

v(Siy1, Ms(i)) > n—degG+i>n—degG.

Therefore d > ds(G) > n— deg G.
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The Goppa—bound

@ Similarly it holds that
v(Sit1, ME(i)) > deg G +i —2g +2>deg G — 2g +2,

which implies that d* > dSL(G) >deg G —2g + 2.
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The Goppa—bound

@ Similarly it holds that
v(Sit1, ME(i)) > deg G +i —2g +2>deg G — 2g +2,

which implies that d* > dSL(G) >deg G —2g + 2.
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The Goppa—bound

@ Similarly it holds that
v(Sit1, ME(i)) > deg G +i —2g +2>deg G — 2g +2,

which implies that d* > dSL(G) >deg G —2g + 2.
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Example

@ As usual, we denote this point by T,,. We denote by Ty the
unique point having a zero in both x; and x». Further, we
denote by D the sum of the 504 rational points P satisfying

x1(P) #0.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



The generalized order bound

Example

@ As usual, we denote this point by T,,. We denote by Ty the
unique point having a zero in both x; and x». Further, we
denote by D the sum of the 504 rational points P satisfying
xa(P) #0.

@ In this example we will consider the code
CL(D,—To+490T). This is a [504,462,> 15] code, since
I(—To +490T~ ) = 462 and the Goppa bound gives that the
minimum distance is at least 504 — 489 = 15. We will show
that the Goppa bound is not sharp in this case and show that
the minimum distance is at least 21.
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Example

@ As usual, we denote this point by T,,. We denote by Ty the
unique point having a zero in both x; and x». Further, we
denote by D the sum of the 504 rational points P satisfying
xa(P) #0.

@ In this example we will consider the code
CL(D,—To+490T). This is a [504,462,> 15] code, since
I(—To +490T~ ) = 462 and the Goppa bound gives that the
minimum distance is at least 504 — 489 = 15. We will show
that the Goppa bound is not sharp in this case and show that
the minimum distance is at least 21.

@ We wish to use Theorem 12 to get a lower bound on the
minimum distance of the code C; (D, — Ty +490T).
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Example

@ First we need to choose a sequence S, which we take to be
S :=(Two, To, To, To,...) in this example. We will compute
the quantity ds(—To + 490 T,). In order to do so we will
work in the modules M()q(S).
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Example

@ First we need to choose a sequence S, which we take to be
S :=(Two, To, To, To,...) in this example. We will compute
the quantity ds(—To + 490 T,). In order to do so we will
work in the modules M()q(S).

@ The first module we need to work in is
Ms(0) = Mq(D,—To+ 490 Two, Too). We start by
calculating H( T, Ms(0)).
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Example

@ First we need to choose a sequence S, which we take to be
S :=(Two, To, To, To,...) in this example. We will compute
the quantity ds(—To + 490 T,). In order to do so we will
work in the modules M()q(S).

@ The first module we need to work in is
Ms(0) = Mq(D, —To 4+ 490 T, Too). We start by
calculating H( T, Ms(0)).

e We will need to know what p1._(Q2(—D — To +4907)) is.
The Weierstrass semigroup H(T,) is generated by 8 and 9,
ie. H(Tx) = (8,9) = {0,8,9,16,17,18,24,... }.
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Example

@ First we need to choose a sequence S, which we take to be
S :=(Two, To, To, To,...) in this example. We will compute
the quantity ds(—To + 490 T,). In order to do so we will
work in the modules M()q(S).

@ The first module we need to work in is
Ms(0) = Mq(D,—To+ 490 Two, Too). We start by
calculating H( T, Ms(0)).

e We will need to know what p1._(Q2(—D — To +4907)) is.
The Weierstrass semigroup H(T,) is generated by 8 and 9,
ie. H(Tx) = (8,9) = {0,8,9,16,17,18,24, ... }.

e It holds that H(T) = H(T) for any rational point T. This
means that the Laurent series p(t) := Y jcg0) t' will play a
central role in the following.
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Example

e For any order module and for any m € M;\M;_; we have
p1.m(m) = i. We see that for
m € Q(—D — To+ (490 — i) To)\Q(—D — To + (491 — i) Too)
we have p1.__ vs(0)(M) = p1., (M) + 490. Further, using the
differential w = (xP* + 1) "1dx;, we see that

p1 (Q—D—To+(490—1) Too)) = {—558+s| s € pr_ (L(To+(68+i
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Example

e For any order module and for any m € M;\M;_; we have
p1.m(m) = i. We see that for
m € Q(—D — To+ (490 — i) To)\Q(—D — To + (491 — i) Too)
we have p1.__ vs(0)(M) = p1., (M) + 490. Further, using the
differential w = (3?3 + 1) "ldx1, we see that

p1 (Q—D—To+(490—1) Too)) = {—558+s| s € pr_ (L(To+(68+i

@ Using the description of L-spaces in Example 1 from before,
we see that

U 7 (L(To + (68 + 1) Too)) = H(Too) U {55}.
i€Z

Putting everything together, we find that
H(Tw, Ms(0)) ={s—68|s € H(Tx)} U{-13}.
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Example

@ Therefore
P Mms(0)(t) = 71+ t7%p(t)

Using equation the expansion of p(t), we get
P()PT Ms(o)(t) = -+ + 24t + 2187 + 1763 4 - -,

and therefore (see Lemma 10): v(Too, Ms(0)) = 24.
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Example

@ Therefore
P Mms(0)(t) = 71+ t7%p(t)

Using equation the expansion of p(t), we get

P()PT Ms(o)(t) = -+ + 24t + 2187 + 1763 4 - -,

and therefore (see Lemma 10): v(Too, Ms(0)) = 24.

@ For the next step we need to know the set H( Ty, Ms(1)).
Note that H(Ty) = H( T ). We will calculate
p1o(L((1+ 1) To + 69T)).

@ Using the fact that (x2) = 9(To — T), we see that

P, (L((1+7) To+69T)) = {s—63|s € p1,(L((64+i) To+6T))}
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Example

@ The automorphism 7 defined by 7(x1) = x1/x2 and
T(x2) = 1/xp, interchanges the points Ty and T.. Using this
automorphism, we can conclude that

P, (L((644+ NTo+6Tx)) = p1. (L((64 4+ 1) Too + 6Tp)).
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Example

@ The automorphism 7 defined by 7(x1) = x1/x2 and
T(x2) = 1/xp, interchanges the points Ty and T.. Using this
automorphism, we can conclude that

P, (L((644+ NTo+6Tx)) = p1. (L((64 4+ 1) Too + 6Tp)).

e Similarly we find that H(To, Ms(1)) equals
{s—64|se H(Ty)} U{—49,—41,-33,-25 —17, —9}.
This implies that
Proms(r)(t) = 49+t BB T 94 47% (1),
enabling us to calculate that

p()PToms(y(t) = - -+ 21t +256% + 273 427t 4+ 2567 4+ - - .



The generalized order bound

Example

@ Hence v(Tp, Ms(1)) = 21. Since the sequence S only
contains Tg apart from the very first point in the sequence, it
suffices to work with the module Mgs(1).
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The generalized order bound

Example

@ Hence v( Ty, Ms(1)) = 21. Since the sequence S only
contains Tg apart from the very first point in the sequence, it
suffices to work with the module Mgs(1).

@ For i > 0, we can see the module Mgs(i + 1) as the i-th shift
of Ms(1). More precisely, we have that
v(To, Ms(i+ 1)) = v(To, Ms(1),i). This means that with
the above computation of H( Ty, Ms(1)), we have all
information we need to calculate ds(— T + 490 7).
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The generalized order bound

Example

@ Hence v(Tp, Ms(1)) = 21. Since the sequence S only
contains Tg apart from the very first point in the sequence, it
suffices to work with the module Mgs(1).

@ For i > 0, we can see the module Mgs(i + 1) as the i-th shift
of Ms(1). More precisely, we have that
v(To, Ms(i+ 1)) = v(To, Ms(1),i). This means that with
the above computation of H( Ty, Ms(1)), we have all
information we need to calculate ds(— T + 490 7).

@ We see from the equation on the previous slide that
v(To, Ms(2)) = v(To, Ms(5)) = 25 and
v(To, Ms(3)) = v(To, Ms(4)) = 27. For i > 6, we can use
Lemma 11 to show that v( T, Ms(i)) > 15+ i > 21.

@ Allin all, we have shown that ds(—Tp + 4907T,) = 21.
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Contents

© Majority voting
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Majority voting

@ For a code C;(D, G), the basic algorithm can correct
|(n—deg G —1— g)/2] errors. This means that the full
potential of the code has not been used yet.

@ We will describe an algorithm that can correct
|(ds(G) —1)/2] errors, where ds(G) denotes the generalized
order bound.

@ This is achieved using majority voting for so-called unknown
syndromes.

@ Loosely speaking this technique enables one to obtain more
information about the error-vector, and thereby to correct
more errors than with the basic algorithm.
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Syndromes and syndrome matrix

o Let r = c + e. The fact that for the (n— lp) x / matrix S(A)(r)
we have that S()(c) = S(A)(e) is central in showing that the
basic algorithm can correct [(n —deg G — 1 — g)/2] errors.
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Majority

Syndromes and syndrome matrix

o Let r = c + e. The fact that for the (n— lp) x / matrix S(A)(r)
we have that S()(c) = S(A)(e) is central in showing that the
basic algorithm can correct [(n —deg G — 1 — g)/2] errors.

@ The matrix S(A)(r) therefore gives information about the
error-vector e. In fact, we know that its kernel determines the
error-locator Q1.
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Syndromes and syndrome matrix

o Let r = c + e. The fact that for the (n— lp) x / matrix S(A)(r)
we have that S()(c) = S(A)(e) is central in showing that the
basic algorithm can correct [(n —deg G — 1 — g)/2] errors.

@ The matrix S(A)(r) therefore gives information about the
error-vector e. In fact, we know that its kernel determines the
error-locator Q1.

Definition (Unknown syndrome)

If w and h are such that hw € Q(—D + G), then the syndrome
So,h(r) will in general depend both on c and e. Such a syndrome it
said to be unknown.
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Syndromes and syndrome matrix

Definition (Syndrome)
Let w be a differential form. Then we define

su(r) == s,,1(r).

@ Let T ¢ supp G be a rational point. For now let us assume
that A=G+ aT.
@ We can do this, since the only restrictions on A were that

degA<n—tand I(A—G) >t If
t+g—1<a< n—t—degG both conditions are guaranteed

to hold.
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Syndromes and syndrome matrix

Definition (Syndrome)

Let w be a differential form. Then we define
su(r) == s,,1(r).

@ Let T ¢ supp G be a rational point. For now let us assume
that A= G + aT.

@ We can do this, since the only restrictions on A were that
degA<n—tand I(A—G) >t If
t+g—1<a< n—t—degG both conditions are guaranteed
to hold.

o It will be convenient to extend the matrix S(A)(r) in this setup.
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Syndromes and syndrome matrix

o The matrix S()(r) itself depends on the choice of functions
and differentials from L(A — G) and Q(A — D).

@ We now specify a more precise choice: let
H(T)={p1,p2,...} and hy, hy,--- € R(T) such that
p1(hi) = pi.

e Similarly, let M := Mq(D, G, T) and
H(T,M) = {o1,02,...}.
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Syndromes and syndrome matrix

o The matrix S()(r) itself depends on the choice of functions
and differentials from L(A — G) and Q(A — D).

@ We now specify a more precise choice: let
H(T)={p1,p2,...} and hy, hy,--- € R(T) such that
p1(hi) = pi.

e Similarly, let M := Mq(D, G, T) and
H(T,M) = {o1,02,...}.

@ We can then choose differential forms
Wi,Wwp, - € U,'Q(—D + G — iT) such that pT,M(wj) =0j.
We then define the following matrices: ...
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Syndrome matrix

Let
5w1,h1(r) 5w1,h2(r)
Stf’t(r) = Swz,hl(r) sw2,h2(r)

and

5w17h1(r) SW1,hi(r)
12 (1)] ) = '

SWj,h1(r) Swj:hi(r)
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Candidates and discrepancy

o Note that hjw; € Q(—D + G — (pi + ;) T). Therefore we
have that all elements s,,, .(r) of S®*(r) such that
pi +0; <0, are known syndromes, i.e. equal to s, n(e).

i
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Majority

Candidates and discrepancy

o Note that hjw; € Q(—D + G — (pi + ;) T). Therefore we
have that all elements s,,, .(r) of S®*(r) such that
pi +0; <0, are known syndromes, i.e. equal to s, n(e).

@ Before proceedinging, we need some terminology:

Definition (Candidate and discrepancy)

A position (i, /) in the matrix S%*(e) is said to be a candidate, if
the matrices SP*(e)|j—1,—1, S¥*(e)|i—1,, and SP¥*(e)|; j_1 all have
the same rank.
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Candidates and discrepancy

o Note that hjw; € Q(—D + G — (pi + ;) T). Therefore we
have that all elements s,,, .(r) of S®*(r) such that
pi +0; <0, are known syndromes, i.e. equal to s, n(e).

@ Before proceedinging, we need some terminology:

Definition (Candidate and discrepancy)

A position (i, /) in the matrix S%*(e) is said to be a candidate, if
the matrices SP*(e)|j—1,—1, S¥*(e)|i—1,, and SP¥*(e)|; j_1 all have
the same rank.

If furthermore the matrices S?*(e)|j_1,j—1 and S%*(e)|;; do not
have equal rank, then the position (7, ) is called a discrepancy.
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Candidates and known syndromes

e Now suppose that r = ¢ + e, with ¢ € C; (D, G) and that we
are given a candidate (/,j) with p; +0; = 1.

@ We can determine these candidates, since the part of the
matrix S¥*(e) that we need to determine them only involves
known syndromes.
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Candidates and known syndromes

e Now suppose that r = ¢ + e, with ¢ € C; (D, G) and that we
are given a candidate (/,j) with p; +0; = 1.

@ We can determine these candidates, since the part of the
matrix S¥*(e) that we need to determine them only involves
known syndromes.

@ Furthermore, suppose that w; € Q(—D+ G — T)\Q(—D + G).
Then there exists constants € F\{0} and px € F (only
depending on (/,/) ) such that

/-1

wi = phiwj + > puw. (18)
k=0
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@ There exists a unique element o € F such that the matrix M
obtained from S%*(r)|; ; by replacing its (i, ) — th element by
@, has the same rank as the matrix SP!(r)|i—1j-1.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Majority

@ There exists a unique element o € F such that the matrix M
obtained from S%*(r)|; ; by replacing its (i, ) — th element by
@, has the same rank as the matrix SP!(r)|i—1j-1.

e We say that the candidate (/,) votes for a concerning the
syndrome s, 5,(e). Using equation (18) we then also get a
value for s, (e).
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Majority

@ There exists a unique element o € F such that the matrix M
obtained from S%*(r)|; ; by replacing its (i, ) — th element by
@, has the same rank as the matrix SP!(r)|i—1j-1.

e We say that the candidate (/,) votes for a concerning the
syndrome s, 5,(e). Using equation (18) we then also get a
value for s, (e).

o If this value is correct, we say that the candidate votes
correctly, otherwise we say that the candidate votes
incorrectly.
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Majority

@ There exists a unique element o € F such that the matrix M
obtained from S%*(r)|; ; by replacing its (i, ) — th element by
@, has the same rank as the matrix SP!(r)|i—1j-1.

e We say that the candidate (/,) votes for a concerning the
syndrome s, 5,(e). Using equation (18) we then also get a
value for s, (e).

o If this value is correct, we say that the candidate votes

correctly, otherwise we say that the candidate votes
incorrectly.

@ We now show that this voting procedure gives the right value
for s, n;(€) in the majority of cases, if we assume that not too
many errors have occurred.
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e Letr=c+e withce C(D,QG).

o Letw; € QD+ G — T)\Q—D + G) and assume that
C.(D,G) # C.(D,G — T) and that
2wt (e) < v(T,Mq(D, G, T)).

e Then the majority of candidates in N(T, Mgq(D, G, T)) vote
for the correct value of s, (e).
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Majority

e Letr=c+e withce C(D,QG).

o Letw; € QD+ G — T)\Q—D + G) and assume that
C.(D,G) # C.(D,G — T) and that
2wt (e) < v(T,Mq(D, G, T)).

e Then the majority of candidates in N(T, Mgq(D, G, T)) vote
for the correct value of s, (e).
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o Let pp, (resp. op,) be the largest first (resp. second)
coordinate occurring in N(T, M, 0).
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Majority

o Let pp, (resp. op,) be the largest first (resp. second)
coordinate occurring in N(T, M, 0).

@ The matrix SP*(e)|n, n, has rank wt (e), but on the other
hand it is at least #K + #F, since discrepancies are exactly
pivot positions in the matrix ST (e)|n, n,-
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Majority

o Let pp, (resp. op,) be the largest first (resp. second)
coordinate occurring in N(T, M, 0).

@ The matrix SP*(e)|n, n, has rank wt (e), but on the other
hand it is at least #K + #F, since discrepancies are exactly
pivot positions in the matrix ST (e)|n, n,-

@ Therefore we have that

2#K + 2#F < 2wt (e) < v(T, M).
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e If an element (i,j) € N(T,M,0) is not a candidate, then
there exists an element of K with first coordinate i or second
coordinate j.

@ Therefore, the number of non-candidates in N(T, M,0) is at
most 2#K.

@ The number of candidates in N(T,.M,0) is equal to
#F + #T.

e Allin all we find that v(T, M) < 2#K + #F + #T.

@ Combining this with the above, we see that #T > #F.
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Decoding up to half the generalized order bound

o If C,(D,G)=C(D,G—T), but
Q(—-D+ G—T) #Q(—D + G) then s,,(e) for
w; € Q(—D + G — T) can be determined as follows:
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Decoding up to half the generalized order bound

o If C,(D,G)=C(D,G—T), but
Q(—-D+ G—T) #Q(—D + G) then s,,(e) for
w; € Q(—D + G — T) can be determined as follows:
@ There exists w € Q(—D + G) such that
Resp (w) = Resp (wy), and therefore s, (e) = s,,(e). But the
latter is a known syndrome.
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Decoding up to half the generalized order bound

o If C,(D,G)=C(D,G—T), but
Q(—-D+ G—T) #Q(—D + G) then s,,(e) for
w; € Q(—D + G — T) can be determined as follows:
@ There exists w € Q(—D + G) such that
Resp (w) = Resp (wy), and therefore s, (e) = s,,(e). But the
latter is a known syndrome.
@ Combined with the above theorem, we see that we can always
determine the value of s, (e) as long as 2wt (e) < v(T, M).
@ The minimum distance d of C;(D, G) satisfies
d > ds(G) := mini{v(Sj+1, Ms(i))}, where the minimum is
taken over all i such that C (D, H;) # C.(D, Hi+1).
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Decoding up to half the generalized order bound

o If C,(D,G)=C(D,G—T), but
Q(—-D+ G—T) #Q(—D + G) then s,,(e) for
w; € Q(—D + G — T) can be determined as follows:
@ There exists w € Q(—D + G) such that
Resp (w) = Resp (wy), and therefore s, (e) = s,,(e). But the
latter is a known syndrome.
@ Combined with the above theorem, we see that we can always
determine the value of s, (e) as long as 2wt (e) < v(T, M).
@ The minimum distance d of C;(D, G) satisfies
d > ds(G) := mini{v(Sj+1, Ms(i))}, where the minimum is
taken over all i such that C (D, H;) # C.(D, Hi+1).
@ We can decode the code C; (D, G) up to half this bound.
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Decoding up to half the generalized order bound

o (As before) let { Ty, T2,...,} be rational points that do not
occur in supp D, and let S = (51, Sz, ...) be a subsequence.
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Decoding up to half the generalized order bound

o (As before) let { Ty, T2,...,} be rational points that do not
occur in supp D, and let S = (51, Sz, ...) be a subsequence.

@ Further define divisors Hy := G, Hiy1 := H; — S;i41 and
modules Ms(i) := Mq(D, H;, Si+1).
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Decoding up to half the generalized order bound

o (As before) let { Ty, T2,...,} be rational points that do not
occur in supp D, and let S = (51, Sz, ...) be a subsequence.

@ Further define divisors Hy := G, Hiy1 := H; — S;i41 and
modules Ms(i) := Mq(D, H;, Si+1).

@ We can determine all unknown syndromes using the previous

theorem (majority voting) iteratively on the sequence of codes
CL(D, G) DD C[_(D, H,') D CL(D, H,'+1) DRI
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Decoding up to half the generalized order bound

o (As before) let { Ty, T2,...,} be rational points that do not
occur in supp D, and let S = (51, Sz, ...) be a subsequence.

@ Further define divisors Hy := G, Hiy1 := H; — S;i41 and
modules Ms(i) := Mq(D, H;, Si+1).

@ We can determine all unknown syndromes using the previous
theorem (majority voting) iteratively on the sequence of codes
CL(D, G) DD C[_(D, H,') D) CL(D, H,'+1) Do

@ Eventually, we then know all syndromes, after which we can
determine the error-vector e.
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Reducing complexity
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Reducing complexity

Proposition

Letc e C,(D,G) and S = (51,52, ... ) a sequence of points not
occurring in supp D. Suppose that e € F" of weight at most
(ds(G) —1)/2. Let 6 = ds(G) — n+ deg G + g. Suppose that we

know s, (e) for allw € Q(—D + G — S; — --- — Ss). Then we can
find ¢ using the basic algorithm on the code
C(D,G—5 —---—S5).
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Reducing complexity

e Write T = S; and suppose that ¢ = Evp (f) with f € L(G).

@ Let fi, ..., fx be a basis of L(G) such that
pr(fi) < -+ < pr(fy) and w; an element of Q(—D + G —T)
of maximal pole order at T.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Majority

Reducing complexity

e Write T = S; and suppose that ¢ = Evp (f) with f € L(G).

@ Let fi, ..., fx be a basis of L(G) such that
p1(f) < -+ < pr(fk) and w; an element of Q(—D+ G — T)
of maximal pole order at T.

@ We then have that any w € Q(—D + G — T) can be written
as aw; + w, for certain w, € Q(—D + G) and constant «.
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Reducing complexity

e Write T = S; and suppose that ¢ = Evp (f) with f € L(G).

@ Let fi, ..., fx be a basis of L(G) such that
pr(fi) < -+ < pr(fy) and w; an element of Q(—D + G —T)
of maximal pole order at T.

@ We then have that any w € Q(—D + G — T) can be written
as aw; + w, for certain w, € Q(—D + G) and constant «.

@ Also we can write
k
f=> aif
i=1

and by assumption s,,(c) = s,,(r) — s,,(e) is a known
expression.
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Reducing complexity

@ Since pr(f;) < p7r(f) for 1 < i < k and c = Evp (), we
have that

k

sw(€) =D aisy (Bvp (£)) = aks, (Evp (f))-
i=1
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Majority

Reducing complexity

@ Since pr(f;) < p7r(f) for 1 < i < k and c = Evp (), we
have that

k

sw(€) =D aisy (Bvp (£)) = aks, (Evp (f))-
i=1

@ We claim that we can always determine ay. Indeed if

Swm(Evp (fc)) = 0, then s, (c) = 0 implying that
Cc CL(D, G — T). But then ay = 0.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Majority
Reducing complexity

@ Since pr(f;) < p7r(f) for 1 < i < k and c = Evp (), we
have that

k

sw(€) =D aisy (Bvp (£)) = aks, (Evp (f))-
i=1

@ We claim that we can always determine ay. Indeed if
Swm(Evp (fc)) = 0, then s, (c) = 0 implying that
Cc CL(D, G — T). But then ay = 0.

o If Swm(EVD (fk)) 75 0, then

Sw,(C) _ Sw/(r) B Sw/(e)

so(Evp (f)) s (Evp () (19)

Q) =
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Reducing complexity

e We can repeat this treating r — aEvp (fx) as the received
vector, taking C; (D, G — S1) as the code we work with and
defining T = 5».

@ lterating this procedure § times, we obtain as output a vector

r — Evp (g) for an explicitly known function g such that
f—gel(G—5 —---—55).
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Reducing complexity

e We can repeat this treating r — aEvp (fx) as the received
vector, taking C; (D, G — S1) as the code we work with and
defining T = 5».

@ lterating this procedure § times, we obtain as output a vector
r — Evp (g) for an explicitly known function g such that
f—gel(G—5 —---—55).

@ The vector r — Evp (g) differs in
wt (e) < (n—deg G + 0 — g)/2 positions from Evp (f — g),
so we can use the basic algorithm to find the function f — g
completing the decoding.
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Reducing complexity

e We can repeat this treating r — aEvp (fx) as the received
vector, taking C; (D, G — S1) as the code we work with and
defining T = 5».

@ lterating this procedure § times, we obtain as output a vector
r — Evp (g) for an explicitly known function g such that
f—gel(G—5 —---—55).

@ The vector r — Evp (g) differs in
wt (e) < (n—deg G + 0 — g)/2 positions from Evp (f — g),
so we can use the basic algorithm to find the function f — g
completing the decoding.
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Example

o Consider the curve x given by x2 + xo = x} over Fgy.

o It is a hyperelliptic curve of genus 4 with 129 rational points.
We denote by T, the unique point that has a pole at x; , by
To the point that has a zero at x, and by T; the point that
has a zero at x» + 1.

@ Let G = —Ty+ 121 T4 and D be the sum of the 126 rational
points different from Tp, T1 and T.
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Example

o Consider the curve x given by x2 + xo = x} over Fgy.

o It is a hyperelliptic curve of genus 4 with 129 rational points.
We denote by T, the unique point that has a pole at x; , by
To the point that has a zero at x, and by T; the point that
has a zero at x» + 1.

@ Let G = —Ty+ 121 T4 and D be the sum of the 126 rational
points different from Tp, T1 and T.

@ The code C; (D, G) is a [126,117, > 6] code. We first
calculate the generalized order bound for this code using the
sequence S = (T, Too, - .- ). We have that H(Tw) = (2,9).
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Example

o Consider the curve x given by x2 + xo = x} over Fgy.

o It is a hyperelliptic curve of genus 4 with 129 rational points.
We denote by T, the unique point that has a pole at x; , by
To the point that has a zero at x, and by T; the point that
has a zero at x» + 1.

@ Let G = —Ty+ 121 T4 and D be the sum of the 126 rational
points different from Tp, T1 and T.

@ The code C; (D, G) is a [126,117, > 6] code. We first
calculate the generalized order bound for this code using the
sequence S = (T, Too, - .- ). We have that H(Tw) = (2,9).

o The differential w = (x3 + 1)71dx; has divisor —D + 132 T,
and can be used to show that
H(Too, Ms(0)) ={i—11|i € H(T)} U {—4}. We find that
PTo ()PTo Ms()(t) = -+ Tt + T2+ 863+ 0t* + 106+ - - - .

0
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Example

o The differential w = (x?3 + 1) ~1dx; has divisor —D + 1327,
and can be used to show that
H(Too, Ms(0)) = {i —11]i € H(Teo)} U{—4}.
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Example

o The differential w = (x?3 + 1) ~1dx; has divisor —D + 1327,
and can be used to show that
H(Too, Ms(0)) ={i—11|i € H(Tx)} U{—4}.

@ We find that

PTo ()P Mms(0)(t) = -+ T+ T2 483+ 0t + 1067+ - - .

This means that ds(G) = 7 implying that the code we are
studying is in fact a [126,117,> 7] code.
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Example

o The differential w = (x?3 + 1) ~1dx; has divisor —D + 1327,
and can be used to show that
H(Too, Ms(0)) ={i—11|i € H(Tx)} U{—4}.

@ We find that

PTo ()P Mms(0)(t) = -+ T+ T2 483+ 0t + 1067+ - - .

This means that ds(G) = 7 implying that the code we are
studying is in fact a [126,117,> 7] code.

o We represent Fgq as Fa[y], with v a primitive element
satisfying v° +~ +1 = 0.
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Majority

Example

@ The points in supp D have nonzero coordinates. We write
these as powers of v with exponents between 0 and 62. Then
we can order these points lexicographically after these
exponents.

o In this way we get P; = (1,7%Y), ..., P1os = (7%2,7%%).
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Majority

Example

@ The points in supp D have nonzero coordinates. We write
these as powers of v with exponents between 0 and 62. Then
we can order these points lexicographically after these

exponents.
o In this way we get P; = (1,7%Y), ..., P1os = (7%2,7%%).
e We will need a basis f1,. .., fi17 of L(G) of increasing pole

order in T,,. We can take

x| if1<i<3,
fi={ X2, ifi>5and i odd,
x{/z if i >4 and i even.
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Majority

Example
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Majority

Example

@ Now define an error-vector e in the following way: e; = 1,
e =%, eg3 =73, and e; = 0 otherwise.

@ Since ds(G) = 7, we can correct this error-pattern with the
majority voting algorithm. Goppa's bound for the minimum
distance of the code C;(D, G) equals 6, so we need to
determine g + (7 — 6) = 5 unknown syndromes.

@ We now assume that the sent codeword was
c = Evp (79 + xP°x,), so that the received word is
r=c+te.

o Then we have that ST (c)|14,14 (resp. ST* (e)]14,14) equals
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Majority

Example: S (c)|14.14
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Majority

Example: S%* (e)|14,14
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Majority

Example

@ In the decoding algorithm, we know the matrix SP_(r)|14,14,
which is the sum of the two previous matrices. The individual
matrices are unknown to the receiver.

o Note that SP_(r) and S¥_(e) are guaranteed to be the same
in all those positions (i ,_j) satisfying o; + p; < 0, since these
positions contain the known syndromes.
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Majority

Example

@ In the decoding algorithm, we know the matrix SP_(r)|14,14,
which is the sum of the two previous matrices. The individual
matrices are unknown to the receiver.

o Note that SP_(r) and S¥_(e) are guaranteed to be the same
in all those positions (i ,_j) satisfying o; + p; < 0, since these

positions contain the known syndromes.
o We now calculate f = yx?° + x?%x;. Since f € L(G), we can
write f = ,151 a;f;. We will determine 113 up till @117 using

majority voting.
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Majority

Example

@ In the decoding algorithm, we know the matrix SP_(r)|14,14,
which is the sum of the two previous matrices. The individual
matrices are unknown to the receiver.

o Note that SP_(r) and S¥_(e) are guaranteed to be the same
in all those positions (i ,_j) satisfying o; + p; < 0, since these
positions contain the known syndromes.

o We now calculate f = yx?° + x?%x;. Since f € L(G), we can
write f = 117 1 aifi. We will determine aq13 up till o117 using
majority votlng.

@ In the first step of the algorithm we need to determine which
positions (i, ) satisfying o; + p; = 1, are candidates as well.
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Majority

Example

@ In the decoding algorithm, we know the matrix SP_(r)|14,14,
which is the sum of the two previous matrices. The individual
matrices are unknown to the receiver.

o Note that SP_(r) and S¥_(e) are guaranteed to be the same
in all those positions (i ,_j) satisfying o; + p; < 0, since these
positions contain the known syndromes.

o We now calculate f = yx?° + x?%x;. Since f € L(G), we can
write f = 117 1 aifi. We will determine aq13 up till o117 using
majority votlng.

@ In the first step of the algorithm we need to determine which
positions (i, ) satisfying o; + p; = 1, are candidates as well.

@ From the series expansion of pr_ (t)pT. ams(0)(t) we get that
there are at most 7 such positions (i, ).
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Majority

Example: Decoding

@ By row reduction of the matrix S%_(r) we get that (1,1) and

(2,2) are the only discrepancies in the known part S _(e).
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Majority

Example: Decoding

@ By row reduction of the matrix S%_(r) we get that (1,1) and
(2,2) are the only discrepancies in the known part S _(e).

@ The candidates in the first and following steps can therefore
not contain a 1 or a 2 in any of their coordinates.
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Majority

Example: Decoding

@ By row reduction of the matrix S%_(r) we get that (1,1) and
(2,2) are the only discrepancies in the known part S _(e).

@ The candidates in the first and following steps can therefore
not contain a 1 or a 2 in any of their coordinates.

@ The votes can be calculated directly once the candidates are
known. The results of the first step of the algorithm is:

candidate || (6,3) | (4,4) | (3,5)

vote 726 ,Y26 726

o We conclude that s,,,(e) = 2. Using the equation, we get
o117 = 1, and we can then repIace St (r) by the matrix
StOt (r — EVD (f117))
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Majority

Example: Decoding

@ Since the voting is unanimous, there are no new discrepancies.
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Majority

Example: Decoding

@ Since the voting is unanimous, there are no new discrepancies.

@ In the second step of the algorithm, we get:

candidate || (7,3) | (5,4) | (3,6)

vote 736 ,}/36 736

@ Therefore s,,,(e) = v3° and a116 = 7. In this particular
example the updated syndrome matrix now becomes ST _(e),
because of our choice of the sent codeword c.
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Majority

Example: Decoding

@ Since the voting is unanimous, there are no new discrepancies.

@ In the second step of the algorithm, we get:

candidate || (7,3) | (5,4) | (3,6)

vote 736 ,}/36 ,736

@ Therefore s,,,(e) = v3° and a116 = 7. In this particular
example the updated syndrome matrix now becomes ST _(e),
because of our choice of the sent codeword c.

@ Continuing to the third step, we find:

candidate || (8,3) | (6,4) | (4,5) | (3,7)

vote ")/30 ’Y30 730 ’Y30

o Thus s,,,(e) = %% and a5 = 0.
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Majority

Example: Decoding

@ The fourth step yields:

candidate || (9,3) | (7,4) | (5,5) | (4,6) | (3,8)

vote ,}/19 719 ,}/19 ,)/19 ,719

This implies that s,,,(e) = v and aj14 = 0.
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Majority

Example: Decoding

@ The fourth step yields:

candidate || (9,3) | (7,4) | (5,5) | (4,6) | (3,8)

vote ,}/19 719 ,}/19 ,)/19 ,719

This implies that s,,,(e) = v and aj14 = 0.
@ The fifth and last step gives:

candidate || (10,3) | (8,4) | (6,5) | (5,6) | (4,7)] (3,9)

vote ,}/62 762 ,.)/62 749 '762 762

@ In this case the voting is not unanimous and we find
Sws(€) =792 and a3 = 0.

@ The reason the voting is not unanimous in this case, is that
the (5, 6)-th position is a discrepancy in the matrix of
syndromes.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Contents

@ List decoding of algebraic geometry codes
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List decoding

@ We will describe a list decoding algorithm for algebraic
geometry codes. This is is an extension of the basic algorithm.

@ Suppose we use the code C; (D, G) and that we have received
(r1,...,r,) containing at most 7 errors.
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List decoding

@ We will describe a list decoding algorithm for algebraic
geometry codes. This is is an extension of the basic algorithm.

@ Suppose we use the code C; (D, G) and that we have received
(r1,...,r,) containing at most 7 errors.

@ The algorithm works with:

e A divisor A with supp AN supp D = @ satisfying certain
conditions to be described
e A natural number s known as the multiplicty parameter.
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List decoding

@ We will describe a list decoding algorithm for algebraic
geometry codes. This is is an extension of the basic algorithm.

@ Suppose we use the code C; (D, G) and that we have received
(r1,...,r,) containing at most 7 errors.

@ The algorithm works with:

e A divisor A with supp AN supp D = @ satisfying certain
conditions to be described
e A natural number s known as the multiplicty parameter.

(i) Q(y) = Qo+ -+ Q.y* where @; € L(A—iG),i =0, ...,>\
(i) Q(y) has a zero of multiplicity s in (Pj,rj), j =1,.
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List decoding as extension of the basic algorithm

@ The multiplicty conditions in (ii) means: Let t be a local
parameter at P; and Q(y) = 3" papt?(y — r;)P, then pyp =0
foralla+ b<s
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List decoding as extension of the basic algorithm

@ The multiplicty conditions in (ii) means: Let t be a local
parameter at P; and Q(y) = 3" papt?(y — r;)P, then pyp =0
foralla+b<s

@ This is an extension of the basic algorithm in two ways.

o Larger y-degree of Q is allowed.
o Larger multiplicity of the zeroes of @ is allowed.

@ In this way, as we shall see, we are able to correct a larger
number of errors if we accept a list of possible codewords.
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List decoding as extension of the basic algorithm

@ The multiplicty conditions in (ii) means: Let t be a local
parameter at P; and Q(y) = 3" papt?(y — r;)P, then pyp =0
foralla+b<s

@ This is an extension of the basic algorithm in two ways.

o Larger y-degree of Q is allowed.
o Larger multiplicity of the zeroes of @ is allowed.

@ In this way, as we shall see, we are able to correct a larger
number of errors if we accept a list of possible codewords.

@ The conditions on the divisor A are as follows.

(1) degA<s(n—r)
(2) deg A > MGt | AdegG |, 4

20040) 3
It can be seen that if 7 < n— 2+l _ AdegG _ & then such a

- ) 2(A+1) 2s s
divisor A exists.
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List decoding: Basic lemma

Suppose the transmitted word is generated by f € L(G) and Q(y)
satisfies (i) and (ii) then Q(f) =0
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List decoding: Basic lemma

Lemma
Suppose the transmitted word is generated by f € L(G) and Q(y)
satisfies (i) and (ii) then Q(f) =0

Proof:

e Since f € L(G) and Q; € L(A — iG) we have f'Q; € L(A) and
therefore Q(f) € L(A).
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List decoding: Basic lemma

Lemma
Suppose the transmitted word is generated by f € L(G) and Q(y)
satisfies (i) and (ii) then Q(f) =0

Proof:

e Since f € L(G) and Q; € L(A — iG) we have f'Q; € L(A) and
therefore Q(f) € L(A).
e Q(f(Pj)) has a zero of multiplicity s in P; for at least n — 7

J's€{1,2,...,n} so that Q(f) € L(A—sP;, —---—sP;)
with r > n— 7.
o But deg(A—sP; —---—sP;) < 0 and therefore Q(f) = 0.
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List decoding: Basic lemma

Lemma
Suppose the transmitted word is generated by f € L(G) and Q(y)
satisfies (i) and (ii) then Q(f) =0
Proof:
e Since f € L(G) and Q; € L(A — iG) we have f'Q; € L(A) and
therefore Q(f) € L(A).
e Q(f(Pj)) has a zero of multiplicity s in P; for at least n — 7

J's€{1,2,...,n} so that Q(f) € L(A—sP;, —---—sP;)
with r > n— 7.
o But deg(A—sP; —---—sP;) < 0 and therefore Q(f) = 0.

@ Thus if the divisor A satisfies condition (1), then the function
f gives a factor y — f in Q(y).
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List decoding: Existence of Q(y)

@ Later we will discuss how such factors are actually found.

@ Now we show the existence of the interpolation polynomial Q.

Lemma

If deg A satisfies (2) above then a nonzero Q(y) € .Z|y] satisfying
(i) and (ii) exists.
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List decoding: Existence of Q(y)

@ Later we will discuss how such factors are actually found.

@ Now we show the existence of the interpolation polynomial Q.

Lemma

If deg A satisfies (2) above then a nonzero Q(y) € .Z|y] satisfying
(i) and (ii) exists.
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Algorithm

@ It can be seen that this algorithm only improves on % if

A > s and

n(l—f\ﬂ)>(%—1)degG+2?g~l—1

@ For fixed X the optimal s is
1
[P (BeegG+)] |

n
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Example
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Example

o With A =6 and s = 4 we can correct 19 errors using list
decoding.

@ With A =10 and s = 7, 20 errors can be corrected
@ With A =50 and s = 32, 22 errors can be corrected.
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Example

o With A =6 and s = 4 we can correct 19 errors using list
decoding.

@ With A =10 and s = 7, 20 errors can be corrected
@ With A =50 and s = 32, 22 errors can be corrected.
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Finding factors of Q(y)

@ We will address the question of finding the relevant factors of
the polynomial Q(y) and present two different methods for
doing that.
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Finding factors of Q(y)

@ We will address the question of finding the relevant factors of
the polynomial Q(y) and present two different methods for
doing that.

@ The first method transforms the problem to that of finding
factors of a univariate polynomial over a large finite field, and
the second one uses Hensel lifting.
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Finding factors of Q(y)

@ We will address the question of finding the relevant factors of
the polynomial Q(y) and present two different methods for
doing that.

@ The first method transforms the problem to that of finding
factors of a univariate polynomial over a large finite field, and
the second one uses Hensel lifting.

@ The first algorithm reduces the problem of finding factors of
the form y — f in Q(y), to the problem of finding roots of a
polynomial Q(y) in Fgm obtained by "reducing” the
coefficients of Q(y) modulo a point R of sufficiently large
degree m where R ¢ supp A and R ¢ supp G.
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Finding factors of Q(y)

@ We will address the question of finding the relevant factors of
the polynomial Q(y) and present two different methods for
doing that.

@ The first method transforms the problem to that of finding
factors of a univariate polynomial over a large finite field, and
the second one uses Hensel lifting.

@ The first algorithm reduces the problem of finding factors of
the form y — f in Q(y), to the problem of finding roots of a
polynomial Q(y) in Fgm obtained by "reducing” the
coefficients of Q(y) modulo a point R of sufficiently large
degree m where R ¢ supp A and R ¢ supp G.

@ It can be seen that such a point exists. The reduction is
performed by evaluating the functions Q; in R.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Finding factors of Q(y)

@ One then finds zeroes of a(y) using a root-finding algorithm
for finite fields and for those zeroes that lie in Evg(L(G)) one
finds the corresponding f's € L(G).
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Finding factors of Q(y)

@ One then finds zeroes of a(y) using a root-finding algorithm
for finite fields and for those zeroes that lie in Evg(L(G)) one
finds the corresponding f's € L(G).

@ For this to be possible the map Evg : L(G) — Fgm shall be
injective and this is the case if deg R > deg G.
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Finding factors of Q(y)

@ One then finds zeroes of a(y) using a root-finding algorithm
for finite fields and for those zeroes that lie in Evg(L(G)) one
finds the corresponding f's € L(G).

@ For this to be possible the map Evg : L(G) — Fgm shall be
injective and this is the case if deg R > deg G.

@ We need a way to evaluate functions from L(G) and
L(A—iG) in R, and also a method for reconstructing an f
from an element in Evg(L(G)) C Fgm.

@ We shall now assume w.l.o.g that the divisor G is effective
and also that A > G. This implies that L(G) C L(A) and also
that L(A—iG) C L(A).
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Finding factors of Q(y) as roots of Q(y)

o Let ¢1, ¢, ..., ¢« be a basis of L(G) (as a Fg—vector space).

o Let ¢1, ..., Ok, Pk+1, --., G2 be a basis of L(A).

@ R can the be “represented” by the values
$1(R), #2(R), ..., ¢a(R) i.e. an element of Fgm.
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Finding factors of Q(y) as roots of Q(y)

o Let ¢1, ¢, ..., ¢« be a basis of L(G) (as a Fg—vector space).

o Let ¢1, ..., Ok, Pk+1, --., G2 be a basis of L(A).

@ R can the be “represented” by the values
$1(R), #2(R), ..., ¢a(R) i.e. an element of Fgm.

o Let Q= 327171 ¢; then Q(y) = o 321 vijdy and
Qy) = Yo X2 viidi(R)y".
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Finding factors of Q(y) as roots of Q(y)

o Let ¢1, ¢, ..., ¢« be a basis of L(G) (as a Fg—vector space).

o Let ¢1, ..., Ok, Pk+1, --., G2 be a basis of L(A).

@ R can the be “represented” by the values
$1(R), #2(R), ..., ¢a(R) i.e. an element of Fgm.

o Let Q=371 7ij@j then Q(y) = 323o 3271 7i,¢jy’ and
Qy) = i X1 vijdi(R)y"

o If B € Fgm is a zero of Q(y) we shall then find
(fi,f, ..., fx) € Fq such that Zle fio1(R) = B.
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Finding factors of Q(y) as roots of Q(y)

o Let ¢1, ¢, ..., ¢« be a basis of L(G) (as a Fg—vector space).

o Let ¢1, ..., Ok, Pk+1, --., G2 be a basis of L(A).

@ R can the be “represented” by the values
$1(R), #2(R), ..., ¢a(R) i.e. an element of Fgm.

o Let Q=371 7ij@j then Q(y) = 323o 3271 7i,¢jy’ and
Qy) = i X1 vijdi(R)y"

o If B € Fgm is a zero of Q(y) we shall then find
(fi,f, ..., fx) € Fq such that Zle fio1(R) = B.

@ Using a basis of Fgm over [F this gives m linear equations in k
unknowns and there are either none or a unique solution.

@ In the latter case we have found an f and if d(Evp (f),r) <7
we put Evp (f) on the list.
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Finding factors of Q(y) using Hensel lifting
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Finding factors of Q(y) using Hensel lifting

@ Let P be a point, P ¢ supp A and P ¢ supp G and let t be a
local parameter at P. Then a function in L(G) can be
developed as a power series in t, f =3 %2, ajt'.
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Finding factors of Q(y) using Hensel lifting

@ Let P be a point, P ¢ supp A and P ¢ supp G and let t be a
local parameter at P. Then a function in L(G) can be
developed as a power series in t, f =3 %2, ajt'.

@ The polynomial Q(y) can also be considered as element of
o

Folltllly], Qy) = Qo(t,y) = Zi:’oAJZO ajjt'yl, so if
Q(f) =0 we get

Qo(t, i ait') =0 (21)
i=0
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Finding factors of Q(y) using Hensel lifting

@ Let P be a point, P ¢ supp A and P ¢ supp G and let t be a
local parameter at P. Then a function in L(G) can be
developed as a power series in t, f =3 %2, ajt'.

@ The polynomial Q(y) can also be considered as element of

Follelly], Q) = Qolt,y) = S0 g aigt'yl, so if
Q(f) =0 we get

Qo(t, i ait') =0 (21)
i=0

@ If we consider this equation modulo increasing powers of t it
is possible to determine the a;'s recursively.
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Finding factors of Q(y) using Hensel lifting

@ In the first step we look at equation (21) mod t which is the
same as Q(0,ap) = 0 and this is

A
> agjar’ =0 (22)
j=0

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Finding factors of Q(y) using Hensel lifting

@ In the first step we look at equation (21) mod t which is the
same as Q(0,ap) = 0 and this is

A
> agjar’ =0 (22)
j=0

@ Here we can suppose that g # 0 for some j since if not
Qo(t,y) = tR(t,y) and we would get R(t,f) = 0.

@ This means that we can determine ag as a zero in [F; of the
polynomial Qo(0, T).

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Finding factors of Q(y) using Hensel lifting

@ In the first step we look at equation (21) mod t which is the
same as Q(0,ap) = 0 and this is

A
> agjar’ =0 (22)
j=0

@ Here we can suppose that g # 0 for some j since if not
Qo(t,y) = tR(t,y) and we would get R(t,f) = 0.

@ This means that we can determine ag as a zero in [F; of the
polynomial Qo(0, T).

@ To determine the remaining coefficients a;, we let for i > 0,
Yi(t) = 02, ast>~, Mi(t,y) = tQi(t,y) where r; is the
largest integer such that t" divides Q;(t, ty + a;).
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Finding factors of Q(y) using Hensel lifting

@ We then “update” the interpolation polynomial by
Qiv1(t,y) = Mi(t, ty + a;).
e Note that Q;+1(t,y) and r; may depend on the value found

for a; in the previous step of the algorithm, but for simplicity
we suppress this in the notation.
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Finding factors of Q(y) using Hensel lifting

@ We then “update” the interpolation polynomial by
Qiv1(t,y) = Mi(t, ty + a;).
e Note that Q;+1(t,y) and r; may depend on the value found

for a; in the previous step of the algorithm, but for simplicity
we suppress this in the notation.

Q,’(l‘,d),’(t)) =0, M,’(O, a,-) =0 and M;(O,y) 75 0.
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Finding factors of Q(y) using Hensel lifting

@ We then “update” the interpolation polynomial by
Qiv1(t,y) = Mi(t, ty + a;).
e Note that Q;+1(t,y) and r; may depend on the value found

for a; in the previous step of the algorithm, but for simplicity
we suppress this in the notation.

Q,’(l‘,d),’(t)) =0, M,’(O, a,-) =0 and M;(O,y) 75 0.

@ The y—degrees of Q;(t,y) are the same for all / and that
Qi(t,y) # 0 so r; is well-defined.
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Finding factors of Q(y) using Hensel lifting

@ We then “update” the interpolation polynomial by
Qiv1(t,y) = Mi(t, ty + a;).
e Note that Q;+1(t,y) and r; may depend on the value found

for a; in the previous step of the algorithm, but for simplicity
we suppress this in the notation.

Q,’(l‘,d),’(t)) =0, M,’(O, a,-) =0 and M;(O,y) 75 0.

@ The y—degrees of Q;(t,y) are the same for all / and that
Qi(t,y) # 0 so r; is well-defined.

@ Since t does not divide M;(t,y) we have M;(0,y) # 0.
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Finding factors of Q(y) using Hensel lifting

@ We can now prove that Q;(t,(t)) = 0 by induction on i.
The basis i = 0 follows by definition.
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Finding factors of Q(y) using Hensel lifting

@ We can now prove that Q;(t,(t)) = 0 by induction on i.
The basis i = 0 follows by definition.

e For the induction step if Q;(t,;(t)) =0 then
Yir1(t) = (¥i(t) — a;)/t is a y-root of Qi(t,ty + a;) and
hence of Qi11(t,y) =t~ Qi(t, ty + a;). By substituting t =0
in M,'(t,'lﬂ,'(t)) =t fi Q,'(t,lb,'(t)) = 0 we obtain M,’(O, a,-) =0.
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Finding factors of Q(y) using Hensel lifting

@ We can now prove that Q;(t,(t)) = 0 by induction on i.
The basis i = 0 follows by definition.

e For the induction step if Q;(t,;(t)) =0 then
Yir1(t) = (¥i(t) — a;)/t is a y-root of Qi(t,ty + a;) and
hence of Qi11(t,y) =t~ Qi(t, ty + a;). By substituting t =0
in M,'(t,'lﬂ,'(t)) =t fi Q,'(t,lb,'(t)) = 0 we obtain M,'(O, a,-) =0.

@ The coefficients a; can be found by solving an equation of
degree \.

@ In fact the total number of solutions f is at most A, as can be
seen from the following lemma ...
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Finding factors of Q(y) using Hensel lifting

Let My(t,y) = Z}:o I\/I(j)(t)yj be a nonzero polynomial in
Fq[[t]lly] and let 3 be zero of My(0,y) of multiplicity mg. Define

Mo(t,y) = t~"My(t, ty + 5),

where r is the largest integer such that t" divides My(t, ty + 3)
then deg, M>(0, y) < mg.
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Finding factors of Q(y) using Hensel lifting

Let My(t,y) = Z}:o I\/I(j)(t)yj be a nonzero polynomial in
Fq[[t]lly] and let 3 be zero of My(0,y) of multiplicity mg. Define

Mo(t,y) = t~"My(t, ty + 5),

where r is the largest integer such that t" divides My(t, ty + 3)
then deg, M>(0, y) < mg.

o Let M(t,y) = Mi(t,y+p3) = Z]‘\:o qj(t)y’ then g;(0) = 0 for
0 <j < mgand qm,(0) # 0.

e Equivalently t divides gj(t) for 0 < j < mg but it does not
divide gm,(0).
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Finding factors of Q(y) using Hensel lifting

o This means that t divides M(t, ty) but t™*1 does not, so
r < mg.
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Finding factors of Q(y) using Hensel lifting

o This means that t divides M(t, ty) but t™*1 does not, so
r < mg.

o Since Ma(t,y) = t~"Mu(t, ty + B) = S0, qi(£) "y we
get M2(0,y) = S (g (£) ") |e=oy’.

o So deg, Ma(0,y) < r < mg. O

Corollary

The number of different f’s is at most \.
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Finding factors of Q(y) using Hensel lifting

o This means that t divides M(t, ty) but t™*1 does not, so
r < mg.

o Since Ma(t,y) = t~"Mu(t, ty + B) = S0, qi(£) "y we
get M2(0,y) = S (g (£) ") |e=oy’.

o So deg, Ma(0,y) < r < mg. O

Corollary

The number of different f’s is at most \.

@ Denote by A; the set of all solutions a = (ao, ..., a;) the
algorithm finds after i steps.
@ We will show by induction that

Z m, < A (23)

acA;
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Finding factors of Q(y) using Hensel lifting

@ This will imply the corollary, since then #A; < X for all .
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Finding factors of Q(y) using Hensel lifting

@ This will imply the corollary, since then #A; < X for all .

@ For i = 0 equation (23) is true, since all found ag’s in the start
of the algorithm are roots of Qo(0,y) and deg, Qo(0,y) = A.
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Finding factors of Q(y) using Hensel lifting

@ This will imply the corollary, since then #A; < A for all i.

@ For i = 0 equation (23) is true, since all found ag’s in the start
of the algorithm are roots of Qo(0,y) and deg, Qo(0,y) = A.

e Now suppose the result is true for i. Given a fixed (ao, ..., a;)
at this stage of the algorithm, the a;;1’s the algorithm finds in
the next step are, according to the lemma, roots of a
polynomial of degree at most m,, so the sum of their
multiplicities is at most m,,.

@ This implies that > "aca, , Ma,, < D aca Ma; < A O
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Example

@ The only remaining issue is to bound the number of a;'s we
have to determine in order to reconstruct the function
fel(G).

@ To this end let k = dim L(G)and let by, b, ..., by be a basis
of L(G) such that j; = vp(bi) < vp(bjt1) = ji+1,
i=1,...,k—1

@ This means that f is determined if we know the a;'s up to
i = jk. Since by € L(G — jxP) we have jx < deg G.
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Example

@ The only remaining issue is to bound the number of a;'s we
have to determine in order to reconstruct the function
fel(G).

@ To this end let k = dim L(G)and let by, b, ..., by be a basis
of L(G) such that j; = vp(bi) < vp(bjt1) = ji+1,
i=1,...,k—1

@ This means that f is determined if we know the a;'s up to
i = jk. Since by € L(G — jxP) we have jx < deg G.

@ We consider the Hermitian curve over 4 defined by

x22 +x0 = x3.

o Write Fy = Fa[a] with a? = a + 1.
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e Write P; = (0,0), P, = (0,1), P3 = (1,a), Py = (1,02),
Ps = (a7a)' Ps = (a?az)' P7 = (Oéz,Oé),Pg = (a27a2) and
denote by T, the unique pole of x;.

@ Wenowtake D=P;+---+Pg, G=4T,, and A=35T.
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Example

e Write P; = (0,0), P, = (0,1), P3 = (1,a), Py = (1,02),
Ps = (a7a)' Ps = (a?az)' P7 = (Oéz,Oé),Pg = (a27a2) and
denote by T, the unique pole of x;.

@ Wenowtake D=P;+---+Pg, G=4T,, and A=35T.

@ If we choose s = 6 and A = 8, we can correct 2 errors using
the list decoder.
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Example

e Write P; = (0,0), P, = (0,1), P3 = (1,a), Py = (1,02),
Ps = (a,a), Ps = (a,a?), P; = (a?,a),Pg = (a?,a?) and
denote by T, the unique pole of x;.

@ Wenowtake D=P;+---+Pg, G=4T,, and A=35T.

@ If we choose s = 6 and A = 8, we can correct 2 errors using
the list decoder.

@ In order to describe the list-decoding procedure, we need to
choose bases for the spaces L(A — iG), whose dimension we
denote by /;.
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Example

@ In this case we can for 0 </ < Xand 1 <j < /; choose

1 if j=1,
] xR i j=2mod 3,
8i =Y 3 if j = 0 mod 3,

2 .
xfxz(ﬁzw3 if j>1andj=1mod 3.
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Example

@ In this case we can for 0 </ < Xand 1 <j < /; choose

1 if j=1,
] xR i j=2mod 3,
8i =Y 3 if j = 0 mod 3,

2 .
xfxz(ﬁzw3 if j>1andj=1mod 3.

@ Suppose that we transmit the all zero word and receive.
(a?2,0,0,02,0,0,0,0).
@ The majority voting decoder fails to decode this word, but we
can use list decoding if we choose s =6 and A\ = 8.
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Example: The interpolation polynomial
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Example: Finding factors in Q(y)

@ In order to factorize this using the first method described
above, we let

Fys = Fa[Xo] /(X3 +aXo+1), Faaxs = Fpa[X1]/ (X 3+ X024 X0).

@ This makes sense since the polynomial X23 +aXo+1is
irreducible over F4 and for any root X5 of it, the polynomial
X13 + X22 + Xy is irreducible over [Fys.
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Example: Finding factors in Q(y)

@ In order to factorize this using the first method described
above, we let

Fys = Fa[Xo] /(X3 +aXo+1), Faaxs = Fpa[X1]/ (X 3+ X024 X0).

@ This makes sense since the polynomial X23 +aXo+1is
irreducible over F4 and for any root X5 of it, the polynomial
X13 + X22 + Xy is irreducible over [Fys.

o If we let R be a point (x1,x2) on the curve in Fysxs
corresponding to the description above we get:
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Example: Finding factors in Q(y)
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Example: Finding factors in Q(y)
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Example: Finding factors in Q(y)

@ The last of these factors does not correspond to a codeword
since it is not in L(G) but the first two factors correspond to
the codewords

(a?,02,0%,02,0,0,0,0)
(0, 0,0,0,0,0,0, 0)

which both have distance two to the received word.
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Example: Finding factors in Q(y)

@ The last of these factors does not correspond to a codeword
since it is not in L(G) but the first two factors correspond to
the codewords

(a?,02,0%,02,0,0,0,0)
(0,0,0,0,0,0,0,0)
which both have distance two to the received word.

@ Now we shall describe the Hensel-lifting approach to find
y-roots of Q(y).

@ As the point in which we expand, we choose P = Py and as
local parameter for P we pick t = x3.

@ Then we write Q(y) explicitly as an element of F4[[t]][y].
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Example: Finding factors in Q(y)

@ Since x3 = t, we find from the defining equation of the curve
that xp = t3 + 0 + t12 + O(t24).
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Example: Finding factors in Q(y)

@ Since x3 = t, we find from the defining equation of the curve
that xp = t3 + 0 + t12 + O(t24).

@ Substituting this in Q(y) we see that

Qly) =

(1+ 34 at® +a?t® + a?t" + t8 4+ at’)y+

(@ + at + at? + a?t® + t° + at® + a?t%)y?+

(@® + at® + t* + a?t® + at® + at® + at?)y3+
(a+t+a?t3+t* + 0?5 + 10+ a?t" + a?e® + %)y *+

(a+ a3+ ot + t° + at® + at’ + atd)y>+

(14 a2t + a?t? + atd + a?t* + %15 + a?t% + a?t” + a?t8)y°+
vy’ + (@ + at)y® + O(t19).
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Example: Finding factors in Q(y)

@ We can now find all possible values of ag, as roots of
Qo(0,y) = 2y(y — a)(y — a?)°.
@ Therefore there are three possibilities for ag: 0, o and a?.
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Example: Finding factors in Q(y)

@ We can now find all possible values of ag, as roots of
Qo(0,y) = 2y(y — a)(y — a?)°.
Therefore there are three possibilities for ap: 0, @ and 2.

o

@ For each of them separately we can calculate the updated
polynomial Qi(t,y).

@ If ap equals 0 or «, it has multiplicity 1, implying by Lemma

22 that the next coefficient is the root of a polynomial of
degree at most one, i.e. aj is uniquely determined if it exists.
Since ap = & has multiplicity 6 this need not be true in that
case.
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Example: Finding factors in Q(y)

o For ag = a? we get Qy(t,y) = t %Qo(t, ty + a?) and

Ql(t7y) =

L+ 3+ (t+ at? + 23y + (L + ot + at? + at)y?+

(a+ t+ a2+ atd)y3+ (14 at+ at?+ t3)y* + (a?t? + o?t3)yS+
(a+ a2t +a?t? + atd)y® + ty” + (a?t? + at3)y® + O(tY)
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Example: Finding factors in Q(y)

o For ag = a? we get Qy(t,y) = t %Qo(t, ty + a?) and

Ql(t7y) =

L+ 3+ (t+ at? + 23y + (L + ot + at? + at)y?+

(a+ t+ a2+ atd)y3+ (14 at+ at?+ t3)y* + (a?t? + o?t3)yS+
(a+ a2t +a?t? + atd)y® + ty” + (a?t? + at3)y® + O(tY)

@ This gives

Qi(0,y) = (y —a)(y — o®)(ay* + ay® + y* + y +1).

@ We see that if ag = a?, then a; = « or a; = o2 both having
multiplicity one. The degree 4 factor of Q;(0, y) does not give
[F4-rational solutions and is therefore discarded.
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Example: Finding factors in Q(y)

o For ag = a? we get Qy(t,y) = t %Qo(t, ty + a?) and

Ql(t7y) =

L+ 3+ (t+ at? + 23y + (L + ot + at? + at)y?+

(a+ t+ a2+ atd)y3+ (14 at+ at?+ t3)y* + (a?t? + o?t3)yS+
(a+ a2t +a?t? + atd)y® + ty” + (a?t? + at3)y® + O(tY)

@ This gives
Qu0,y) = (y —a)(y —®)(ay* + ay® + y* +y + 1).

@ We see that if ag = a?, then a; = « or a; = o2 both having
multiplicity one. The degree 4 factor of Q;(0, y) does not give
[F4-rational solutions and is therefore discarded.

@ The outcome of the entire Hensel-lifting procedure including
multiplicities and values of the a;'s can be described in a tree
structure.
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Example: Tree structure of Hensel lifting

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Example: Tree structure of Hensel lifting

@ Thus we get four outputs for (ag, a1, a2, a3) in all:
(a?,a2,a2,0),
(a27aaa2) 1)1
(a,1,1,02),
(0,0,0,0).
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Example: Tree structure of Hensel lifting

@ Thus we get four outputs for (ag, a1, a2, a3) in all:
(a?,a2,a2,0),
(a27 «, az) 1)1
(a,1,1,02),
(0,0,0,0).
@ The corresponding functions are
o? + o®x + a’x?,
a? + ax + a’x? +v,
o+ x4+ x2 + az,
0.
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Example: Tree structure of Hensel lifting

@ Thus we get four outputs for (ag, a1, a2, a3) in all:
(a?,a2,a2,0),
(a?, a,a?,1),
(a,1,1,02),
(0,0,0,0).
@ The corresponding functions are
o? + a®x + a?x?,
a? + ax + a’x? +v,
o+ x+ x2 + az,
0.
@ The first and the last function give rise to solutions of the
equation Q(f) = 0 and thus to two codewords, while the
remaining two are not solutions.
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Contents

@ Syndrome formulation of list decoding
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Syndrome formulation of list decoding

@ The list decoding algorithm can be reformulated in terms of
syndromes.

@ As for the basic algorithm, the advantage is that variables are
eliminated from the system of linear equations used to
determine the interpolation polynomial.

@ As before, we are interested in finding an interpolation
polynomial Q(y) = Y2, Qiy’ such that @; € L(A — iG) and
such that (P, ry) is a zero of Q(y) of multiplicity s for all i
between 1 and n.
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Syndrome formulation of list decoding

o Let gj1,...,gj be a basis of L(A— iG) and write

li
Qi = Zj:l qij8ij -
@ The condition that (Py, r;) is a zero of Q(y) of multiplicity s
gives rise to (Sgl) linear equations in the coefficients gj;.
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Syndrome formulation of list decoding

o Let gj1,...,gj be a basis of L(A— iG) and write

li
Qi = Zj:l qij8ij -
@ The condition that (Py, r;) is a zero of Q(y) of multiplicity s
gives rise to (Sgl) linear equations in the coefficients gj;.

@ More explicitly: first for any P, € supp D choose a function
ty € # such that vp (t;) = 1. Given such a t;, we can write a
function g that is regular at P; as a power series in t;, say

g=agt+ait+ - +at?+---.
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Syndrome formulation of list decoding

o Let gj1,...,gj be a basis of L(A— iG) and write
Q= Zjl-’zl qii8ij-

@ The condition that (Py, r;) is a zero of Q(y) of multiplicity s
gives rise to (Sgl) linear equations in the coefficients gj;.

@ More explicitly: first for any P, € supp D choose a function
ty € # such that vp (t;) = 1. Given such a t;, we can write a
function g that is regular at P; as a power series in t;, say

g=agt+ait+ - +at?+---.

e We have ag = g(Py). The a; depend in general on P; and the
choice of t; € Z.
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Syndrome formulation of list decoding

o Let gj1,...,gj be a basis of L(A— iG) and write
Q= Zjl-’zl qii8ij-

@ The condition that (Py, r;) is a zero of Q(y) of multiplicity s
gives rise to (Sgl) linear equations in the coefficients gj;.

@ More explicitly: first for any P, € supp D choose a function
ty € # such that vp (t;) = 1. Given such a t;, we can write a
function g that is regular at P; as a power series in t;, say

g=agt+ait+ - +at?+---.

e We have ag = g(Py). The a; depend in general on P; and the
choice of t; € Z.

o Let Df/a) be the a-th Hasse-derivative with respect to t;, then
(a) _
Dt (g)(P) = aa.



Hasse—derivative

@ We extend the Hasse-derivative to .Z[y] by
. j .
DD e) = ()0l

and extending it linearly to all of Z|y].

@ If we expand the polynomial Q(y) as a power series in the
variables t; and y — r;, then with this definition the coefficient

of t3(y — ) is given exactly by Dﬁb)Dga)(Q(y))(P,7 ).
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Hasse—derivative

@ We extend the Hasse-derivative to .Z[y] by
. j .
DD e) = ()0l

and extending it linearly to all of Z|y].

@ If we expand the polynomial Q(y) as a power series in the
variables t; and y — r;, then with this definition the coefficient
of tf(y — r/)b is given exactly by Dﬁb)Dga)(Q(y))(P,7 ).

@ By the approximation theorem there exists t € .% such that

vp(t) =1 for all P € supp D. Thus from now on we assume
that t; = t does not depend on /.
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Hasse—derivative

@ We extend the Hasse-derivative to .Z[y] by

oD ey) = () o8 e
and extending it linearly to all of Z|y].

@ If we expand the polynomial Q(y) as a power series in the
variables t; and y — r;, then with this definition the coefficient
of tf(y — r/)b is given exactly by Dﬁb)Dga)(Q(y))(P,7 ).

@ By the approximation theorem there exists t € .% such that
vp(t) =1 for all P € supp D. Thus from now on we assume
that t; = t does not depend on /.

@ The equations saying that (Py, r;) should be a zero of
multiplicity s in Q(y) are then:

DY DEN(Q(y))(Pr, 1) = 0, for all a, b with a+ b < s.

P.Beelen and T.Hgholdt Decoding algebraic geometry codes



Reformulating the linear system

@ The interpolation conditions are thus equivalent to:

A /N A
> <b) 72" ;D (gy)(P) = 0, (24)

i=b j=1

for all (°3") pairs of nonnegative integers (a, b) such that
at+b<s.
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Reformulating the linear system

@ The interpolation conditions are thus equivalent to:

A /N A
> <b) 72" ;D (gy)(P) = 0, (24)

i=b j=1

for all (°3") pairs of nonnegative integers (a, b) such that

a+b<s.
@ As before, we would like to write these equations in matrix
form
qo 0
M : = . (25)
)Y 0
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Matrices
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Matrices
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Matrices
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Matrices
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Example: The Hermitian Curve

o t=x% — xis a local parameter for all points on the curve
other than T...

e We wish to compute Dga)(f) for any function f € .7.

@ Hasse derivatives satisfy the Leibniz rule:

DA fm)= > DIV(A)--- DI (f).
i1+"'+im:3
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Example: The Hermitian Curve

2 . .
o t = x9 — x is a local parameter for all points on the curve
other than T...

We wish to compute Dga)(f) for any function f € .7.

Hasse derivatives satisfy the Leibniz rule:

Dga)(fl"'fm) — Z Dgfl)(fl)...Dgim)(fm).
i1+"'+im:3

Using this and the linearity of Hasse derivatives, we see that it
is enough to compute Dga)(xl) and Dga)(xz) for all natural
numbers a.

We will now show how to calculate Dga)(xl) recursively. We
have that D§°)(x1) = x1. Now suppose that a > 0 and that we

know D§°‘)(x1) for all & between 0 and a — 1.
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Example: The Hermitian Curve

@ Using the equation t = xf2 + x1, it follows that
a a a 2
Dg )(Xl) —pf )( t) — D( )(qu ).
ngo)()ftD (t)=1and D (t) = 0if a > 1.
e By Leibniz rule:
2 i ( )
D)= Y Dila)--- D ().

1+ 12 =a

If i; = a for some j, the remaining indices are zero implying
that for this choice of indices we find the term x7~1D{?(xy).
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Example: The Hermitian Curve

@ Using the equation t = xf2 + x1, it follows that
a a a 2
D (x1) = D ’( 1)~ D).
o DOty =t DM(t)=1and D) (t) = 0if a > 1.
@ By Leibniz rule:

2 ( )
D)= Y Dila)--- D ().
it 2= =a
If i; = a for some j, the remaining indices are zero implying
that for this choice of indices we find the term x7~1D{?(xy).

@ By varying j between 1 and g2, we see that there are exactly
q° such terms. Thus these terms do not contribute to the sum.

o This means that D{® (x1) = D{?)(t — x7°) can be expressed as
polynomial in D,Ea)(xl) for o varying between 0 and a — 1.
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Example: The Hermitian Curve

@ It remains to show how to calculate D§a)(X2) recursively. First
D% (x,) = x, and since xJ + x, = x7*1, we also have that
D7 () = D) ~ D ().
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Example: The Hermitian Curve

@ It remains to show how to calculate D§a)(X2) recursively. First
Dgo)(x2) = xp and since x; + xo = xf“, we also have that
DY (x2) = D (™) — DIV().

e We already know how to calculate Dga)(xfﬂ) recursively and

as before we can express DEQ)(Xg) as a polynomial in Dga)(x2)
with o between 0 and a — 1.
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Example: The Hermitian Curve

@ It remains to show how to calculate D§a)(X2) recursively. First
Dgo)(x2) = xp and since x; + xo = xf“, we also have that
DY (x2) = D (™) — DIV().

e We already know how to calculate Dga)(XfH) recursively and
as before we can express DEQ)(Xg) as a polynomial in Dga)(x2)
with o between 0 and a — 1.

o For future use, we state some explicit results for g = 2:

. a JJoJ1] 2 [3[4]5]

DP(xq) || x| 1 o [o|l1]o

Dga)(x2) x2 | X2 | xi+xt 1] x8]0
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Interpreatation as generator matrices
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Interpreatation as generator matrices

Definition

Let sand D = Py +--- + P, be as before. Let A be a divisor of
arbitrary degree with supp AN supp D = (). Further, let t € .% be
a local parameter for all P € supp D. We define

(F(P), DV(F)(P),.... DEV(F)(P))
]an
(EvS)(F),..., EvE)(F))

=

f

(A)
f'

Ev) . L(A)
L

EVS) :

A A

and C)(D, A) := Ev{&)(L(A)).
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Interpreatation as generator matrices

@ Note that if s > 1, the map Evg) depends on the choice of
the local parameter t.

@ The point of the definition is that the columns occurring in
the matrix M,(-O) are codewords in the code Cfsf')(D,A —iG).

o Also: rank M = dim c*")(A - iG).
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Interpreatation as generator matrices

@ Note that if s > 1, the map Evg) depends on the choice of
the local parameter t.

@ The point of the definition is that the columns occurring in
the matrix M,(-O) are codewords in the code Cfsf')(D,A —iG).

o Also: rank M = dim c*")(A - iG).

@ In order to define the analogue of the code Cq(D, A), we

consider a differential w € Q(—sD + A). Locally at a point
P € supp D, one can then write

w=(Bst ™4+ Pt ) dt

o We can calculate 3; using residues, as 3; = resp(t'~'w). This
motivates the following definition:
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Dual codes

Let s, D, A and t be as in Definition 24. We define

Res(;): Q(—-sD+A) — F*

w +— (resp(w),resp(tw),...,resp(t°"1w)),
ReS(DS): Q(-sD+A) — F*"

w — (ResP(w),...,ResH(w))

and CS(D, A) := Res) (Q(—sD + A)).
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Dual codes

Let s, D, A and t be as in Definition 24. We define

Res(;): Q(—-sD+A) — F*

w +— (resp(w),resp(tw),...,resp(t°"1w)),
ReS(DS): Q(-sD+A) — F*"

w — (ResP(w),...,ResH(w))

and CS(D, A) := Res) (Q(—sD + A)).

o If s =1 then C(D, A)* and C§)(D, A) are dual.

@ We will now show that this also holds for arbitrary s. For this
it is important that the choice of local parameter t is fixed.
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Duality

We have that
@ dim C\(D, A) = I(A) — I(—sD + A),
@ c(D,A)=c¥(D, A
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Duality

We have that
@ dim C\(D, A) = I(A) — I(—sD + A),
@ c(D,A)=c¥(D, A

o Let g € L(A). We have that EV(DS)(g) =(0,...,0) if and only
if g has a zero of order at least s in every P € supp D.

@ This implies that the kernel of Evg) is L(—sD + A). This
proves the first statement.
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Duality

We have that
@ dim C\(D, A) = I(A) — I(—sD + A),
@ c(D,A)=c¥(D, A

o Let g € L(A). We have that EV(DS)(g) =(0,...,0) if and only
if g has a zero of order at least s in every P € supp D.

@ This implies that the kernel of Evg) is L(—sD + A). This
proves the first statement.

@ For the second statement let w € Q(—sD + A) and g € L(A).
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Duality

o Locally at a P € supp D, we can write

= (ﬁst_s‘f'""f‘,@lt_l'f‘"‘)dt
g = aptart+ o tas gt

S0 Resgg (w) =(f1,--.,0s) and Ev(s)( )= (ag,...,as-1).
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Duality

o Locally at a P € supp D, we can write

= (ﬁst_s‘f'""f‘,@lt_l'f‘"‘)dt
g = aptart+ o tas gt

S0 Resgg (w) =(f1,--.,0s) and Evg)(g) = (..., Qs-1).

e Then <Res$3)(w),EVP)(g)> is exactly the coefficient of t~ in
the product gw.

@ Therefore we have
<Res$;s)(w), Evg)(g)) = resp(gw).

@ Also note that gw € Q(—sD).
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Duality

@ Using all this we get
(Res3)(w), Ev(g)) = 3 resp,(gw) = 0.
i=0

where the last equality follows from the residue theorem.
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Duality

@ Using all this we get
n
(Res3)(w), Ev(g)) = 3 resp,(gw) = 0.
i=0
where the last equality follows from the residue theorem.

o This implies that C(D, A) ¢ C*)(D, A)*. The proposition
now follows once we prove that

dim ¢(D, A) + dim C)(D, A) = sn.
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Duality

@ Using all this we get
n
(Res3)(w), Ev(g)) = 3 resp,(gw) = 0.
i=0
where the last equality follows from the residue theorem.

o This implies that C(D, A) ¢ C*)(D, A)*. The proposition
now follows once we prove that

dim ¢(D, A) + dim C)(D, A) = sn.

@ Similarly to the first statement, one can prove that
dim CS(D, A) = dim Q(—sD + A) — dim Q(A).
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@ Therefore:

dim C(D, A) + dim C§(D, A)
= I(A) — I(=sD + A) + dim Q(—sD + A) — dim Q(A)
= deg(A) — deg(—sD + A) = sn.

Where the second equality follows from Riemann-Roch’s
theorem. 0O
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A dual matrix

Definition
@ Let A and G be divisors as before, and b an integer s.t.
0<b<s-—1.
® wi,...,Ws_p), differential forms such that

° Resg_b)(w,-) with 1 <7 <dim ngs_b)(D,A — bG), is a basis of
(D, A - bG)

° Resg_b)(wl)’ Resg_b)(w(s—b)n) is a basis of F(s—b)n,
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A dual matrix

Definition
@ Let A and G be divisors as before, and b an integer s.t.
0<b<s-—1.
® wi,...,w(s_p), differential forms such that

° Resg_b)(w,-) with 1 <7 <dim ngs_b)(D,A — bG), is a basis of

(D, A - bG)

(s—b)

o Resp “(wa). .- Resg_b)(w(sfb)n) is a basis of F(s—b)n,

@ Then we define the (s — b)n x (s — b)n matrix.

[ Resg_b)(wl) ]

7 et e |
Res(gib) (w(s—b)n)
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An equivalent system

Definition
Also for 0 < b<s—1and b < i<\, define the (s — b)n x /;

matrix

s .— H, D) Mi~P),
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An equivalent system

Also for 0 < b<s—1and b < i<\, define the (s — b)n x /;

matrix

s .— H, D) Mi~P),

The interpolation equations (24) are row equivalent to the system

0 1 s—1 A
S S el ST ] T
0o s s§i 2 s @ | |0
: : 0 )\—.5—1—1 . :
0 0 s( ) st [ La 0
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An equivalent system
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An equivalent system

@ The matrices S[()O), Sgcl)l are independent of the received
word.
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An equivalent system

@ The matrices S(O) S(O) are independent of the received
word.

@ We have
rank Sgo) =1 —m;,
if l; < (s — i)n, this reduces to rankS,(O) = ;.
o If [ < (s —1i)n, then Sgo) can be written
0
sl — ,
i BO

i
where 0 is the (s — i)n — ; X l; zero matrix.
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Eliminating variables

@ The /; x [; matrix BEO) is regular, and thus in Gaussian

elimination, we can eliminate the variables g;1, ..., gy, in all
rows other than those of BEO).

@ For i = 0 the situation is very simple, since the only rows in
which the variables qo1, ..., goj, occur, are the rows coming

from Bgo).
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Eliminating variables

@ The /; x [; matrix BEO) is regular, and thus in Gaussian

elimination, we can eliminate the variables g;1, ..., gy, in all
(0)

rows other than those of B;

@ For i = 0 the situation is very simple, since the only rows in
which the variables qo1, ..., goj, occur, are the rows coming
from Bgo).

)

e If ; > (s — i)n, then we can eliminate rankSEo =i —m;
variables among g1, ..., qj.
@ All in all, we can simplify the system in the proposition by

eliminatin 2_o(l; — m;) variables.
g i=0
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Example

@ This means that the remaining >"%_q m; + E?\:s-i-l li variables
can be found by solving

Yizo((s=i)n— I+ mj)
linear equations.

@ In general this gives a significant reduction of the size of the
original system.
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Example

@ This means that the remaining >"%_q m; + E?\:s-i—l li variables
can be found by solving
Yico((s = 1)n—li + mi)
linear equations.

@ In general this gives a significant reduction of the size of the
original system.

@ This is a continuation of the previous example about list
decoding.

@ Then an interpolation polynomial was found by solving a
linear system of 168 equations and 171. As we have seen, we
can reduce the size of the system.
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Example

o First we calculate the rank of the matrices S,(-O):

i Jo1]2]3 45
|ranks(® [ 35]31] 2723 16| 8]

Thus we can eliminate 140 variables and equations, thereby
reducing the system to 28 equations in 31 variables.
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Example

o First we calculate the rank of the matrices S,(-O):

i Jo1]2]3 45
|ranks(® [ 35]31] 2723 16| 8]

Thus we can eliminate 140 variables and equations, thereby
reducing the system to 28 equations in 31 variables.

@ We can eliminate all 116 variables g;; with 0 </ < 3 and
1 <j <, since for i < 3 we have that [; < (s — i)n.
@ For i =4 and i = 5, the situation is more complicated, but all

we need to do is to compute the matrices Sgo) and Sgo)
explicitly.
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Example

@ In order to do this, we need to choose differentials as in the
definition of Hy,.
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Example

@ In order to do this, we need to choose differentials as in the
definition of Hy,.

@ Given a b between 0 and s, we can choose a basis for
Q(—(s — b)D + A — bG) with the desired properties (recall
t=x1 +x7):

[ fidt/esP if1<i<(s—b)n,
" fempynpr dt/t5P if i = (s —b)n.

)

@ Using this, we can compute all matrices SEO explicitly.
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Example

@ In order to do this, we need to choose differentials as in the
definition of Hy,.

@ Given a b between 0 and s, we can choose a basis for
Q(—(s — b)D + A — bG) with the desired properties (recall
t=x1 +x7):

[ fidt/esP if1<i<(s—b)n,
" fempynpr dt/t5P if i = (s —b)n.

) explicitly.

@ Using this, we can compute all matrices SEO
@ By our choice of bases, the matrices have more structure:
o B),q=0ifp+qg<ii+1

o B,y =1ifp+qg=1/+1
@ Thus eliminating gj; (with 0 </ <3 and 1 <j < /) is easy.
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Example
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Example
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Example

@ What remains is to calculate the remaining 31 variables.
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Example

@ What remains is to calculate the remaining 31 variables.

@ Doing the elimination explicitly, we find that the vector of
these remaining 31 variables is in the kernel of the 28 x 31

matrix:
A | A
As | Ay )’

@ The matrices A1, Ay, Az, Ay are ...
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Example: A;
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Example: A,
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Example: Aj
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Example: Ay
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A solution

@ This matrix is much easier to handle than the original
168 x 171 matrix!
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A solution

@ This matrix is much easier to handle than the original
168 x 171 matrix!

@ lts kernel is 5-dimensional and one of the solutions is given by
(only nonzero values are stated):

gs8 | 9510 | G511 | 961 | 962 | 963
1 a? o 12| a

de4 | 965 | 966 | 67 | 971 | 981 | 482
2lal | 121 a?] a
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A solution

@ This matrix is much easier to handle than the original
168 x 171 matrix!

@ lts kernel is 5-dimensional and one of the solutions is given by
(only nonzero values are stated):

gs8 | 9510 | G511 | 961 | 962 | 963

1| a? o 1 a2 «

de4 | 965 | 966 | 67 | 971 | 981 | 482

a2l 11?21 a?| a

@ Setting in these values in syndrome equation system from the
proposition, we can then calculate the remaining 140 variables
immediately.

@ This was in fact how the interpolation polynomial Q(y) in the
list decoding example was computed.
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