Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00

On some algebraic interpretation of classical codes

Marta Giorgetti

Department of Physic and Mathematics, Università dell'Insubria, Como

Soria Summer School on Computational Mathematics 2-11 July 2008

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00

- Definitions and properties
 - General nth-root codes
- 2 Examples
 - First example
 - Second example: not all codes can be seen as proper maximal

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- Third example
- 3 Weight distribution
 - Constructing ideals
 - Algorithms
 - Weight distribution for cosets
- 4 General error locator polynomial
 - Definition
 - Ideals for the decoding of nth-root codes
- 5 Othr family of codes
 - Cyclic codes
 - Goppa codes
- 6 Conclusion
 - Further research
 - Bibliography

Generalize good properties of cyclic codes

Cyclic codes

• have a rich algebraic structure

- fast sharp estimates on their most important parameters and
- exact determination of parameters via commutative algebra techniques;

Sac

• posses decoding algorithm which is extremely efficient.

Cyclic codes

- have a rich algebraic structure
 - fast sharp estimates on their most important parameters and
 - exact determination of parameters via commutative algebra techniques;

Sac

• posses decoding algorithm which is extremely efficient.

Cyclic codes

- have a rich algebraic structure
 - fast sharp estimates on their most important parameters and
 - exact determination of parameters via commutative algebra techniques;

• posses decoding algorithm which is extremely efficient.

Cyclic codes

- have a rich algebraic structure
 - fast sharp estimates on their most important parameters and
 - exact determination of parameters via commutative algebra techniques;

• posses decoding algorithm which is extremely efficient.

Cyclic codes

- have a rich algebraic structure
 - fast sharp estimates on their most important parameters and
 - exact determination of parameters via commutative algebra techniques;

• posses decoding algorithm which is extremely efficient.

Definitions and properties • 00	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

- **q** be a power of prime, \mathbb{F}_q is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that (n,q) = 1,
- $\mathbf{R}_{\mathbf{n}} = \{ \overline{z} \in \overline{\mathbb{F}}_q | \overline{z}^n = 1 \},$
- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_n \subseteq \mathbb{F}_{q^m}$, not necessary the smallest,
- $\mathbf{L} \subset R_n \cup \{0\}, \ L = \{l_1, \dots, l_N\},\$
- $\mathcal{P} = \{g_1(x), g_2(x), \dots, g_r(x)\} \subset \mathbb{F}_{q^m}[x] \text{ such that}$ $\forall i = 1, \dots, N \text{ exists at least } j = 1, \dots, r \text{ such that } g_j(l_i) \neq 0 .$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Definitions and properties • 00	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

- **q** be a power of prime, \mathbb{F}_q is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that (n,q) = 1,

• $\mathbf{R}_{\mathbf{n}} = \{ \overline{z} \in \overline{\mathbb{F}}_q | \overline{z}^n = 1 \},$

- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_n \subseteq \mathbb{F}_{q^m}$, not necessary the smallest,
- $\mathbf{L} \subset R_n \cup \{0\}, \ L = \{l_1, \dots, l_N\},\$
- $\mathcal{P} = \{g_1(x), g_2(x), \dots, g_r(x)\} \subset \mathbb{F}_{q^m}[x] \text{ such that}$ $\forall i = 1, \dots, N \text{ exists at least } j = 1, \dots, r \text{ such that } g_j(l_i) \neq 0 .$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definitions and properties • 00	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

- **q** be a power of prime, \mathbb{F}_q is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that (n, q) = 1,

•
$$\mathbf{R}_{\mathbf{n}} = \{ \bar{z} \in \bar{\mathbb{F}}_q | \bar{z}^n = 1 \},$$

- $\mathbf{m} \in \mathbb{N}, m \ge 1$ such that $R_n \subseteq \mathbb{F}_{q^m}$, not necessary the smallest,
- $L \subset R_n \cup \{0\}, \ L = \{l_1, \ldots, l_N\},\$
- $\mathcal{P} = \{g_1(x), g_2(x), \dots, g_r(x)\} \subset \mathbb{F}_{q^m}[x] \text{ such that}$ $\forall i = 1, \dots, N \text{ exists at least } j = 1, \dots, r \text{ such that } g_i(l_i) \neq 0$.

Definitions and properties • 00	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

- **q** be a power of prime, \mathbb{F}_q is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that (n,q) = 1,

•
$$\mathbf{R}_{\mathbf{n}} = \{ \overline{z} \in \overline{\mathbb{F}}_q | \overline{z}^n = 1 \},$$

- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_n \subseteq \mathbb{F}_{q^m}$, not necessary the smallest,
- $L \subset R_n \cup \{0\}, L = \{l_1, \ldots, l_N\},\$
- $\mathcal{P} = \{g_1(x), g_2(x), \dots, g_r(x)\} \subset \mathbb{F}_{q^m}[x] \text{ such that}$ $\forall i = 1, \dots, N \text{ exists at least } j = 1, \dots, r \text{ such that } g_i(l_i) \neq 0$

Definitions and properties • 00	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

- **q** be a power of prime, \mathbb{F}_q is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that (n, q) = 1,

•
$$\mathbf{R}_{\mathbf{n}} = \{ \overline{z} \in \overline{\mathbb{F}}_q | \overline{z}^n = 1 \},$$

- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_n \subseteq \mathbb{F}_{q^m}$, not necessary the smallest,
- $L \subset R_n \cup \{0\}, \ L = \{l_1, \dots, l_N\},\$
- $\mathcal{P} = \{g_1(x), g_2(x), \dots, g_r(x)\} \subset \mathbb{F}_{q^m}[x] \text{ such that}$ $\forall i = 1, \dots, N \text{ exists at least } j = 1, \dots, r \text{ such that } g_j(l_i) \neq 0 .$

Definitions and properties • 0 0	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

- **q** be a power of prime, \mathbb{F}_q is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that (n,q) = 1,

•
$$\mathbf{R}_{\mathbf{n}} = \{ \overline{z} \in \overline{\mathbb{F}}_q | \overline{z}^n = 1 \},$$

• $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_n \subseteq \mathbb{F}_{q^m}$, not necessary the smallest,

•
$$\mathbf{L} \subset R_n \cup \{0\}, \ L = \{l_1, \dots, l_N\},\$$

• $\mathcal{P} = \{g_1(x), g_2(x), \dots, g_r(x)\} \subset \mathbb{F}_{q^m}[x] \text{ such that}$ $\forall i = 1, \dots, N \text{ exists at least } j = 1, \dots, r \text{ such that } g_j(l_i) \neq 0 .$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definitions and properties •00	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

Then $C = \Omega(q, n, q^m, L, \mathcal{P})$ is the **nth-root code** defined over \mathbb{F}_q such that

$$H = \begin{pmatrix} g_1(l_1), & \dots, & g_1(l_N) \\ g_2(l_1), & \dots, & g_2(l_N) \\ \vdots & & \vdots \\ g_r(l_1), & \dots, & g_r(l_N) \end{pmatrix} = \begin{pmatrix} g_1(L) \\ g_2(L) \\ \vdots \\ g_r(L) \end{pmatrix}$$

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

is its parity-check matrix.

Definitions and properties • 00	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

Remark

 $C = (q, n, q^m, L, \mathcal{P})$ is linear over \mathbb{F}_q , its length is N = |L| and its distance d is greater than or equal to 2, because there are no columns in H composed only of zeros.

Remark

Since any function from \mathbb{F}_{q^m} to itself can be expressed as a polynomial, we can accept in \mathbb{P} also rational functions of type f/g, $f, g \in \mathbb{F}_{q^m}$, such that $g(\bar{x}) \neq 0$ for any $\bar{x} \in \mathbb{F}_{q^m}$.

Definitions and properties • 00	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Definition					

Remark

 $C = (q, n, q^m, L, \mathcal{P})$ is linear over \mathbb{F}_q , its length is N = |L| and its distance d is greater than or equal to 2, because there are no columns in H composed only of zeros.

Remark

Since any function from \mathbb{F}_{q^m} to itself can be expressed as a polynomial, we can accept in \mathfrak{P} also rational functions of type f/g, $f, g \in \mathbb{F}_{q^m}$, such that $g(\bar{x}) \neq 0$ for any $\bar{x} \in \mathbb{F}_{q^m}$.

Definitions and properties 000	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion 00
General nth-root codes					
Properties					

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be an nth-root code and $v \in (\mathbb{F}_q)^N$.

• If $\overline{L} = \emptyset$, we say that *C* is **maximal**.

• If $\mathcal{P} \subset \mathbb{F}_q[x]$, we say that *C* is **proper**.

• If $0 \notin L$, we say that C is **zerofree**, non-zerofree otherwise.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - の Q ()

Definitions and properties 000	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
General nth-root codes					
Properties					

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be an nth-root code and $v \in (\mathbb{F}_q)^N$.

- If $\overline{L} = \emptyset$, we say that C is **maximal**.
- If $\mathcal{P} \subset \mathbb{F}_q[x]$, we say that *C* is **proper**.
- If $0 \notin L$, we say that C is **zerofree**, non-zerofree otherwise.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Definitions and properties 000	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion 00
General nth-root codes					
Properties					

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be an nth-root code and $v \in (\mathbb{F}_q)^N$.

- If $\overline{L} = \emptyset$, we say that C is **maximal**.
- If $\mathcal{P} \subset \mathbb{F}_q[x]$, we say that *C* is **proper**.
- If $0 \notin L$, we say that C is **zerofree**, non-zerofree otherwise.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definitions and properties 000	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion 00
General nth-root codes					
Properties					

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be an nth-root code and $v \in (\mathbb{F}_q)^N$.

- If $\overline{L} = \emptyset$, we say that C is maximal.
- If $\mathcal{P} \subset \mathbb{F}_q[x]$, we say that *C* is **proper**.
- If $0 \notin L$, we say that C is **zerofree**, non-zerofree otherwise.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
General nth-root codes					

Proposition

Let C be a linear code over \mathbb{F}_q of length N and $d \ge 2$. Then C is an nth-root code for any $n \ge N - 1$, (n, q) = 1. In particular:

• if n = N, then C can be maximal zerofree,

2 if n = N - 1, then C is maximal non-zerofree.

▶ Proof

Corollary

Let C be a linear code. C is an nth-root code if and only if $d \ge 2$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
General nth-root codes					

Proposition

Let C be a linear code over \mathbb{F}_q of length N and $d \ge 2$. Then C is an nth-root code for any $n \ge N - 1$, (n, q) = 1. In particular:

• if n = N, then C can be maximal zerofree,

2 if n = N - 1, then C is maximal non-zerofree.

▶ Proof

Corollary

Let C be a linear code. C is an nth-root code if and only if $d \ge 2$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Skip proofs

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
General nth-root codes					

Let *C* be a linear code over \mathbb{F}_q of length *N*, dimension *k* and $d \ge 2$, with paritycheck matrix $H = (h_{i,j}) \in (\mathbb{F}_q)^{(N-k) \times N}$. Since $d \ge 2$ there is no $j = 1, \ldots, N$ such that $h_{i,j} = 0, \forall i = 1, \ldots, N - k$. Let *n* be a natural number such that $n \ge N - 1$ and (n, q) = 1. Let $R_n = \{\alpha_1, \ldots, \alpha_n\}$ be the set of nth-roots of unity over \mathbb{F}_q .

- Suppose that $n \ge N$. Let *L* be a subset of R_n , |L| = N, and r = N k. Thanks to the Lagrange interpolation theorem we can find *r* polynomials $g_i(x) \in \mathbb{F}_{q^m}[x]$ such that $g_i(\alpha_j) = h_{i,j} \forall \alpha_j \in L$, i = 1, ..., r, j = 1, ..., N, viewing any $h_{i,j}$ as an element of \mathbb{F}_{q^m} . We collect polynomials $g_i(x)$ in set $\mathcal{P} = \{g_i\}_{1 \le i \le r}$. Polynomials $g_i(x)$ are such that for any i = 1, ..., r there is at least one $1 \le j \le r$ such that $g_j(\alpha_i) \ne 0$. Then it is obvious that code *C* can be seen as the zerofree nth-root code $\Omega(q, n, q^m, L, \mathcal{P})$.
- With the above construction, if n = N code C is maximal, since $L = R_n$.
- Let L be a set composed of 0 and N − 1 elements of R_n. With the above argument it is easy to proof that C is a non-zerofree nth-root code.
 If n = N − 1, code C is maximal non-zerofree, since L = R_n ∪ {0}.

Back

Definitions and properties	Examples ••••	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
First example					

•
$$q = 2, n = 7, q^m = 8, L = \mathbb{F}_{2^3},$$

 $\mathcal{P} = \{g_1(x) = \frac{1}{x^2 + x + 1}, g_2(x) = \frac{x}{x^2 + x + 1}\}$

•
$$C = \Omega(2,7,8,\mathbb{F}_8,\{g_1,g_2\})$$
 is

• non-zerofree
$$(0 \in L)$$
,

• maximal
$$(L = R_n \setminus L = \emptyset)$$
,

• proper
$$(g_1(x), g_2(x) \in \mathbb{F}_2(x))$$

 $H = \begin{pmatrix} g_1(1) & g_1(\beta) & g_1(\beta^2) & g_1(\beta^3) & g_1(\beta^4) & g_1(\beta^5) & g_1(\beta^6) & g_1(\beta^0) \\ g_2(1) & g_2(\beta) & g_2(\beta^2) & g_2(\beta^3) & g_2(\beta^4) & g_2(\beta^5) & g_2(\beta^6) & g_2(0) \end{pmatrix},$ i.e.

 $H = \left(\begin{array}{cccc} 1 & \beta^2 & \beta^3 & \beta^2 & \beta & \beta & \beta^3 & 1 \\ 1 & \beta^3 & \beta^6 & \beta^5 & \beta^5 & \beta^6 & \beta^3 & 0 \end{array}\right).$

Definitions and properties	Examples •00	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
First example					

•
$$\mathbf{q} = 2, \mathbf{n} = 7, \mathbf{q}^{\mathbf{m}} = \mathbf{8}, \mathbf{L} = \mathbb{F}_{2^{3}},$$

 $\mathcal{P} = \{\mathbf{g}_{1}(\mathbf{x}) = \frac{1}{\mathbf{x}^{2} + \mathbf{x} + 1}, \mathbf{g}_{2}(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x}^{2} + \mathbf{x} + 1}\}$
• $C = \Omega(2, 7, 8, \mathbb{F}_{8}, \{g_{1}, g_{2}\}) \text{ is }$
• non-zerofree $(0 \in L),$
• maximal $(\overline{L} = R_{n} \setminus L = \emptyset),$
• proper $(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}) \in \mathbb{F}_{2}(\mathbf{x}))$
• parity-check matrix is the following:
 $\mathcal{H} = \begin{pmatrix} g_{1}(1) & g_{1}(\beta) & g_{1}(\beta^{2}) & g_{1}(\beta^{3}) & g_{1}(\beta^{4}) & g_{1}(\beta^{5}) & g_{1}(\beta^{6}) & g_{1}(\beta^{6}) & g_{2}(\beta^{6}) & g_{2}(\beta^{6$

i.e.

$$H = \begin{pmatrix} 1 & \beta^2 & \beta^4 & \beta^2 & \beta & \beta & \beta^4 & 1 \\ 1 & \beta^3 & \beta^6 & \beta^5 & \beta^5 & \beta^6 & \beta^3 & 0 \end{pmatrix}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うへぐ

Definitions and properties	Examples ••••	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
First example					

Let • $q = 2, n = 7, q^m = 8, L = \mathbb{F}_{23}$ $\mathcal{P} = \{\mathbf{g}_1(\mathbf{x}) = \frac{1}{\mathbf{x}^2 + \mathbf{x} + 1}, \mathbf{g}_2(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x}^2 + \mathbf{x} + 1}\}$ • $C = \Omega(2, 7, 8, \mathbb{F}_8, \{g_1, g_2\})$ is • non-zerofree $(0 \in L)$, • maximal $(L = R_n \setminus L = \emptyset)$, • proper $(g_1(x), g_2(x) \in \mathbb{F}_2(x))$ parity-check matrix is the following:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Definitions and properties	Examples •00	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
First example					

•
$$\mathbf{q} = 2, \mathbf{n} = 7, \mathbf{q}^{\mathbf{m}} = \mathbf{8}, \mathbf{L} = \mathbb{F}_{2^{3}},$$

 $\mathcal{P} = \{\mathbf{g}_{1}(\mathbf{x}) = \frac{1}{\mathbf{x}^{2} + \mathbf{x} + 1}, \mathbf{g}_{2}(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x}^{2} + \mathbf{x} + 1}\}$
• $C = \Omega(2, 7, 8, \mathbb{F}_{8}, \{g_{1}, g_{2}\})$ is
• non-zerofree $(0 \in L),$
• maximal $(\overline{L} = R_{n} \setminus L = \emptyset),$
• proper $(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}) \in \mathbb{F}_{2}(\mathbf{x}))$
• parity-check matrix is the following:
 $H = \begin{pmatrix} g_{1}(1) & g_{1}(\beta) & g_{1}(\beta^{2}) & g_{1}(\beta^{3}) & g_{1}(\beta^{4}) & g_{1}(\beta^{5}) & g_{1}(\beta^{6}) & g_{1}(0) \\ g_{2}(1) & g_{2}(\beta) & g_{2}(\beta^{2}) & g_{2}(\beta^{3}) & g_{2}(\beta^{4}) & g_{2}(\beta^{5}) & g_{2}(\beta^{6}) & g_{2}(0) \end{pmatrix},$
i.e.
 $H = \begin{pmatrix} 1 & \beta^{2} & \beta^{4} & \beta^{2} & \beta & \beta & \beta^{4} & 1 \\ 1 & \alpha^{3} & \alpha^{6} & \alpha^{5} & \alpha^{5} & \alpha^{6} & \alpha^{3} & \alpha \end{pmatrix}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Definitions and properties	Examples ••••	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
First example					

•
$$\mathbf{q} = 2, \mathbf{n} = 7, \mathbf{q}^{\mathbf{m}} = \mathbf{8}, \mathbf{L} = \mathbb{F}_{2^{3}},$$

 $\mathcal{P} = \{\mathbf{g}_{1}(\mathbf{x}) = \frac{1}{\mathbf{x}^{2} + \mathbf{x} + 1}, \mathbf{g}_{2}(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x}^{2} + \mathbf{x} + 1}\}$
• $C = \Omega(2, 7, 8, \mathbb{F}_{8}, \{g_{1}, g_{2}\})$ is
• non-zerofree $(0 \in L),$
• maximal $(\overline{L} = R_{n} \setminus L = \emptyset),$
• proper $(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}) \in \mathbb{F}_{2}(\mathbf{x}))$
• parity-check matrix is the following:
 $\mathcal{H} = \begin{pmatrix} g_{1}(1) & g_{1}(\beta) & g_{1}(\beta^{2}) & g_{1}(\beta^{3}) & g_{1}(\beta^{4}) & g_{1}(\beta^{5}) & g_{1}(\beta^{6}) & g_{1}(0) \\ g_{2}(1) & g_{2}(\beta) & g_{2}(\beta^{2}) & g_{2}(\beta^{3}) & g_{2}(\beta^{4}) & g_{2}(\beta^{5}) & g_{2}(\beta^{6}) & g_{2}(0) \end{pmatrix},$
i.e.
 $\mathcal{H} = \begin{pmatrix} 1 & \beta^{2} & \beta^{4} & \beta^{2} & \beta & \beta & \beta^{4} & 1 \\ 1 & \alpha^{3} & \alpha^{6} & \alpha^{5} & \alpha^{5} & \alpha^{6} & \alpha^{3} & 0 \end{pmatrix}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Definitions and properties	Examples •00	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
First example					

•
$$\mathbf{q} = 2, \mathbf{n} = 7, \mathbf{q}^{\mathbf{m}} = \mathbf{8}, \mathbf{L} = \mathbb{F}_{2^{3}},$$

 $\mathcal{P} = \{\mathbf{g}_{1}(\mathbf{x}) = \frac{1}{\mathbf{x}^{2} + \mathbf{x} + 1}, \mathbf{g}_{2}(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x}^{2} + \mathbf{x} + 1}\}$
• $C = \Omega(2, 7, 8, \mathbb{F}_{8}, \{g_{1}, g_{2}\})$ is
• non-zerofree $(0 \in L),$
• maximal $(\overline{L} = R_{n} \setminus L = \emptyset),$
• proper $(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}) \in \mathbb{F}_{2}(\mathbf{x}))$
• parity-check matrix is the following:
 $\mathcal{H} = \begin{pmatrix} g_{1}(1) & g_{1}(\beta) & g_{1}(\beta^{2}) & g_{1}(\beta^{3}) & g_{1}(\beta^{4}) & g_{1}(\beta^{5}) & g_{1}(\beta^{6}) & g_{1}(0) \\ g_{2}(1) & g_{2}(\beta) & g_{2}(\beta^{2}) & g_{2}(\beta^{3}) & g_{2}(\beta^{4}) & g_{2}(\beta^{5}) & g_{2}(\beta^{6}) & g_{2}(0) \end{pmatrix},$
i.e.
 $\mathcal{H} = \begin{pmatrix} 1 & \beta^{2} & \beta^{4} & \beta^{2} & \beta & \beta & \beta^{4} & 1 \\ 1 & \beta^{3} & \beta^{6} & \beta^{5} & \beta^{5} & \beta^{6} & \beta^{3} & 0 \end{pmatrix}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うへぐ

Definitions and properties	Examples •00	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
First example					

It is easy to see that C is an [8, 2, 5] code with generator matrix

and weight distribution

$$A_0=1,\;A_1=A_2=A_3=A_4=0,\;A_5=2,\;A_6=1$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Let
$$\mathbf{q} = \mathbf{2}$$
, $\mathbf{n} = \mathbf{5}$, $\mathbf{q}^{\mathbf{m}} = \mathbf{2}^{4}$, $\mathbf{L} = \mathbf{R}_{5}$ and $\mathcal{P} = \{\mathbf{g}\}$,
where $g = \gamma^{12}x^{4} + \gamma^{11}x^{3} + x^{2} + \gamma^{14}x + \gamma^{3}$ and γ is a primitive
element of \mathbb{F}_{16} with minimal polynomial $x^{4} + x + 1$.
Let $\mathbf{C} = \mathbf{\Omega}(\mathbf{2}, \mathbf{5}, \mathbf{2}^{4}, \mathbf{R}_{5}, \mathcal{P})$. Code *C* is **maximal** ($\overline{L} = \emptyset$) and **ze-**
rofree ($0 \notin L$) and its parity-check matrix is the following:

$$H = \left(g(\gamma^3), g(\gamma^6), g(\gamma^9), g(\gamma^{12}), g(\gamma^{15})\right) = \left(\gamma^6, \gamma^2, \gamma^3, \gamma^{14}, \gamma^{15}\right).$$

It is easy to see that C is an [5,2,3] code with generator matrix

$$G = \left(\begin{array}{rrrr} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{array} \right).$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Definitions and properties Examples Weight distribution General error locator polynomial Othr family of codes Conclusion

By contradiction: if *C* is proper maximal then $C = \Omega(2, 5, 2^4, R_5, \mathcal{P}')$, where $\mathcal{P}' = \{g'_1, \ldots, g'_r\} \subset \mathbb{F}_2[x]$. Its parity-check matrix is then

$$H' = \begin{pmatrix} g_1'(\gamma^3), & g_1'(\gamma^6), & g_1'(\gamma^9), & g_1'(\gamma^{12}), & g_1'(\gamma^{15}) \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ g_i'(\gamma^3), & g_i'(\gamma^6), & g_i'(\gamma^9), & g_i'(\gamma^{12}), & g_i'(\gamma^{15}) \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ g_r'(\gamma^3), & g_r'(\gamma^6), & g_r'(\gamma^9), & g_r'(\gamma^{12}), & g_r'(\gamma^{15}) \end{pmatrix}$$

Let

$$\mathbf{e_1} = \mathbf{g}_i'(\gamma^3), \ \mathbf{e_2} = \mathbf{g}_i'(\gamma^6), \ \mathbf{e_3} = \mathbf{g}_i'(\gamma^9), \ \mathbf{e_4} = \mathbf{g}_i'(\gamma^{12}), \ \mathbf{e_5} = \mathbf{g}_i'(\gamma^{15}),$$

for some i = 1, ..., r and they must satisfy $\mathbf{e_1} + \mathbf{e_2} + \mathbf{e_3} = \mathbf{0}$ and $\mathbf{e_3} + \mathbf{e_4} + \mathbf{e_5} = \mathbf{0}$.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion		
000	000	000000	00000000	000	00		
Second example: not all codes can be seen as proper maximal							

$$J \subset \mathbb{F}_{16}[b_0,\ldots,b_{15},e_1,\ldots,e_5]$$

has at least a solution $\varepsilon = (\mathbf{\bar{b}}_0, \dots, \mathbf{\bar{b}}_{15}, \mathbf{\bar{e}}_1, \dots, \mathbf{\bar{e}}_5)$ in $\mathcal{V}(J)$ such that $(\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4, \bar{e}_5) \neq (0, 0, 0, 0)$.

$$\begin{array}{ll} J = < & e_1 + e_2 + e_3, & e_3 + e_4 + e_5, & \left\{b_i^2 + b_i\right\}_{0 \le i \le 15}, \\ & \left\{e_i^{16} + e_i\right\}_{1 \le i \le 5}, & g'(\gamma^3) - e_1, & g'(\gamma^6) - e_2, \\ & g'(\gamma^9) - e_3 & g'(\gamma^{12}) - e_4, & g'(\gamma^{15}) - e_5 >, \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion		
000	000	000000	00000000	000	00		
Second example: not all codes can be seen as proper maximal							

A computer computation shows that a **Gröbner basis** of *J* contains $\{e_1, \ldots, e_5\}$ and so $\mathcal{V}(J)$ does not contain ε , hence g' does not exist. This means that **no polynomial in** \mathcal{P} **can have coefficients in** \mathbb{F}_2 , which proves our claim.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Third example					

Remark

In order to define the same nth-root code it is possible to use different n. For example to define a linear code with length N = 5, we can use the five 5th roots of unity or five elements chosen from the set of the seven 7th roots of unity.

Let C be a linear binary code, having parity-check matrix
$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Third example					

Remark

In order to define the same nth-root code it is possible to use different n. For example to define a linear code with length N = 5, we can use the five 5th roots of unity or five elements chosen from the set of the seven 7th roots of unity.

Let C be a linear binary code, having parity-check matrix

$$H = \left(\begin{array}{rrrr} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right).$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

SQA
Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Third example					

First case: maximal, zerofree nth-root code $\Omega(2, 5, 2^4, L_1, \mathcal{P}_1), \text{ where}$ $L_1 = R_5 = \{\gamma^3, \gamma^6, \gamma^9, \gamma^{12}, \gamma^{15}\} \subset \mathbb{F}_{16} = <\gamma > \cup\{0\},$ $\mathcal{P}_1 \subset \mathbb{F}_{16}[x] \text{ is } \mathcal{P}_1 = \{g_1, g_2\}, \text{ with}$ $g_1 = \gamma^7 x^4 + \gamma^{14} x^3 + \gamma^{11} x^2 + \gamma^{13} x + 1,$ $g_2 = \gamma^2 x^4 + \gamma^4 x^3 + \gamma x^2 + \gamma^8 x + 1.$

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Third example					

Second case: non-maximal, zerofree nth-root code $C = \Omega(2, 7, 2^3, L_2, \mathcal{P}_2), \text{ where}$ $L_2 \subset R_7 = \mathbb{F}_8^* = \langle \beta \rangle, L_2 = \{\beta, \beta^2, \beta^3, \beta^4, \beta^5\},$ $\mathcal{P}_2 \subset \mathbb{F}_{2^3}[t] \text{ is } \mathcal{P}_2 = \{p_1, p_2\}, \text{ with}$ $p_1 = t^4 + t^2 + t + 1,$ $p_2 = \beta^4 t^4 + \beta^6 t^3 + t + \beta^2.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Third example					

Third case: non-maximal, non-zerofree nth-root code $C = \Omega(2,7,2^3, L_3, \mathcal{P}_3), \text{ where}$ $L_3 \subset \mathbb{F}_8, L_3 = \{\beta, \beta^2, \beta^3, \beta^4, 0\},$ $\mathcal{P}_3 \subset \mathbb{F}_8[z] \text{ is } \mathcal{P}_3 = \{h_1, h_2\}, \text{ with}$ $h_1 = \beta^5 z^4 + z^3 + \beta^5 z^2 + \beta^4 z,$ $h_2 = \beta^6 z^4 + \beta^3 z^2 + \beta^5 z + 1.$

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Third example					

First case: maximal, zerofree nth-root code

Second case: non-maximal, zerofree nth-root code

Third case: non-maximal, non-zerofree nth-root code

Observation

Note however that code C cannot be seen as a maximal non-zerofree code.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

 Definitions and properties
 Examples
 Weight distribution
 General error locator polynomial
 Other family of codes
 Conclusion

 000
 000
 000
 000
 000
 000
 000

 Constructing ideals

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be an nth-root code, w and \hat{w} be natural numbers such that $2 \le w \le N = |L|$, $1 \le \hat{w} \le N - 1$.

(日)

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be an nth-root code, w and \hat{w} be natural numbers such that $2 \le w \le N = |L|$, $1 \le \hat{w} \le N - 1$. We denote by $J_w(C)$ and $\hat{J}_{\hat{w}}(C)$ the following two ideals:

$$\begin{array}{rcl} J_{w} = & J_{w}(C) = & J_{w}(q,n,q^{m},L,\mathbb{P}) \subset & \mathbb{F}_{q^{m}}[z_{1},\ldots,z_{w},y_{1},\ldots,y_{w}], \\ \hat{J}_{\hat{w}} = & \hat{J}_{\hat{w}}(C) = & \hat{J}_{\hat{w}}(q,n,q^{m},L,\mathbb{P}) \subset & \mathbb{F}_{q^{m}}[z_{1},\ldots,z_{\hat{w}},y_{1},\ldots,y_{\hat{w}},\nu], \end{array}$$

(日)

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be an nth-root code, w and \hat{w} be natural numbers such that $2 \le w \le N = |L|$, $1 \le \hat{w} \le N - 1$. We denote by $J_w(C)$ and $\hat{J}_{\hat{w}}(C)$ the following two ideals:

$$\begin{aligned} J_{w} &= J_{w}(\mathcal{C}) = J_{w}(q,n,q^{m},L,\mathcal{P}) \subset \mathbb{F}_{q^{m}}[z_{1},\ldots,z_{w},y_{1},\ldots,y_{w}], \\ \hat{J}_{\hat{w}} &= \hat{J}_{\hat{w}}(\mathcal{C}) = \hat{J}_{\hat{w}}(q,n,q^{m},L,\mathcal{P}) \subset \mathbb{F}_{q^{m}}[z_{1},\ldots,z_{\hat{w}},y_{1},\ldots,y_{\hat{w}},\nu], \end{aligned}$$

$$J_{w} = \langle \{\sum_{h=1}^{w} y_{h} g_{s}(z_{h})\}_{1 \leq s \leq r}, \{y_{j}^{q-1} - 1\}_{1 \leq j \leq w}, \{p_{ij}(z_{i}, z_{j})\}_{1 \leq i < j \leq w}, \{\frac{z_{j}^{n} - 1}{\prod_{l \in \overline{L}} (z_{j} - l)}\}_{1 \leq j \leq w}, \}$$
(1)

$$\hat{J}_{\hat{w}} = \langle \left\{ \sum_{h=1}^{\hat{w}} y_h g_s(z_h) + \nu g_s(0) \right\}_{1 \le s \le r}, \left\{ y_j^{q-1} - 1 \right\}_{1 \le j \le \hat{w}} \\ \nu^{q-1} - 1, \left\{ p_{ij}(z_i, z_j) \right\}_{1 \le i < j \le \hat{w}}, \left\{ \frac{z_j^n - 1}{\prod_{l \in \tilde{L}} (z_j - l)} \right\}_{1 \le j \le \hat{w}} \rangle$$

$$(2)$$

where $p_{ij} = \sum_{h=0}^{n-1} z_i^h z_j^{n-1-h} = \frac{z_i - z_j}{z_i - z_j}$ are in $\mathbb{F}_q[z_i, z_j]$.

Definitions and properties Examples weight distribution General error locator polynomial Othr family of codes Conclusion on Second Constructing ideals We denote by $\eta(\mathbf{J}_{\mathbf{w}})$ and $\hat{\eta}(\hat{\mathbf{J}}_{\hat{\mathbf{w}}})$ the integers $\eta(J_w) = |\mathcal{V}(J_w)|$, $\hat{\eta}(\hat{J}_{\hat{w}}) = |\mathcal{V}(\hat{J}_{\hat{w}})|$.

Remark

Ideals J_w and $\hat{J}_{\hat{w}}$ are **radical**, since they contain polynomials $y_j^q - y_j$ and $z_j^{n+1} - z_j$.

If we are in the **binary** case (q = 2), variables y_j , j = 1, ..., w, and ν are 1, and so we can omit them and the ideals become:

$$\begin{aligned} J_{\mathsf{w}} &= J_{\mathsf{w}}(C) &= J_{\mathsf{w}}(2,n,2^m,L,\mathbb{P}) \subset \mathbb{F}_{2^m}[z_1,\ldots,z_w] \,, \\ \hat{J}_{\hat{w}} &= \hat{J}_{\hat{w}}(C) &= \hat{J}_{\hat{w}}(2,n,2^m,L,\mathbb{P}) \subset \mathbb{F}_{2^m}[z_1,\ldots,z_{\hat{w}}], \end{aligned}$$

$$\begin{aligned}
J_{w} &= \left\langle \left\{ \sum_{h=1}^{w} g_{s}(z_{h}) \right\}_{1 \leq s \leq r}, \left\{ p_{ij}(z_{i}, z_{j}) \right\}_{1 \leq i < j \leq w} \left\{ \frac{z_{j}^{n} - 1}{\prod_{l \in \bar{L}} (z_{j} - l)} \right\}_{1 \leq j \leq w} \right\rangle; \\
\hat{J}_{\hat{w}} &= \left\langle \left\{ \sum_{h=1}^{\hat{w}} g_{s}(z_{h}) + g_{s}(0) \right\}_{1 \leq s \leq r}, \left\{ p_{ij}(z_{i}, z_{j}) \right\}_{1 \leq i < j \leq \hat{w}}, \left\{ \frac{z_{j}^{n} - 1}{\prod_{l \in \bar{L}} (z_{j} - l)} \right\}_{1 \leq j \leq \hat{w}} \right\rangle \\
\end{aligned}$$
(3)

(日)

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Constructing ideals					

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be an nth-root code.

In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$. In the non-zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$ or of $\hat{J}_{w-1}(C)$. Moreover the number of codewords of weight w is

 $\begin{aligned} \mathbf{A}_{\mathbf{w}} &= \frac{\eta(\mathbf{J}_{\mathbf{w}})}{\mathbf{w}!} \\ \mathbf{A}_{\mathbf{w}} &= \frac{\eta(\mathbf{J}_{\mathbf{w}})}{\mathbf{w}!} + \frac{\hat{\eta}(\hat{\mathbf{J}}_{\mathbf{w}-1})}{(\mathbf{w}-1)!} \end{aligned}$

in the zerofree case and

in the non-zerofree case

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Constructing ideals					

Let $C = \Omega(q, n, q^m, L, \mathfrak{P})$ be an nth-root code. In the **zerofree case**, there is at least one **codeword of weight w** in C if and only if there exists at least **one solution of J_w(C)**. In the **non-zerofree case**, there is at least one **codeword of** weight w in C if and only if there exists at least **one solution of** $J_w(C)$ or of $\hat{J}_{w-1}(C)$. Moreover the number of codewords of weight w is

$$\begin{split} \mathbf{A}_{\mathsf{w}} &= \frac{\eta(\mathsf{J}_{\mathsf{w}})}{\mathsf{w}!} \\ \mathbf{A}_{\mathsf{w}} &= \frac{\eta(\mathsf{J}_{\mathsf{w}})}{\mathsf{w}!} + \frac{\hat{\eta}(\hat{\mathsf{J}}_{\mathsf{w}-1})}{(\mathsf{w}-1)!} \end{split}$$

in the zerofree case and

in the non-zerofree case

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Constructing ideals					

Let $C = \Omega(q, n, q^m, L, \mathfrak{P})$ be an nth-root code. In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$. In the non-zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$ or of $\hat{J}_{w-1}(C)$.

Moreover the number of codewords of weight w is

in the zerofree case and

in the non-zerofree case

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Constructing ideals					

Let $C = \Omega(q, n, q^m, L, \mathfrak{P})$ be an nth-root code. In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$. In the non-zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$ or of $\hat{J}_{w-1}(C)$. Moreover the number of codewords of weight w is

$$\begin{split} \mathbf{A}_{\mathbf{w}} &= \frac{\eta(\mathbf{J}_{\mathbf{w}})}{\mathbf{w}!} & \text{in the zerofree case and} \\ \mathbf{A}_{\mathbf{w}} &= \frac{\eta(\mathbf{J}_{\mathbf{w}})}{\mathbf{w}!} + \frac{\eta(\mathbf{J}_{\mathbf{w}-1})}{(\mathbf{w}-1)!} & \text{in the non-zerofree case} \end{split}$$

・ロト ・ 語 ・ ・ 語 ・ ・ 語 ・ ・ の へ ()

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Constructing ideals					

Let $C = \Omega(q, n, q^m, L, \mathfrak{P})$ be an nth-root code. In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$. In the non-zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$ or of $\hat{J}_{w-1}(C)$. Moreover the number of codewords of weight w is

$$\mathbf{A}_{\mathbf{w}} = \frac{\eta(\mathbf{J}_{\mathbf{w}})}{\mathbf{w}!}$$
$$\mathbf{A}_{\mathbf{w}} = \frac{\eta(\mathbf{J}_{\mathbf{w}})}{\mathbf{w}!} + \frac{\hat{\eta}(\hat{\mathbf{J}}_{\mathbf{w}-1})}{(\mathbf{w}-1)!}$$

in the zerofree case and

n the non-zerofree case

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Constructing ideals					

Let $C = \Omega(q, n, q^m, L, \mathfrak{P})$ be an nth-root code. In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$. In the non-zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_w(C)$ or of $\hat{J}_{w-1}(C)$. Moreover the number of codewords of weight w is

in the zerofree case and

in the non-zerofree case

◆□▶ ◆□▶ ◆ ミト ◆ ミト ・ ミー のへぐ

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

INPUT:	a zerofree nth-root code $C = \Omega(q,n,q^m,L,\mathbb{P})$,
	an integer 2 \leq w \leq $ L $
	the element A_w of the weight distribution of C
STEP 1:	construct ideal $J_w = J_w(C)$
	compute a Gröbner basis \mathcal{G}_{w} of J_{w}
	use \mathcal{G}_w to get the number $\eta(\mathbf{J_w})$ of points in $\mathcal{V}(J_w)$
STEP 4:	return $\frac{\eta(J_w)}{w!}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

INPUT:	a zerofree nth-root code $C = \Omega(q, n, q^m, L, P)$,			
	an integer 2 \leq w \leq $ L $			
OUTPUT:	the element A_w of the weight distribution of C			
STEP 1:	construct ideal $J_{w} = J_{w}(C)$			
	compute a Gröbner basis \mathcal{G}_{w} of J_{w}			
	use \mathcal{G}_w to get the number $\eta(\mathbf{J_w})$ of points in $\mathcal{V}(J_w)$			
STEP 4:	return $\frac{\eta(\mathbf{J}_{w})}{w!}$			

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

INPUT:	a zerofree nth-root code $C = \Omega(q, n, q^m, L, P)$,		
	an integer 2 \leq w \leq $ L $		
OUTPUT :	the element A_w of the weight distribution of C		
STEP 1:	construct ideal $J_{w} = J_{w}(C)$		
	compute a Gröbner basis $\mathcal{G}_{\mathbf{w}}$ of \mathcal{J}_{w}		
	use \mathcal{G}_w to get the number $\eta(\mathbf{J}_w)$ of points in $\mathcal{V}(J_w)$		
STEP 4:	return $\frac{\eta(J_w)}{w!}$		

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

INPUT:	a zerofree nth-root code $C = \Omega(q, n, q^m, L, \mathcal{P})$,		
	an integer 2 \leq w \leq $ L $		
OUTPUT :	the element A_w of the weight distribution of C		
STEP 1:	construct ideal $\mathbf{J_w} = \mathbf{J_w}(\mathbf{C})$		
STEP 2:	compute a Gröbner basis $\mathcal{G}_{\mathbf{w}}$ of J_{w}		
	use \mathcal{G}_w to get the number $\eta(\mathbf{J_w})$ of points in $\mathcal{V}(J_w)$		
STEP 4:	return $\frac{\eta(J_w)}{w!}$		

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

INPUT:	a zerofree nth-root code $C = \Omega(q, n, q^m, L, \mathcal{P})$,		
	an integer 2 \leq w \leq $ L $		
OUTPUT :	the element A_w of the weight distribution of C		
STEP 1:	construct ideal $\mathbf{J_w} = \mathbf{J_w}(\mathbf{C})$		
STEP 2:	compute a Gröbner basis $\mathfrak{G}_{\mathbf{w}}$ of J_w		
STEP 3:	use \mathcal{G}_w to get the number $\eta(\mathbf{J_w})$ of points in $\mathcal{V}(J_w)$		
STEP 4:	return $\frac{\eta(J_w)}{w!}$		

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

INPUT:	a zerofree nth-root code $C = \Omega(q, n, q^m, L, \mathcal{P})$,			
	an integer 2 \leq w \leq $ L $			
OUTPUT :	the element A_w of the weight distribution of C			
STEP 1:	construct ideal $\mathbf{J_w} = \mathbf{J_w}(\mathbf{C})$			
STEP 2:	compute a Gröbner basis $\mathfrak{G}_{\mathbf{w}}$ of J_w			
STEP 3:	use \mathfrak{G}_w to get the number $\eta(\mathbf{J}_w)$ of points in $\mathcal{V}(J_w)$			
STEP 4	return $\frac{\eta(\mathbf{J}_{w})}{w!}$			

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

INPUT:	a zerofree nth-root code $C = \Omega(q, n, q^m, L, \mathcal{P})$,		
	an integer 2 \leq w \leq $ L $		
OUTPUT :	the element A_w of the weight distribution of C		
STEP 1:	construct ideal $\mathbf{J_w} = \mathbf{J_w}(\mathbf{C})$		
STEP 2:	compute a Gröbner basis $\mathcal{G}_{\mathbf{w}}$ of J_{w}		
STEP 3:	use \mathcal{G}_w to get the number $\eta(\mathbf{J_w})$ of points in $\mathcal{V}(J_w)$		
STEP 4:	return $\frac{\eta(\mathbf{J_w})}{\mathbf{w}!}$		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

INPUT:	a non-zerofree nth-root code $\mathcal{C}=\Omega(q,n,q^m,L,\mathbb{P})$,
	an integer 2 \leq w \leq $ L $
OUTPUT:	the element A_w of the weight distribution of C
STEP 1:	construct ideals $J_w = J_w(C)$ and $\hat{J}_{w-1} = \hat{J}_{w-1}(C)$
STEP 2:	compute a Gröbner basis \mathfrak{G}_w of J_w and
	compute aGröbner basis \hat{G}_{w-1} of \hat{J}_{w-1}
STEP 3:	use \mathfrak{G}_w to get the number $\eta(J_w)$ of points in $\mathcal{V}(J_w)$ and
	use \hat{G}_{w-1} to get the number $\hat{\eta}(\hat{J}_{w-1})$ of points in $\mathcal{V}(\hat{J}_{w-1})$
STEP 4:	return $rac{\eta(J_w)}{w!}+rac{\hat{\eta}(\hat{J}_{w-1})}{(w-1)!}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

Let C as in the first Example:

$$C = \Omega(2,7,8,\mathbb{F}_8,\{g_1,g_2\}), g_1(x) = \frac{1}{x^2 + x + 1}, g_2(x) = \frac{x}{x^2 + x + 1}$$

• w = 2, $J_2(C) \subseteq \mathbb{F}_2[z_1, z_2]$ and $\hat{J}_1(C) \subseteq \mathbb{F}_2[z_1]$:

 $J_2(C) = \langle g_1(z_1) + g_1(z_2), g_2(z_1) + g_2(z_2), z_1^7 - 1, z_2^7 - 1, p_{1,2}(z_1, z_2) \rangle$

 $\hat{J}_1(C) = \langle g_1(z_1) + g_1(0), g_2(z_1) + g_2(0), z_1^7 - 1 \rangle$

 G_2 and \hat{G}_1 are trivial and hence there are no words of weight 2. The same for w = 3, 4.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

Let C as in the first Example:

$$C = \Omega(2,7,8,\mathbb{F}_8,\{g_1,g_2\}), g_1(x) = \frac{1}{x^2 + x + 1}, g_2(x) = \frac{x}{x^2 + x + 1}$$

•
$$w = 2$$
, $J_2(C) \subseteq \mathbb{F}_2[z_1, z_2]$ and $\hat{J}_1(C) \subseteq \mathbb{F}_2[z_1]$:

$$J_{2}(C) = \langle g_{1}(z_{1}) + g_{1}(z_{2}), g_{2}(z_{1}) + g_{2}(z_{2}), z_{1}^{7} - 1, z_{2}^{7} - 1, p_{1,2}(z_{1}, z_{2}) \rangle$$
$$\hat{J}_{1}(C) = \langle g_{1}(z_{1}) + g_{1}(0), g_{2}(z_{1}) + g_{2}(0), z_{1}^{7} - 1 \rangle$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 G_2 and \hat{G}_1 are trivial and hence there are no words of weight 2. The same for w = 3, 4.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

• w = 5, construct J_5 and \hat{J}_4 : \mathcal{G}_5 is trivial, but basis $\hat{\mathcal{G}}_4$ has the following leading terms

$$\left\{z_1z_2,\, z_1^2,\, z_1z_3^2,\, z_2^3,\, z_1z_4^3,\, z_3^4,\, z_2^2z_3^2,\, z_4^5,\, z_2^2z_4^3,\, z_3^3z_4^3\right\}.$$

These monomials permit us to compute the number $\hat{\eta}(\hat{J}_4) = 48$. So that $A_5 = \frac{\eta(J_5)}{5!} + \frac{\hat{\eta}(\hat{J}_4)}{4!} = \frac{48}{4!} = 2$. Note that the 2 words of weight 5 in *C* have the last component non zero.

• Computing \mathcal{G}_6 we have a non trivial result, $\eta(J_6) = 720$, and for \hat{J}_5 we get an empty variety. The words of weight 6 are then $A_6 = \frac{\eta(J_6)}{6!} + \frac{\hat{\eta}(\hat{J}_5)}{5!} = \frac{720}{6!} = 1$.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

• w = 5, construct J_5 and \hat{J}_4 : \mathcal{G}_5 is trivial, but basis $\hat{\mathcal{G}}_4$ has the following leading terms

$$\left\{z_1z_2, \, z_1^2, \, z_1z_3^2, \, z_2^3, \, z_1z_4^3, \, z_3^4, \, z_2^2z_3^2, \, z_4^5, \, z_2^2z_4^3, \, z_3^3z_4^3\right\}.$$

These monomials permit us to compute the number $\hat{\eta}(\hat{J}_4) = 48$. So that $A_5 = \frac{\eta(J_5)}{5!} + \frac{\hat{\eta}(\hat{J}_4)}{4!} = \frac{48}{4!} = 2$. Note that the 2 words of weight 5 in *C* have the last component non zero.

• Computing \mathcal{G}_6 we have a non trivial result, $\eta(J_6) = 720$, and for \hat{J}_5 we get an empty variety. The words of weight 6 are then $A_6 = \frac{\eta(J_6)}{6!} + \frac{\hat{\eta}(\hat{J}_5)}{5!} = \frac{720}{6!} = 1$.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Algorithms					

W	$\Im(J_w)$	$\hat{\mathbb{G}}(\hat{J}_{w-1})$	$\eta(J_w)$	$\hat{\eta}(\hat{J}_{w-1})$	Aw
2,3,4,7	{1}	$\{1\}$	0	0	0
5	$\{1\}$	not trivial	0	48	2
6	not trivial	$\{1\}$	720	0	1
8	_	{1}	-	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion		
000	000	000000	00000000	000	00		
Weight distribution for cosets							

Definition

The elements in $(\mathbb{F}_q^m)^{n-k}$, $\sigma = \mathbf{H}\mathbf{x}$ are called **syndromes**. We say that σ is the syndrome corresponding to x.

Definition

Let $C \subseteq (\mathbb{F}_q)^N$ be an (N,k) code. For any vector $a \in (\mathbb{F}_q)^n$ the set

 $a + C = \{a + x : x \in C\}$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

in called a **coset** (or translate) of C.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion		
000	000	000000	00000000	000	00		
Weight distribution for cosets							

Definition

The elements in $(\mathbb{F}_q^m)^{n-k}$, $\sigma = \mathbf{H}\mathbf{x}$ are called **syndromes**. We say that σ is the syndrome corresponding to x.

Definition

Let $C \subseteq (\mathbb{F}_q)^N$ be an (N, k) code. For any vector $a \in (\mathbb{F}_q)^n$ the set

$$a + C = \{a + x : x \in C\}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

in called a **coset** (or translate) of *C*.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Weight distribution for cose	ts				

We give as in the code case

- ideals for the zerofree case and in the non-zerofree case;
- **proposition** for A_w in the the zerofree case and in the non-zerofree case;
- algorithms the zerofree case and in the non-zerofree case.

➡ Skip coset

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion	
Weight distribution for cosets						

We give as in the code case

- ideals for the zerofree case and in the non-zerofree case;
- **proposition** for A_w in the the zerofree case and in the non-zerofree case;
- algorithms the zerofree case and in the non-zerofree case.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

➡ Skip coset

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion	
Weight distribution for cosets						

We give as in the code case

- ideals for the zerofree case and in the non-zerofree case;
- **proposition** for A_w in the the zerofree case and in the non-zerofree case;
- algorithms the zerofree case and in the non-zerofree case.

➡ Skip coset

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion		
000	000	00000	00000000	000	00		
Weight distribution for cosets							

$$J_w(\mathbf{a}+C) \subset \mathbb{F}_{q^m}[z_1,\ldots,z_w,y_1,\ldots,y_w], \\ \hat{J}_{\hat{w}}(\mathbf{a}+C) \subset \mathbb{F}_{q^m}[z_1,\ldots,z_{\hat{w}},y_1,\ldots,y_{\hat{w}},\nu],$$

$$J_{w}(a+C) = \langle \{\sum_{h=1}^{w} y_{h}g_{s}(z_{h}) - \sigma(\mathbf{a})_{s}\}_{1 \le s \le r}, \{y_{j}^{q-1} - 1\}_{1 \le j \le w}, \{p_{ij}(z_{i}, z_{j})\}_{1 \le i < j \le w}, \{\frac{z_{j}^{n-1}}{\prod_{l \in \overline{L}}(z_{j}-l)}\}_{1 \le j \le w}, \}$$

$$(4)$$

$$\hat{J}_{\hat{w}}(a+C) = \left\langle \left\{ \sum_{h=1}^{\hat{w}} y_h g_s(z_h) + \nu g_s(0) - \sigma(a)_s \right\}_{\substack{1 \le s \le r \\ z_j^{r-1}}}, \left\{ y_j^{q-1} - 1 \right\}_{1 \le j \le \hat{w}} \\
\nu^{q-1} - 1, \left\{ p_{ij}(z_i, z_j) \right\}_{1 \le i < j \le \hat{w}}, \left\{ \frac{z_j^{r-1}}{\prod_{l \in \overline{L}} (z_j - l)} \right\}_{1 \le j \le \hat{w}} \right\rangle.$$
(5)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

 $\eta(J_w(a+C)) = |\mathcal{V}(J_w(a+C))|, \quad \hat{\eta}(\hat{J}_{\hat{w}}(a+C)) = |\mathcal{V}(\hat{J}_{\hat{w}}(a+C))|.$

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion		
000	000	00000	00000000	000	00		
Weight distribution for cosets							

$$J_w(a+C) \subset \mathbb{F}_{q^m}[z_1,\ldots,z_w,y_1,\ldots,y_w], \\ \hat{J}_w(a+C) \subset \mathbb{F}_{q^m}[z_1,\ldots,z_w,y_1,\ldots,y_w,\nu],$$

$$J_{w}(a+C) = \langle \{\sum_{h=1}^{w} y_{h}g_{s}(z_{h}) - \sigma(\mathbf{a})_{s}\}_{1 \le s \le r}, \{y_{j}^{q-1} - 1\}_{1 \le j \le w}, \{p_{ij}(z_{i}, z_{j})\}_{1 \le i < j \le w}, \{\frac{z_{j}^{n-1}}{\prod_{l \in \overline{L}}(z_{j}-l)}\}_{1 \le j \le w}, \}$$

$$(4)$$

$$\hat{J}_{\hat{w}}(a+C) = \left\langle \left\{ \sum_{h=1}^{\hat{w}} y_h g_s(z_h) + \nu g_s(0) - \sigma(a)_s \right\}_{\substack{1 \le s \le r \\ z_j^{r} = 1 \\ \nu^{q-1} - 1, \left\{ p_{ij}(z_i, z_j) \right\}_{1 \le i < j \le \hat{w}}, \left\{ \frac{z_j^{r} = 1}{\prod_{l \in \bar{L}} (z_l - l)} \right\}_{1 \le j \le \hat{w}} \right\rangle.$$
(5)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

 $\eta(J_w(a+C)) = |\mathcal{V}(J_w(a+C))|, \quad \hat{\eta}(\hat{J}_{\hat{w}}(a+C)) = |\mathcal{V}(\hat{J}_{\hat{w}}(a+C))|.$

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion		
000	000	00000	00000000	000	00		
Weight distribution for cosets							

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$, $a \in (\mathbb{F}_q)^N \setminus C$, and a + C a coset of code C. In the zerofree case, there is at least one vector of weight w in coset a + C if and only if there is at least one solution of $J_w(a + C)$. In the non-zerofree case, there is at least one vector of weight w in a + C if and only if there is at least one solution of $J_w(a + C)$ or of $\hat{J}_{w-1}(a + C)$. Furthermore, the number of vectors of weight w in a + C is

$$A_{w}(a) = \frac{\eta(J_{w}(a+C))}{w!} \\ A_{w}(a) = \frac{\eta(J_{w}(a+C))}{w!} + \frac{\hat{\eta}(\hat{J}_{w-1}(a+C))}{(w-1)!}$$

in the zerofree case and in the non-zerofree case

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ
Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	•0000000	000	00
Definition					

 \diamond Let \mathcal{L}_C be a polynomial in $\mathbb{F}_q[X, z]$, where $X = (x_1, \dots, x_r)$. Then \mathcal{L}_C is a **general error locator polynomial** of *C* if

- $\mathcal{L}_C(X, z) = z^t + a_{t-1}z^{t-1} + \cdots + a_0$, with $a_j \in \mathbb{F}_q[X]$, $0 \le j \le t-1$, that is, \mathcal{L}_C is a monic polynomial with degree t with respect to the variable z and its coefficients are in $\mathbb{F}_q[X]$;
- given a syndrome s = (s
 ₁,...s
 r) ∈ (F{q^m})^{N-k}, corresponding to a vector error of weight µ ≤ t and error locations {k₁,..., k_µ}, if we evaluate the X variables in s, then the roots of L_C(s, z) are {α^{k₁},..., α^{k_µ}, 0,..., 0}.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Definition					

Let \mathcal{L} be a polynomial in $\mathbb{F}_q[X, W, z]$, $X = (x_1, \ldots, x_r)$ and $W = (w_{\nu}, \ldots, w_1)$, where $\nu \ge 1$ is the number of erasures that occurred. Then \mathcal{L} is a **general error locator polynomial of type** ν of C if

- $\mathcal{L}(X, W, z) = z^{\tau} + a_{\tau-1}z^{\tau-1} + \dots + a_0$, with $a_j \in \mathbb{F}_q[X, W]$, for any $0 \le j \le \tau - 1$, that is, \mathcal{L} is a monic polynomial with degree τ in the variable z and coefficients in $\mathbb{F}_q[X, W]$;
- for any syndrome s = (s
 ₁,..., s
 _r) and any erasure location vector w= (w
 ₁,..., w
 _ν), corresponding to an error of weight μ ≤ τ and error locations {k₁,..., k_μ}, if we evaluate the X variables in s and the W variables in w, then the roots of L(s, w, z) are {α^{k₁},..., α^{k_μ}, 0,..., 0}.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	th-root code	es			

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be a zerofree maximal nth-root code, with correction capability t. We denote by $\mathbf{J}^{C,t}$ the ideal $J^{C,t} \subset \mathbb{F}_{q^m}[x_1, \ldots, x_r, z_t, \ldots, z_1, y_1, \ldots, y_t]$,

$$J^{C,t} = \langle \{\sum_{h=1}^{t} y_h g_s(z_h) - x_s\}_{1 \le s \le r}, \{y_j^{q-1} - 1\}_{1 \le j \le t}, \{z_i z_j p(z_i, z_j)\}_{i \ne j, 1 \le i, j \le t}, \{z_j^{n+1} - z_j\}_{1 \le j \le t} \rangle$$
(6)

(日) (四) (日) (日) (日) (日) (日)

where $p(x, y) = \sum_{h=0}^{n-1} x^h y^{n-1-h}$. We denote by $\mathcal{G}^{C,t}$ the totaly reduced Gröbner basis of $J^{C,t}$ w.r.t. >.

• x_1, \ldots, x_r represent correctable syndromes,

- z_1, \ldots, z_t error locations and
- y_1, \ldots, y_t error values.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	th-root code	es			

Let $C = \Omega(q, n, q^m, L, \mathbb{P})$ be a zerofree maximal nth-root code, with correction capability t. We denote by $\mathbf{J}^{C,t}$ the ideal $J^{C,t} \subset \mathbb{F}_{q^m}[x_1, \ldots, x_r, z_t, \ldots, z_1, y_1, \ldots, y_t]$,

$$J^{C,t} = \langle \{\sum_{h=1}^{t} y_h g_s(z_h) - x_s \}_{1 \le s \le r}, \{y_j^{q-1} - 1 \}_{1 \le j \le t}, \{z_i z_j p(z_i, z_j) \}_{i \ne j, 1 \le i, j \le t}, \{z_j^{n+1} - z_j \}_{1 \le j \le t} \rangle$$
(6)

where $p(x, y) = \sum_{h=0}^{n-1} x^h y^{n-1-h}$. We denote by $\mathcal{G}^{C,t}$ the totaly reduced Gröbner basis of $J^{C,t}$ w.r.t. >.

• x_1, \ldots, x_r represent correctable syndromes,

- z_1, \ldots, z_t error locations and
- y_1, \ldots, y_t error values.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	th-root code	es			

Let $C = \Omega(q, n, q^m, L, \mathcal{P})$ be a zerofree maximal nth-root code, with correction capability t. We denote by $\mathbf{J}^{C,t}$ the ideal $J^{C,t} \subset \mathbb{F}_{q^m}[x_1, \ldots, x_r, z_t, \ldots, z_1, y_1, \ldots, y_t]$,

$$J^{C,t} = \langle \{\sum_{h=1}^{t} y_h g_s(z_h) - x_s \}_{1 \le s \le r}, \{y_j^{q-1} - 1\}_{1 \le j \le t}, \{z_i z_j p(z_i, z_j)\}_{i \ne j, 1 \le i, j \le t}, \{z_j^{n+1} - z_j\}_{1 \le j \le t} \rangle$$
(6)

where $p(x, y) = \sum_{h=0}^{n-1} x^h y^{n-1-h}$. We denote by $\mathcal{G}^{C,t}$ the totaly reduced Gröbner basis of $J^{C,t}$ w.r.t. >.

- x_1, \ldots, x_r represent correctable syndromes,
- z_1, \ldots, z_t error locations and
- y_1, \ldots, y_t error values.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	th-root code	es			

Let $C = \Omega(q, n, q^m, L, \mathbb{P})$ be a zerofree maximal nth-root code, with correction capability t. We denote by $\mathbf{J}^{C,t}$ the ideal $J^{C,t} \subset \mathbb{F}_{q^m}[x_1, \ldots, x_r, z_t, \ldots, z_1, y_1, \ldots, y_t]$,

$$J^{C,t} = \langle \{\sum_{h=1}^{t} y_h g_s(z_h) - x_s\}_{1 \le s \le r}, \{y_j^{q-1} - 1\}_{1 \le j \le t}, \{z_i z_j p(z_i, z_j)\}_{i \ne j, 1 \le i, j \le t}, \{z_j^{n+1} - z_j\}_{1 \le j \le t} \rangle$$
(6)

where $p(x, y) = \sum_{h=0}^{n-1} x^h y^{n-1-h}$. We denote by $\mathcal{G}^{C,t}$ the totaly reduced Gröbner basis of $J^{C,t}$ w.r.t. >.

- x_1, \ldots, x_r represent correctable syndromes,
- z_1, \ldots, z_t error locations and
- y_1, \ldots, y_t error values.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of n	th-root code	es			

Lemma

Proposition (

In Gröbner basis $G^{C,t}$ there exists a unique polynomial of type

$$g = z_t^t + \mathsf{a}_{t-1} z_t^{t-1} + \ldots + \mathsf{a}_0, \mathsf{a}_i \in \mathbb{F}_q[X].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Ideals for the decoding of n	th-root code	es			

Lemma

Proposition (♣)

In Gröbner basis $\mathcal{G}^{C,t}$ there exists a unique polynomial of type

$$g = z_t^t + \mathsf{a}_{t-1} z_t^{t-1} + \ldots + \mathsf{a}_0, \mathsf{a}_i \in \mathbb{F}_q[X].$$

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	th-root cod	es			

Theorem

If code *C* is a proper maximal zerofree nth-root code with correction capability *t*, then *C* possesses a general error locator polynomial.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	th-root cod	es			

Theorem

If code *C* is a proper maximal zerofree nth-root code with correction capability *t*, then *C* possesses a general error locator polynomial. •• Skip proof

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	th-root cod	es			

- A polynomial of type $g = z_t^t + a_{t-1}z_t^{t-1} + \ldots + a_0$, with $a_i \in \mathbb{F}_{q^m}[X]$, exists in $J^{C,t}$ (Proposition \clubsuit).
- Since C is proper, all polynomials in ideal J^{C,t} have coefficients in F_q and so g must be in F_q[X, z_t]. Polynomial L = g(X, z_t) ∈ F_q[X, z_t] satisfies:
 - condition (1) in Definition (\diamondsuit);
 - condition (2) in Definition (◊), because correctable syndromes are in V(J^{C,t} ∩ F_q[X]) and
 - g is in $J^{C,t}$
- So L = g(X, z_t) ∈ 𝔽_q[X, z_t] is a general error locator polynomial for C.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	th-root cod	es			

- A polynomial of type $g = z_t^t + a_{t-1}z_t^{t-1} + \ldots + a_0$, with $a_i \in \mathbb{F}_{q^m}[X]$, exists in $J^{C,t}$ (Proposition \clubsuit).
- Since C is proper, all polynomials in ideal J^{C,t} have coefficients in F_q and so g must be in F_q[X, z_t]. Polynomial L = g(X, z_t) ∈ F_q[X, z_t] satisfies:
 - condition (1) in Definition $(\diamondsuit);$.
 - condition (2) in Definition (◊), because correctable syndromes are in V(J^{C,t} ∩ F_q[X]) and
 - g is in $J^{C,t}$
- So L = g(X, z_t) ∈ 𝔽_q[X, z_t] is a general error locator polynomial for C.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion				
000	000	000000	0000000	000	00				
Ideals for the decoding of r	deals for the decoding of nth-root codes								

- A polynomial of type $g = z_t^t + a_{t-1}z_t^{t-1} + \ldots + a_0$, with $a_i \in \mathbb{F}_{q^m}[X]$, exists in $J^{C,t}$ (Proposition \clubsuit).
- Since C is proper, all polynomials in ideal J^{C,t} have coefficients in 𝔽_q and so g must be in 𝔽_q[X, z_t]. Polynomial L = g(X, z_t) ∈ 𝔽_q[X, z_t] satisfies:

• condition (1) in Definition (\diamondsuit);

condition (2) in Definition (◊), because correctable syndromes are in V(J^{C,t} ∩ 𝔽_q[X]) and
 g is in J^{C,t}.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• So $\mathcal{L} = g(X, z_t) \in \mathbb{F}_q[X, z_t]$ is a general error locator polynomial for C.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion				
000	000	000000	0000000	000	00				
Ideals for the decoding of r	deals for the decoding of nth-root codes								

- A polynomial of type $g = z_t^t + a_{t-1}z_t^{t-1} + \ldots + a_0$, with $a_i \in \mathbb{F}_{q^m}[X]$, exists in $J^{C,t}$ (Proposition \clubsuit).
- Since C is proper, all polynomials in ideal J^{C,t} have coefficients in 𝔽_q and so g must be in 𝔽_q[X, z_t]. Polynomial L = g(X, z_t) ∈ 𝔽_q[X, z_t] satisfies:
 - condition (1) in Definition (\diamondsuit);

condition (2) in Definition (◊), because correctable syndromes are in V(J^{C,t} ∩ 𝔽_q[X]) and
 g is in J^{C,t}.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

So L = g(X, z_t) ∈ 𝔽_q[X, z_t] is a general error locator polynomial for C.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion				
000	000	000000	0000000	000	00				
Ideals for the decoding of r	deals for the decoding of nth-root codes								

- A polynomial of type $g = z_t^t + a_{t-1}z_t^{t-1} + \ldots + a_0$, with $a_i \in \mathbb{F}_{q^m}[X]$, exists in $J^{C,t}$ (Proposition \clubsuit).
- Since C is proper, all polynomials in ideal J^{C,t} have coefficients in 𝔽_q and so g must be in 𝔽_q[X, z_t]. Polynomial L = g(X, z_t) ∈ 𝔽_q[X, z_t] satisfies:
 - condition (1) in Definition (\diamondsuit);
 - condition (2) in Definition (\diamondsuit), because correctable syndromes are in $\mathcal{V}(J^{C,t} \cap \mathbb{F}_q[X])$ and

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• g is in $J^{C,t}$.

• So $\mathcal{L} = g(X, z_t) \in \mathbb{F}_q[X, z_t]$ is a general error locator polynomial for *C*.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion				
000	000	000000	0000000	000	00				
Ideals for the decoding of r	deals for the decoding of nth-root codes								

- A polynomial of type $g = z_t^t + a_{t-1}z_t^{t-1} + \ldots + a_0$, with $a_i \in \mathbb{F}_{q^m}[X]$, exists in $J^{C,t}$ (Proposition \clubsuit).
- Since C is proper, all polynomials in ideal J^{C,t} have coefficients in 𝔽_q and so g must be in 𝔽_q[X, z_t]. Polynomial L = g(X, z_t) ∈ 𝔽_q[X, z_t] satisfies:
 - condition (1) in Definition (\diamondsuit);
 - condition (2) in Definition (◊), because correctable syndromes are in V(J^{C,t} ∩ 𝔽_q[X]) and

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• g is in $J^{C,t}$.

• So $\mathcal{L} = g(X, z_t) \in \mathbb{F}_q[X, z_t]$ is a general error locator polynomial for *C*.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	0000000	000	00
Ideals for the decoding of r	hth-root cod	es			

- A polynomial of type $g = z_t^t + a_{t-1}z_t^{t-1} + \ldots + a_0$, with $a_i \in \mathbb{F}_{q^m}[X]$, exists in $J^{C,t}$ (Proposition \clubsuit).
- Since C is proper, all polynomials in ideal J^{C,t} have coefficients in 𝔽_q and so g must be in 𝔽_q[X, z_t]. Polynomial L = g(X, z_t) ∈ 𝔽_q[X, z_t] satisfies:
 - condition (1) in Definition (\diamondsuit);
 - condition (2) in Definition (◊), because correctable syndromes are in 𝒱(𝒯^{C,t} ∩ 𝔽_q[𝑋]) and

- g is in $J^{C,t}$.
- So L = g(X, z_t) ∈ 𝔽_q[X, z_t] is a general error locator polynomial for C.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Ideals for the decoding of n	th-root cod	es			

 $\label{eq:cyclic codes} \mbox{ are proper maximal zerofree nth-root codes } \Longrightarrow \mbox{ cyclic codes have general error locator polynomials.}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion 00	
Ideals for the decoding of r	nth-root coc	les				
Example: fir	st me	ethod				

Let

- C be the [5, 2, 3] linear code over \mathbb{F}_2 ;
- generator matrix $G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$;
- *t* = 1;
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^4 + z + 1$);

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Let

• C be the [5, 2, 3] linear code over \mathbb{F}_2 ;

- generator matrix $G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$;
- *t* = 1;
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^4 + z + 1$);

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let

- C be the [5, 2, 3] linear code over \mathbb{F}_2 ;
- generator matrix $G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$;

•
$$t = 1;$$

• γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^4 + z + 1$);

Let

- C be the [5,2,3] linear code over \mathbb{F}_2 ;
- generator matrix $G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$;
- t = 1;
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^4 + z + 1$);

Let

- C be the [5, 2, 3] linear code over \mathbb{F}_2 ;
- generator matrix $G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$;
- *t* = 1;
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^4 + z + 1$);

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Ideals for the decoding of i	nth-root cod	les			
Example: fir	st me	thod			

• parity-check matrix $H = (\gamma^6, \gamma^2, \gamma^3, \gamma^{14}, 1)$

•
$$C = \Omega(2, 5, 2^4, R_5, \mathcal{P}')$$
, where

 $\mathcal{P}' = \{\gamma^{12}x^4 + \gamma^{11}x^3 + x^2 + \gamma^{14}x + \gamma^3\}.$

• the Gröbner basis G' w.r.t. the lexicographical order induced by $x_1 < z_1$, its elements are:

$$\begin{aligned} G_{x_1}' &= x_1^5 + (\gamma^3) x_1^4 + (\gamma^3 + \gamma) x_1^2 + \gamma^2 x_1 + (\gamma^2 + \gamma + 1) \\ G_{x_1,z_1}' &= \mathbf{z}_1 + x_1^3. \end{aligned}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Ideals for the decoding of i	nth-root cod	les			
Example: fir	st me	thod			

- parity-check matrix $H = (\gamma^6, \gamma^2, \gamma^3, \gamma^{14}, 1)$
- $\textbf{C}=\boldsymbol{\Omega}(2, \textbf{5}, \textbf{2^4}, \textbf{R_5}, \boldsymbol{\mathcal{P}}')$, where

 $\mathcal{P}' = \{\gamma^{12}x^4 + \gamma^{11}x^3 + x^2 + \gamma^{14}x + \gamma^3\}.$

• the Gröbner basis G' w.r.t. the lexicographical order induced by $x_1 < z_1$, its elements are:

$$\begin{split} \mathfrak{G}_{x_1}' &= x_1^5 + (\gamma^3) x_1^4 + (\gamma^3 + \gamma) x_1^2 + \gamma^2 x_1 + (\gamma^2 + \gamma + 1) \\ \\ \mathfrak{G}_{x_1, z_1}' &= \mathsf{z}_1 + x_1^3. \end{split}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Ideals for the decoding of i	nth-root coc	les			
Example: fir	st me	ethod			

- parity-check matrix $H = (\gamma^6, \gamma^2, \gamma^3, \gamma^{14}, 1)$
- $C = \Omega(2, 5, 2^4, R_5, \mathcal{P}')$, where $\mathcal{P}' = \{\gamma^{12}x^4 + \gamma^{11}x^3 + x^2 + \gamma^{14}x + \gamma^3\}.$
- the Gröbner basis G' w.r.t. the lexicographical order induced by $x_1 < z_1$, its elements are:

$$\begin{split} \mathfrak{G}_{x_1}' &= x_1^5 + (\gamma^3) x_1^4 + (\gamma^3 + \gamma) x_1^2 + \gamma^2 x_1 + (\gamma^2 + \gamma + 1) \\ \\ \mathfrak{G}_{x_1, z_1}' &= \mathsf{z}_1 + x_1^3. \end{split}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Ideals for the decoding of I	nth-root coc	les			
Example: fir	st me	ethod			

• parity-check matrix $H = (\gamma^6, \gamma^2, \gamma^3, \gamma^{14}, 1)$

•
$$C = \Omega(2, 5, 2^4, R_5, \mathcal{P}')$$
, where
 $\mathcal{P}' = \{\gamma^{12}x^4 + \gamma^{11}x^3 + x^2 + \gamma^{14}x + \gamma^3\}$

• the Gröbner basis G' w.r.t. the lexicographical order induced by $x_1 < z_1$, its elements are:

$$\begin{split} \mathfrak{G}_{x_{1}}' &= x_{1}^{5} + (\gamma^{3})x_{1}^{4} + (\gamma^{3} + \gamma)x_{1}^{2} + \gamma^{2}x_{1} + (\gamma^{2} + \gamma + 1)\\ \\ \mathfrak{G}_{x_{1},z_{1}}' &= \mathbf{z_{1}} + x_{1}^{3}. \end{split}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Ideals for the decoding of i	nth-root coc	les			
Example: fir	st me	ethod			

• parity-check matrix $H = (\gamma^6, \gamma^2, \gamma^3, \gamma^{14}, 1)$

•
$$C = \Omega(2, 5, 2^4, R_5, \mathcal{P}')$$
, where
 $\mathcal{P}' = \{\gamma^{12}x^4 + \gamma^{11}x^3 + x^2 + \gamma^{14}x + \gamma^3\}$

• the Gröbner basis G' w.r.t. the lexicographical order induced by $x_1 < z_1$, its elements are:

$$\begin{split} \mathfrak{G}_{x_{1}}' &= x_{1}^{5} + (\gamma^{3})x_{1}^{4} + (\gamma^{3} + \gamma)x_{1}^{2} + \gamma^{2}x_{1} + (\gamma^{2} + \gamma + 1)\\ \mathfrak{G}_{x_{1},z_{1}}' &= \mathbf{z_{1}} + x_{1}^{3}. \end{split}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 Definitions and properties
 Examples
 Weight distribution
 General error locator polynomial
 Oth family of codes
 Conclusion

 000
 000
 000
 000
 000
 000
 000
 000
 000

 Ideals for the decoding of nth-root
 current
 current
 current
 current
 current
 current
 current

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H = (e_1, e_2, e_3, e_4, e_5)$;
- an general error locator polynomial z + f(x) (the degree t of z is 1) must satisfy the following conditions:
 - $f(e_i) = \alpha^i$, $\forall 1 \le i \le 5$, and f(0) = 0.
 - f(x) has degree at most 5
 - coefficients $b_i \in \mathbb{F}_2$,

 $f(x) = b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x \ (f(0) = 0 \Rightarrow b_0 = 0).$

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

 Definitions and properties
 Examples
 Weight distribution
 General error locator polynomial
 Oth family of codes
 Conclusion

 000
 000
 000
 000
 000
 000
 000
 000

 Ideals for the decoding of nth-root codes
 Ideals for the decoding of nth-root codes
 Ideals
 Ideal

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H = (e_1, e_2, e_3, e_4, e_5)$;
- an general error locator polynomial z + f(x) (the degree t of z is 1) must satisfy the following conditions:
 - $f(e_i) = \alpha^i$, $\forall 1 \le i \le 5$, and f(0) = 0.
 - f(x) has degree at most 5
 - coefficients $b_i \in \mathbb{F}_2$,

 $f(x) = b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x \ (f(0) = 0 \Rightarrow b_0 = 0).$

Sac

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H = (e_1, e_2, e_3, e_4, e_5)$;
- an general error locator polynomial z + f(x) (the degree t of z is 1) must satisfy the following conditions:
 - $f(e_i) = \alpha^i$, $\forall 1 \le i \le 5$, and f(0) = 0. • f(x) has degree at most 5
 - coefficients $b_i \in \mathbb{F}_2$.

 $f(x) = b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x \ (f(0) = 0 \Rightarrow b_0 = 0).$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H = (e_1, e_2, e_3, e_4, e_5)$;
- an general error locator polynomial z + f(x) (the degree t of z is 1) must satisfy the following conditions:
 - $f(e_i) = \alpha^i$, $\forall 1 \le i \le 5$, and f(0) = 0.
 - f(x) has degree at most 5

• coefficients $b_i \in \mathbb{F}_2$,

 $f(x) = b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x \ (f(0) = 0 \Rightarrow b_0 = 0).$

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H = (e_1, e_2, e_3, e_4, e_5)$;
- an general error locator polynomial z + f(x) (the degree t of z is 1) must satisfy the following conditions:
 - $f(e_i) = \alpha^i$, $\forall 1 \le i \le 5$, and f(0) = 0.
 - f(x) has degree at most 5

• coefficients $b_i \in \mathbb{F}_2$,

 $f(x) = b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x (f(0) = 0 \Rightarrow b_0 = 0).$

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H = (e_1, e_2, e_3, e_4, e_5)$;
- an general error locator polynomial z + f(x) (the degree t of z is 1) must satisfy the following conditions:
 - $f(e_i) = \alpha^i$, $\forall 1 \le i \le 5$, and f(0) = 0.
 - f(x) has degree at most 5
 - coefficients $b_i \in \mathbb{F}_2$,

 $f(x) = b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x \ (f(0) = 0 \Rightarrow b_0 = 0).$

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H = (e_1, e_2, e_3, e_4, e_5)$;
- an general error locator polynomial z + f(x) (the degree t of z is 1) must satisfy the following conditions:
 - $f(e_i) = \alpha^i$, $\forall 1 \le i \le 5$, and f(0) = 0.
 - f(x) has degree at most 5
 - coefficients $b_i \in \mathbb{F}_2$,

 $f(x) = b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x \ (f(0) = 0 \Rightarrow b_0 = 0).$

Example: second method

- The Gröbner basis of ideal $J \subset \mathbb{F}_{16}[b_1, b_2, b_3, b_4, b_5, e_1, e_2, e_3, e_4, e_5]$ given by
 - $\begin{array}{ll} J = \langle & e_1 + e_2 + e_3, \ e_3 + e_4 + e_5, \ \{e_i^{15} + 1\}_{1 \le i \le 5}, \ \{b_i^2 + b_i\}_{1 \le i \le 5}, \\ & f(e_1) + \gamma^3, \ f(e_2) + \gamma^6, \ f(e_3) + \gamma^9, \ f(e_4) + \gamma^{12}, \ f(e_5) + \gamma^{15} \rangle \end{array}$

where relations $e_1 = e_2 + e_3$, $e_4 = e_3 + e_5$ follow from matrix *G*.

We obtain:

$$e_1 = \gamma^6, e_2 = \gamma^2, e_3 = \gamma^3, e_4 = \gamma^{14}, e_5 = 1$$

Sac

H = (γ⁶, γ², γ³, γ¹⁴, 1) and the general error locator polynomial is f(x) = x³, as in the first method, part B.
Example: second method

• The Gröbner basis of ideal $J \subset \mathbb{F}_{16}[b_1, b_2, b_3, b_4, b_5, e_1, e_2, e_3, e_4, e_5]$ given by

$$\begin{array}{ll} J = \langle & e_1 + e_2 + e_3, \ e_3 + e_4 + e_5, \ \{e_i^{15} + 1\}_{1 \le i \le 5}, \ \{b_i^2 + b_i\}_{1 \le i \le 5}, \\ & f(e_1) + \gamma^3, \ f(e_2) + \gamma^6, \ f(e_3) + \gamma^9, \ f(e_4) + \gamma^{12}, \ f(e_5) + \gamma^{15} \rangle \end{array}$$

where relations $e_1 = e_2 + e_3$, $e_4 = e_3 + e_5$ follow from matrix *G*.

We obtain:

$$e_1 = \gamma^6, e_2 = \gamma^2, e_3 = \gamma^3, e_4 = \gamma^{14}, e_5 = 1$$

Sac

H = (γ⁶, γ², γ³, γ¹⁴, 1) and the general error locator polynomial is f(x) = x³, as in the first method, part B.

 Definitions and properties
 Examples
 Weight distribution
 General error locator polynomial
 Oth family of codes
 Conclusion

 000
 000
 000
 000
 000
 000
 000
 000

 Ideals for the decoding of nth-root codes

Example: second method

• The Gröbner basis of ideal $J \subset \mathbb{F}_{16}[b_1, b_2, b_3, b_4, b_5, e_1, e_2, e_3, e_4, e_5]$ given by

$$\begin{array}{ll} J = \langle & e_1 + e_2 + e_3, \ e_3 + e_4 + e_5, \ \{e_i^{15} + 1\}_{1 \le i \le 5}, \ \{b_i^2 + b_i\}_{1 \le i \le 5}, \\ & f(e_1) + \gamma^3, \ f(e_2) + \gamma^6, \ f(e_3) + \gamma^9, \ f(e_4) + \gamma^{12}, \ f(e_5) + \gamma^{15} \rangle \end{array}$$

where relations $e_1 = e_2 + e_3$, $e_4 = e_3 + e_5$ follow from matrix *G*.

We obtain:

$$e_1 = \gamma^6, e_2 = \gamma^2, e_3 = \gamma^3, e_4 = \gamma^{14}, e_5 = 1$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

H = (γ⁶, γ², γ³, γ¹⁴, 1) and the general error locator polynomial is f(x) = x³, as in the first method, part B.

Definitions and properties Examples OOO Weight distribution General error locator polynomial Othr family of codes Conclusion

Example: second method

• The Gröbner basis of ideal $J \subset \mathbb{F}_{16}[b_1, b_2, b_3, b_4, b_5, e_1, e_2, e_3, e_4, e_5]$ given by

$$\begin{array}{ll} J = \langle & e_1 + e_2 + e_3, \ e_3 + e_4 + e_5, \ \{e_i^{15} + 1\}_{1 \le i \le 5}, \ \{b_i^2 + b_i\}_{1 \le i \le 5}, \\ & f(e_1) + \gamma^3, \ f(e_2) + \gamma^6, \ f(e_3) + \gamma^9, \ f(e_4) + \gamma^{12}, \ f(e_5) + \gamma^{15} \rangle \end{array}$$

where relations $e_1 = e_2 + e_3$, $e_4 = e_3 + e_5$ follow from matrix *G*.

We obtain:

$$e_1 = \gamma^6, \ e_2 = \gamma^2, \ e_3 = \gamma^3, \ e_4 = \gamma^{14}, \ e_5 = 1$$

H = (γ⁶, γ², γ³, γ¹⁴, 1) and the general error locator polynomial is f(x) = x³, as in the first method, part B.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	000000000	000	00
Ideals for the decoding of n	th-root cod	es			

• au be a natural number corresponding to the number of errors,

 μ be a natural number corresponding to the number of erasures and such that 2τ + μ < d.

We have to find solutions of equations of type:

$$\bar{s}_j + \sum_{l=1}^{\tau} a_l g_j(\alpha^{k_l}) + \sum_{\bar{l}=1}^{\nu} \bar{c}_{\bar{l}} g_j(\alpha^{h_{\bar{l}}}), \quad j = 1, \dots, r$$
 (7)

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

where

{k₁}, {a_i} and {c₁} are unknown
 {s
_i}, {h_i} are known.

- $\bullet \ \tau$ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2\tau + \mu < d$.

We have to find solutions of equations of type:

$$\bar{s}_j + \sum_{l=1}^{\tau} a_l g_j(\alpha^{k_l}) + \sum_{\bar{l}=1}^{\nu} \bar{c}_{\bar{l}} g_j(\alpha^{h_{\bar{l}}}), \quad j = 1, \dots, r$$
(7)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

where

{k₁}, {a_i} and {c₁} are unknown
 {s
_i}, {h_i} are known.

- $\bullet \ \tau$ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2\tau + \mu < d$.

We have to find solutions of equations of type:

$$\bar{s}_j + \sum_{l=1}^{\tau} a_l g_j(\alpha^{k_l}) + \sum_{\bar{l}=1}^{\nu} \bar{c}_{\bar{l}} g_j(\alpha^{h_{\bar{l}}}), \quad j = 1, \dots, r$$
 (7)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

where

- $\bullet \ \tau$ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2\tau + \mu < d$.

We have to find solutions of equations of type:

$$\bar{s}_j + \sum_{l=1}^{\tau} a_l g_j(\alpha^{k_l}) + \sum_{\bar{l}=1}^{\nu} \bar{c}_{\bar{l}} g_j(\alpha^{h_{\bar{l}}}), \quad j = 1, \dots, r$$
 (7)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

where

- $\bullet \ \tau$ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2\tau + \mu < d$.

We have to find solutions of equations of type:

$$\bar{s}_j + \sum_{l=1}^{\tau} a_l g_j(\alpha^{k_l}) + \sum_{\bar{l}=1}^{\nu} \bar{c}_{\bar{l}} g_j(\alpha^{h_{\bar{l}}}), \quad j = 1, \dots, r$$
 (7)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

where

•
$$\{k_l\}, \{a_l\}$$
 and $\{c_{\overline{l}}\}$ are unknown

•
$$\{\overline{s}_j\}, \{h_{\overline{l}}\}$$
 are known.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	000000000	000	00
Ideals for the decoding of r	th-root cod	es			

- variables W = (w_ν,..., w₁), where {w_h} stand for erasure locations (α^{h_η});
- $U = (u_1, \dots, u_{\nu})$, where $\{u_h\}$ stand for erasure values $\overline{c_i}$ (h = 1, ..., ν).

When the word v(x) is received, the number ν of erasures and their positions $\{w_h\}$ are known.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 $\{x_j\}$ stand for the syndromes $(j = 1, \dots, r)$, as:

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	000000000	000	00
Ideals for the decoding of r	th-root cod	es			

- variables $W = (w_{\nu}, \dots, w_1)$, where $\{w_h\}$ stand for erasure locations (α^{h_l}) ;
- $U = (u_1, \dots, u_{\nu})$, where $\{u_h\}$ stand for erasure values $\overline{c}_{\overline{l}}$ (h = 1, ..., ν).

When the word v(x) is received, the number ν of erasures and their positions $\{w_h\}$ are known.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 $\{x_j\}$ stand for the syndromes $(j = 1, \dots, r)$, as:

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	000000000	000	00
Ideals for the decoding of n	th-root cod	es			

- variables W = (w_ν,..., w₁), where {w_h} stand for erasure locations (α^{h_i});
- $U = (u_1, \ldots, u_{\nu})$, where $\{u_h\}$ stand for erasure values $\bar{c}_{\bar{l}}$ (h = 1, ..., ν).

When the word v(x) is received, the number ν of erasures and their positions $\{w_h\}$ are known.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

 $\{x_j\}$ stand for the syndromes $(j = 1, \dots, r)$, as:

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	000000000	000	00
Ideals for the decoding of r	th-root cod	es			

- variables W = (w_ν,..., w₁), where {w_h} stand for erasure locations (α^{h_i});
- $U = (u_1, \ldots, u_{\nu})$, where $\{u_h\}$ stand for erasure values $\bar{c}_{\bar{l}}$ (h = 1, ..., ν).

When the word v(x) is received, the number ν of erasures and their positions $\{w_h\}$ are known.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

```
\{x_j\} stand for the syndromes (j = 1, \dots, r), as:
```

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	000000000	000	00
Ideals for the decoding of r	th-root cod	es			

- variables $W = (w_{\nu}, \dots, w_1)$, where $\{w_h\}$ stand for erasure locations (α^{h_l}) ;
- $U = (u_1, \ldots, u_{\nu})$, where $\{u_h\}$ stand for erasure values $\bar{c}_{\bar{l}}$ (h = 1, ..., ν).

When the word v(x) is received, the number ν of erasures and their positions $\{w_h\}$ are known.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 $\{x_j\}$ stand for the syndromes $(j = 1, \dots, r)$, as:

➡ Skip description for the erasure ideal

000000000

Definitions and properties Examples Weight distribution General error locator polynomial Othr family of codes Conclusion

Sar

Ideals for the decoding of nth-root codes

$$J^{C,\tau,\nu} = \langle \begin{cases} \sum_{i=1}^{\tau} y_i g_i(z_i) + \sum_{i=1}^{\nu} u_i g_j(w_i) - x_j \end{cases}_{j=1,\dots,\tau,\tau}, \\ \{z_i^{n+1} - z_i\}_{i=1,\dots,\tau}, \qquad \{y_i^{q-1} - 1\}_{i=1,\dots,\tau}, \\ \{u_h^q - u_h\}_{h=1,\dots,\nu}, \qquad \{w_h^n - 1\}_{h=1,\dots,\nu}, \\ \{x_j^{q^m} - x_j\}_{j=1,\dots,\tau}, \qquad \{\rho(w_h, w_k)\}_{h \neq k, h, k=1,\dots,\nu}, \\ \{z_i p(z_i, w_h)\}_{i=1,\dots,\tau,h=1,\dots,\nu}, \qquad \{z_i z_j p(z_i, z_j)\}_{i \neq j, i, j=1,\dots,\tau} \rangle$$

- $\sum_{l=1}^{\tau} y_l g_l(z_l) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_l(w_{\bar{l}}) x_{\bar{l}}$ characterize the nth-root
- $z_i^{n+1} z_i$ ensure that z_i are nth-roots of unity or 0;
- $y_i^{q-1} 1$, $w_h^n 1$, $u_h^q u_h$ ensure that $y_i, w_h \in \mathbb{F}_q^*$ and
- $z_i p(z_i, w_h)$ ensure that an error cannot occur in a position
- $p(w_h, w_k)$ ensure that any two erasure locations are distinct;
- $z_i z_j p(z_i, z_j)$ ensure that any two error locations are distinct.

Definitions and properties Examples 000 Weight distribution 000 Octoare polynomial 000 Octoare polynomial 000 Conclusion 000 Octoare 000 O

Ideals for the decoding of nth-root codes

$$J^{C,\tau,\nu} = \langle \begin{cases} \sum_{i=1}^{\tau} y_i g_j(z_i) + \sum_{i=1}^{\nu} u_i g_j(w_i) - x_j \end{cases}_{j=1,...,r,'} \\ \{z_i^{n+1} - z_i\}_{i=1,...,\tau}, \qquad \{y_i^{q-1} - 1\}_{i=1,...,\tau}, \\ \{u_h^q - u_h\}_{h=1,...,\nu}, \qquad \{w_h^n - 1\}_{h=1,...,\nu}, \\ \{x_j^{q^m} - x_j\}_{j=1,...,r}, \qquad \{p(w_h, w_k)\}_{h\neq k,h,k=1,...,\nu}, \\ \{z_i p(z_i, w_h)\}_{i=1,...,\tau,h=1,...,\nu}, \qquad \{z_i z_j p(z_i, z_j)\}_{i\neq j,i,j=1,...,\tau} \rangle.$$

- $\sum_{l=1}^{\tau} y_l g_j(z_l) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) x_j$ characterize the nth-root code;
- $z_i^{n+1} z_i$ ensure that z_i are nth-roots of unity or 0;
- $y_i^{q-1} 1$, $w_h^n 1$, $u_h^q u_h$ ensure that $y_i, w_h \in \mathbb{F}_q^*$ and $u_h \in \mathbb{F}_q$;
- z_ip(z_i, w_h) ensure that an error cannot occur in a position corresponding to an erasure;
- $p(w_h, w_k)$ ensure that any two erasure locations are distinct;
- $z_i z_j p(z_i, z_j)$ ensure that any two error locations are distinct. Ideal $J^{C,\tau,\nu}$ depends only on code C and on ν .

Definitions and properties Examples 000 Weight distribution 000 October 000 Oc

Ideals for the decoding of nth-root codes

$$J^{C,\tau,\nu} = \langle \begin{cases} \sum_{i=1}^{\tau} y_i g_j(z_i) + \sum_{i=1}^{\nu} u_i g_j(w_i) - x_j \end{cases}_{j=1,\dots,r,i} \\ \{z_i^{n+1} - z_i\}_{i=1,\dots,\tau}, \qquad \{y_i^{q-1} - 1\}_{i=1,\dots,\tau}, \\ \{u_h^q - u_h\}_{h=1,\dots,\nu}, \qquad \{w_h^n - 1\}_{h=1,\dots,\nu}, \\ \{x_j^{q^m} - x_j\}_{j=1,\dots,r}, \qquad \{p(w_h, w_k)\}_{h \neq k, h, k=1,\dots,\nu}, \\ \{z_i p(z_i, w_h)\}_{i=1,\dots,\tau, h=1,\dots,\nu}, \qquad \{z_i z_j p(z_i, z_j)\}_{i \neq j, i, j=1,\dots,\tau} \rangle.$$

- $\sum_{l=1}^{\tau} y_l g_j(z_l) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) x_j$ characterize the nth-root code;
- $z_i^{n+1} z_i$ ensure that z_i are nth-roots of unity or 0;
- $y_i^{q-1} 1$, $w_h^n 1$, $u_h^q u_h$ ensure that $y_i, w_h \in \mathbb{F}_q^*$ and $u_h \in \mathbb{F}_q$;
- z_ip(z_i, w_h) ensure that an error cannot occur in a position corresponding to an erasure;
- $p(w_h, w_k)$ ensure that any two erasure locations are distinct;
- $z_i z_j p(z_i, z_j)$ ensure that any two error locations are distinct. Ideal $J^{C,\tau,\nu}$ depends only on code C and on ν .

Definitions and properties ooo Weight distribution ooo Oeneral error locator polynomial Othr family of codes Conclusion

Ideals for the decoding of nth-root codes

$$\begin{aligned} J^{C,\tau,\nu} &= \langle & \left\{ \sum_{i=1}^{\tau} y_i g_j(z_i) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) - x_j \right\}_{j=1,...,r,'}, \\ & \left\{ z_i^{n+1} - z_i \right\}_{i=1,...,\tau}, & \left\{ y_i^{q-1} - 1 \right\}_{i=1,...,\tau}, \\ & \left\{ u_h^q - u_h \right\}_{h=1,...,\nu}, & \left\{ w_h^n - 1 \right\}_{h=1,...,\nu}, \\ & \left\{ x_j^{q^m} - x_j \right\}_{j=1,...,r}, & \left\{ p(w_h, w_k) \right\}_{h \neq k,h,k=1,...,\nu}, \\ & \left\{ z_i p(z_i, w_h) \right\}_{i=1,...,\tau,h=1,...,\nu}, & \left\{ z_i z_j p(z_i, z_j) \right\}_{i \neq j,i,j=1,...,\tau} \rangle. \end{aligned}$$

- $\sum_{l=1}^{\tau} y_l g_j(z_l) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) x_j$ characterize the nth-root code;
- $z_i^{n+1} z_i$ ensure that z_i are nth-roots of unity or 0;
- $y_i^{q-1} 1$, $w_h^n 1$, $u_h^q u_h$ ensure that $y_i, w_h \in \mathbb{F}_q^*$ and $u_h \in \mathbb{F}_q$;
- z_ip(z_i, w_h) ensure that an error cannot occur in a position corresponding to an erasure;
- $p(w_h, w_k)$ ensure that any two erasure locations are distinct;
- $z_i z_j p(z_i, z_j)$ ensure that any two error locations are distinct. Ideal $J^{C,\tau,\nu}$ depends only on code C and on ν .

Definitions and properties on the second sec

Ideals for the decoding of nth-root codes

.

$$\begin{aligned} J^{C,\tau,\nu} &= \langle & \left\{ \sum_{i=1}^{\tau} y_i g_j(z_i) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) - x_j \right\}_{j=1,...,r,'}, \\ & \left\{ z_i^{n+1} - z_i \right\}_{i=1,...,\tau}, & \left\{ y_i^{q-1} - 1 \right\}_{i=1,...,\tau}, \\ & \left\{ u_h^q - u_h \right\}_{h=1,...,\nu}, & \left\{ w_h^n - 1 \right\}_{h=1,...,\nu}, \\ & \left\{ x_j^{q^m} - x_j \right\}_{j=1,...,r}, & \left\{ p(w_h, w_k) \right\}_{h \neq k,h,k=1,...,\nu}, \\ & \left\{ z_i p(z_i, w_h) \right\}_{i=1,...,\tau,h=1,...,\nu}, & \left\{ z_i z_j p(z_i, z_j) \right\}_{i \neq j,i,j=1,...,\tau} \rangle. \end{aligned}$$

- $\sum_{l=1}^{\tau} y_l g_j(z_l) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) x_j$ characterize the nth-root code;
- $z_i^{n+1} z_i$ ensure that z_i are nth-roots of unity or 0;
- $y_i^{q-1} 1$, $w_h^n 1$, $u_h^q u_h$ ensure that $y_i, w_h \in \mathbb{F}_q^*$ and $u_h \in \mathbb{F}_q$;
- z_ip(z_i, w_h) ensure that an error cannot occur in a position corresponding to an erasure;
- p(w_h, w_k) ensure that any two erasure locations are distinct;
- $z_i z_j p(z_i, z_j)$ ensure that any two error locations are distinct. Ideal $J^{C,\tau,\nu}$ depends only on code C and on ν .

Definitions and properties on the second sec

Ideals for the decoding of nth-root codes

.

$$\begin{aligned} J^{C,\tau,\nu} &= \langle & \left\{ \sum_{i=1}^{\tau} y_i g_j(z_i) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) - x_j \right\}_{j=1,...,r,'}, \\ & \left\{ z_i^{n+1} - z_i \right\}_{i=1,...,\tau}, & \left\{ y_i^{q-1} - 1 \right\}_{i=1,...,\tau}, \\ & \left\{ u_h^q - u_h \right\}_{h=1,...,\nu}, & \left\{ w_h^n - 1 \right\}_{h=1,...,\nu}, \\ & \left\{ x_j^{q^m} - x_j \right\}_{j=1,...,r}, & \left\{ p(w_h, w_k) \right\}_{h \neq k,h,k=1,...,\nu}, \\ & \left\{ z_i p(z_i, w_h) \right\}_{i=1,...,\tau,h=1,...,\nu}, & \left\{ z_i z_j p(z_i, z_j) \right\}_{i \neq j,i,j=1,...,\tau} \rangle. \end{aligned}$$

- $\sum_{l=1}^{\tau} y_l g_j(z_l) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) x_j$ characterize the nth-root code;
- $z_i^{n+1} z_i$ ensure that z_i are nth-roots of unity or 0;
- $y_i^{q-1} 1$, $w_h^n 1$, $u_h^q u_h$ ensure that $y_i, w_h \in \mathbb{F}_q^*$ and $u_h \in \mathbb{F}_q$;
- $z_i p(z_i, w_h)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p(w_h, w_k)$ ensure that any two erasure locations are distinct;
- $z_i z_j p(z_i, z_j)$ ensure that any two error locations are distinct. Ideal $J^{C,\tau,\nu}$ depends only on code C and on ν .

Definitions and properties on the second sec

Ideals for the decoding of nth-root codes

.

$$\begin{aligned} J^{\mathcal{C},\tau,\nu} &= \langle & \left\{ \sum_{i=1}^{\tau} y_i g_j(z_i) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) - x_j \right\}_{j=1,...,r,}, \\ & \left\{ z_i^{n+1} - z_i \right\}_{i=1,...,\tau}, & \left\{ y_i^{q-1} - 1 \right\}_{i=1,...,\tau}, \\ & \left\{ u_h^q - u_h \right\}_{h=1,...,\nu}, & \left\{ w_h^n - 1 \right\}_{h=1,...,\nu}, \\ & \left\{ x_j^{q^m} - x_j \right\}_{j=1,...,r}, & \left\{ p(w_h, w_k) \right\}_{h \neq k,h,k=1,...,\nu}, \\ & \left\{ z_i p(z_i, w_h) \right\}_{i=1,...,\tau,h=1,...,\nu}, & \left\{ z_i z_j p(z_i, z_j) \right\}_{i \neq j,i,j=1,...,\tau} \rangle. \end{aligned}$$

We observe that polynomials:

- $\sum_{l=1}^{\tau} y_l g_j(z_l) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) x_j$ characterize the nth-root code;
- $z_i^{n+1} z_i$ ensure that z_i are nth-roots of unity or 0;
- $y_i^{q-1} 1$, $w_h^n 1$, $u_h^q u_h$ ensure that $y_i, w_h \in \mathbb{F}_q^*$ and $u_h \in \mathbb{F}_q$;
- $z_i p(z_i, w_h)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p(w_h, w_k)$ ensure that any two erasure locations are distinct;
- $z_i z_j p(z_i, z_j)$ ensure that any two error locations are distinct.

deal $J^{C,\tau,\nu}$ depends only on code C and on ν .

Definitions and properties oo0 Weight distribution October Oct

Ideals for the decoding of nth-root codes

$$\begin{aligned} J^{\mathcal{C},\tau,\nu} &= \langle & \left\{ \sum_{i=1}^{\tau} y_i g_j(z_i) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) - x_j \right\}_{j=1,...,r,}, \\ & \left\{ z_i^{n+1} - z_i \right\}_{i=1,...,\tau}, & \left\{ y_i^{q-1} - 1 \right\}_{i=1,...,\tau}, \\ & \left\{ u_h^q - u_h \right\}_{h=1,...,\nu}, & \left\{ w_h^n - 1 \right\}_{h=1,...,\nu}, \\ & \left\{ x_j^{q^m} - x_j \right\}_{j=1,...,r}, & \left\{ p(w_h, w_k) \right\}_{h \neq k,h,k=1,...,\nu}, \\ & \left\{ z_i p(z_i, w_h) \right\}_{i=1,...,\tau,h=1,...,\nu}, & \left\{ z_i z_j p(z_i, z_j) \right\}_{i \neq j,i,j=1,...,\tau} \rangle. \end{aligned}$$

- $\sum_{l=1}^{\tau} y_l g_j(z_l) + \sum_{\bar{l}}^{\nu} u_{\bar{l}} g_j(w_{\bar{l}}) x_j$ characterize the nth-root code;
- $z_i^{n+1} z_i$ ensure that z_i are nth-roots of unity or 0;
- $y_i^{q-1} 1$, $w_h^n 1$, $u_h^q u_h$ ensure that $y_i, w_h \in \mathbb{F}_q^*$ and $u_h \in \mathbb{F}_q$;
- $z_i p(z_i, w_h)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p(w_h, w_k)$ ensure that any two erasure locations are distinct;
- $z_i z_j p(z_i, z_j)$ ensure that any two error locations are distinct. Ideal $J^{C,\tau,\nu}$ depends only on code C and on ν .

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
Ideals for the decoding of n	th-root code	es			

Proposition

In Gröbner basis $\mathcal{G}^{\mathcal{C},\tau,\nu}$ there is a unique polynomial of type

$$g = z_{\tau}^{\tau} + \mathsf{a}_{\tau-1} z^{\tau-1} + \ldots + \mathsf{a}_0, \, \mathsf{a}_i \in \mathbb{F}_{q^m}[X, W].$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

Theorem

If code C is a proper maximal zerofree nth-root code, then C possesses general error locator polynomials of type ν , for any $\nu \geq 0$.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion 00
Ideals for the decoding of r	th-root cod	es			

Proposition

In Gröbner basis $\mathcal{G}^{\mathcal{C},\tau,\nu}$ there is a unique polynomial of type

$$g = z_{\tau}^{\tau} + \mathsf{a}_{\tau-1} z^{\tau-1} + \ldots + \mathsf{a}_0, \, \mathsf{a}_i \in \mathbb{F}_{q^m}[X, W].$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem

If code C is a proper maximal zerofree nth-root code, then C possesses general error locator polynomials of type ν , for any $\nu \ge 0$.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Ideals for the decoding of r	nth-root cod	les			
Example III					

Let C' be the shortened code obtained from code C presented in Example I. Code C' is a [7,1,6] linear code, so that τ (errors) and μ (erasures) satisfy relation $\tau + \mu < 6$. If $\tau = 1, \mu = 2$, the syndrome ideal is

$$J = \{g_1(z_1) + u_1g_1(w_1) + u_2g(w_2) + x_1, g_2(z_1) + u_1g_2(w_1) + u_2g_2(w_2) + x_2, z_1^8 - z_1, w_1^7 - 1, w_2^7 - 1, x_1^8 - x_1, x_2^8 + x_2, u_1^2 + u_1, u_2^2 + u_2, z_1\rho(z_1, w_1), z_1\rho(z_1, w_2), \rho(w_1, w_2)\}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

and in the reduced Gröbner basis there is only one polynomial having z_1 as leading term (see Appendix of [4]).

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
Cyclic codes					

Let g be a divisor of $x^n - 1$ over \mathbb{F}_q . We define S_C as the set $S_C = \{i_1, \ldots, i_{n-k} | g(\alpha^{i_j}) = 0, 1 \le i_j \le n\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$H = \begin{pmatrix} 1 & \alpha^{i_1} & \alpha^{2i_1} & \dots & \alpha^{(n-1)i_1} \\ 1 & \alpha^{i_2} & \alpha^{2i_2} & \dots & \alpha^{(n-1)i_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{i_n-k} & \alpha^{2i_n-k} & \dots & \alpha^{(n-1)i_n-k} \end{pmatrix}$$

The **cyclic** code C generated by g is the linear code C over \mathbb{F}_q such that H is a parity-check matrix for C.

• $L = R_n$, i.e. $L = \{\alpha, \alpha^2, \dots, \alpha^n\}$

•
$$\mathcal{P} = \{x^{i_j} \mid i_j \in S_C\}$$

• C as the nth-root code $\Omega(q, n, q^m, R_n, \{x^{i_j} \mid i_j \in S_C\})$

Proposition

Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial.

nan

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
Cyclic codes					

Let g be a divisor of $x^n - 1$ over \mathbb{F}_q . We define S_C as the set $S_C = \{i_1, \ldots, i_{n-k} | g(\alpha^{i_j}) = 0, 1 \le i_j \le n\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$H = \begin{pmatrix} 1 & \alpha^{i_1} & \alpha^{2i_1} & \dots & \alpha^{(n-1)i_1} \\ 1 & \alpha^{i_2} & \alpha^{2i_2} & \dots & \alpha^{(n-1)i_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{i_n-k} & \alpha^{2i_n-k} & \dots & \alpha^{(n-1)i_n-k} \end{pmatrix}$$

The **cyclic** code *C* generated by *g* is the linear code *C* over \mathbb{F}_q such that *H* is a parity-check matrix for *C*.

•
$$L = R_n$$
, i.e. $L = \{\alpha, \alpha^2, \dots, \alpha^n\}$

•
$$\mathcal{P} = \{x^{i_j} \mid i_j \in S_C\}$$

• C as the nth-root code $\Omega(q, n, q^m, R_n, \{x^{i_j} \mid i_j \in S_C\})$

Proposition

Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial.

Sac

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
Cyclic codes					

Let g be a divisor of $x^n - 1$ over \mathbb{F}_q . We define S_C as the set $S_C = \{i_1, \ldots, i_{n-k} | g(\alpha^{i_j}) = 0, 1 \le i_j \le n\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$H = \begin{pmatrix} 1 & \alpha^{i_1} & \alpha^{2i_1} & \dots & \alpha^{(n-1)i_1} \\ 1 & \alpha^{i_2} & \alpha^{2i_2} & \dots & \alpha^{(n-1)i_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{i_n-k} & \alpha^{2i_n-k} & \dots & \alpha^{(n-1)i_n-k} \end{pmatrix}$$

The **cyclic** code *C* generated by *g* is the linear code *C* over \mathbb{F}_q such that *H* is a parity-check matrix for *C*.

•
$$L = R_n$$
, i.e. $L = \{\alpha, \alpha^2, \dots, \alpha^n\}$

•
$$\mathcal{P} = \{x^{i_j} \mid i_j \in S_C\}$$

• C as the nth-root code $\Omega(q, n, q^m, R_n, \{x^{i_j} \mid i_j \in S_C\})$

Proposition

Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial.

Sac

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
Cyclic codes					

Let g be a divisor of $x^n - 1$ over \mathbb{F}_q . We define S_C as the set $S_C = \{i_1, \ldots, i_{n-k} | g(\alpha^{i_j}) = 0, 1 \le i_j \le n\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$H = \begin{pmatrix} 1 & \alpha^{i_1} & \alpha^{2i_1} & \dots & \alpha^{(n-1)i_1} \\ 1 & \alpha^{i_2} & \alpha^{2i_2} & \dots & \alpha^{(n-1)i_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{i_n-k} & \alpha^{2i_n-k} & \dots & \alpha^{(n-1)i_n-k} \end{pmatrix}$$

The **cyclic** code *C* generated by *g* is the linear code *C* over \mathbb{F}_q such that *H* is a parity-check matrix for *C*.

• $L = R_n$, i.e. $L = \{\alpha, \alpha^2, \dots, \alpha^n\}$

•
$$\mathcal{P} = \{x^{i_j} \mid i_j \in S_C\}$$

• C as the nth-root code $\Omega(q, n, q^m, R_n, \{x^{i_j} \mid i_j \in S_C\})$

Proposition

Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial.

Sac

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	●00	00
Cyclic codes					

Let g be a divisor of $x^n - 1$ over \mathbb{F}_q . We define S_C as the set $S_C = \{i_1, \ldots, i_{n-k} | g(\alpha^{i_j}) = 0, 1 \le i_j \le n\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$H = \begin{pmatrix} 1 & \alpha^{i_1} & \alpha^{2i_1} & \dots & \alpha^{(n-1)i_1} \\ 1 & \alpha^{i_2} & \alpha^{2i_2} & \dots & \alpha^{(n-1)i_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{i_n-k} & \alpha^{2i_n-k} & \dots & \alpha^{(n-1)i_n-k} \end{pmatrix}$$

The **cyclic** code *C* generated by *g* is the linear code *C* over \mathbb{F}_q such that *H* is a parity-check matrix for *C*.

• $L = R_n$, i.e. $L = \{\alpha, \alpha^2, \dots, \alpha^n\}$

•
$$\mathcal{P} = \{x^{i_j} \mid i_j \in S_C\}$$

• C as the nth-root code $\Omega(q, n, q^m, R_n, \{x^{i_j} \mid i_j \in S_C\})$

Proposition

Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Cyclic codes					

Shortened cyclic codes

Shortened cyclic codes can be seen as nth-root codes: if D is a subset of positions where cyclic code C is shortened, then code C(D) is an nth-root code $\Omega(q, n, q^m, L, \mathcal{P})$, where q, n and \mathcal{P} are as above and $L = \{\alpha^j \mid 1 \le j \le n, j \notin D\}$.

Reed Solomon code

A RS code is a cyclic code with generator polynomial $g(x) = (x - \alpha^b)(x - \alpha^{b+1}) \dots (x - \alpha^{b-\delta-2})$, where α is the primitive element of \mathbb{F}_{q^m} . A RS code can be treated as an nth-root code $\Omega(q, n, q^m, \mathbb{F}_{q^m}^*, \{x^i \mid i = b, b+1, \dots, b+\delta-2\})$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Cyclic codes					

Shortened cyclic codes

Shortened cyclic codes can be seen as nth-root codes: if D is a subset of positions where cyclic code C is shortened, then code C(D) is an nth-root code $\Omega(q, n, q^m, L, \mathcal{P})$, where q, n and \mathcal{P} are as above and $L = \{\alpha^j \mid 1 \le j \le n, j \notin D\}$.

Reed Solomon code

A RS code is a cyclic code with generator polynomial $g(x) = (x - \alpha^b)(x - \alpha^{b+1}) \dots (x - \alpha^{b-\delta-2})$, where α is the primitive element of \mathbb{F}_{q^m} . A RS code can be treated as an nth-root code $\Omega(q, n, q^m, \mathbb{F}_{q^m}^*, \{x^i \mid i = b, b+1, \dots, b+\delta-2\})$.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	0.0	00
Goppa codes					

Let $g(z) \in \mathbb{F}_{q^m}[z]$, deg $(g) = r \ge 2$, and let $L = \{\alpha_1, \ldots, \alpha_N\}$ denote a subset of elements of \mathbb{F}_{q^m} which are not roots of g(z). Then the **Goppa code** $\Gamma(L, g)$ is defined as the set of all vectors $c = (c_1, \ldots, c_N)$ with components in \mathbb{F}_q that satisfy the condition:

$$\sum_{i=1}^{N} rac{c_i}{z-lpha_i} \equiv 0 \mod g(z)$$
 .

A parity-check matrix for $\Gamma(L,g)$ can be written as:

$$H = \begin{pmatrix} \frac{1}{g(\alpha_1)} & \frac{1}{g(\alpha_2)} & \cdots & \frac{1}{g(\alpha_N)} \\ \frac{\alpha_1}{g(\alpha_1)} & \frac{\alpha_2}{g(\alpha_2)} & \cdots & \frac{\alpha_N}{g(\alpha_N)} \\ \frac{\alpha_1}{g(\alpha_1)} & \frac{\alpha_2}{g(\alpha_2)} & \cdots & \frac{\alpha_N}{g(\alpha_N)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\alpha_1'^{-1}}{g(\alpha_1)} & \frac{\alpha_2'^{-1}}{g(\alpha_2)} & \cdots & \frac{\alpha_N'}{g(\alpha_N)} \end{pmatrix} .$$

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Goppa codes					

• Setting
$$q$$
, m and L as in definition, $n = q^m - 1$,
 $\mathcal{P} = \{\frac{x^i}{g(x)}, \forall i = 0, \dots, r - 1\}$

$$\Gamma = \Omega\left(q, q^m - 1, q^m, L, \left\{\frac{x^i}{g(x)}|i=0, \dots, r-1\right\}\right).$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Э

Sac

Proposition

If the Goppa polynomial g is in $\mathbb{F}_q[x]$, then $\Gamma(L,g)$ is a proper nth-root code. In particular, if $L = \mathbb{F}_{q^m} \setminus \{0\}$, code $\Gamma(L,g)$ is proper and maximal.

Theorem

Any classical Goppa code $\Gamma(L, g)$ such that $g \in \mathbb{F}_q[x]$ and $L = \mathbb{F}_{q^m}^*$ admits a general error locator polynomial.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
Goppa codes					

• Setting
$$q$$
, m and L as in definition, $n = q^m - 1$,
 $\mathcal{P} = \{\frac{x^i}{g(x)}, \forall i = 0, \dots, r - 1\}$

$$\Gamma = \Omega\left(q, q^m - 1, q^m, L, \left\{\frac{x^i}{g(x)}|i=0, \ldots, r-1\right\}\right).$$

・ロト ・四ト ・ヨト ・ヨト

Э

Sac

Proposition

If the Goppa polynomial g is in $\mathbb{F}_q[x]$, then $\Gamma(L,g)$ is a proper nth-root code. In particular, if $L = \mathbb{F}_{q^m} \setminus \{0\}$, code $\Gamma(L,g)$ is proper and maximal.

Theorem

Any classical Goppa code $\Gamma(L,g)$ such that $g \in \mathbb{F}_q[x]$ and $L = \mathbb{F}_{q^m}^*$ admits a general error locator polynomial.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
Goppa codes					

• Setting
$$q$$
, m and L as in definition, $n = q^m - 1$,
 $\mathcal{P} = \{\frac{x^i}{g(x)}, \forall i = 0, \dots, r - 1\}$

$$\Gamma = \Omega\left(q, q^m - 1, q^m, L, \left\{\frac{x^i}{g(x)}|i=0,\ldots,r-1\right\}
ight)$$

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

Proposition

If the Goppa polynomial g is in $\mathbb{F}_q[x]$, then $\Gamma(L,g)$ is a proper nth-root code. In particular, if $L = \mathbb{F}_{q^m} \setminus \{0\}$, code $\Gamma(L,g)$ is proper and maximal.

Theorem

Any classical Goppa code $\Gamma(L,g)$ such that $g \in \mathbb{F}_q[x]$ and $L = \mathbb{F}_{q^m}^*$ admits a general error locator polynomial.

Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
000	000	000000	00000000	000	00
Goppa codes					

• Setting
$$q$$
, m and L as in definition, $n = q^m - 1$,
 $\mathcal{P} = \{\frac{x^i}{g(x)}, \forall i = 0, \dots, r - 1\}$

$$\Gamma = \Omega\left(q, q^m - 1, q^m, L, \left\{\frac{x^i}{g(x)}|i=0,\ldots,r-1\right\}
ight)$$

Proposition

If the Goppa polynomial g is in $\mathbb{F}_q[x]$, then $\Gamma(L,g)$ is a proper nth-root code. In particular, if $L = \mathbb{F}_{q^m} \setminus \{0\}$, code $\Gamma(L,g)$ is proper and maximal.

Theorem

Any classical Goppa code $\Gamma(L, g)$ such that $g \in \mathbb{F}_q[x]$ and $L = \mathbb{F}_{q^m}^*$ admits a general error locator polynomial.
Definitions and properties	Examples	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Goppa codes					

Consider the nth-root code of the first Example, shortened in position 0. It is a classical Goppa code with $g(x) = x^2 + x + 1$ and $L = \mathbb{F}_8^*$.

A general error locator polynomial for this code is

$$\begin{split} \mathcal{L} = & \mathbf{z_2^2} + \\ & z_2(x_1^5 x_2^2 + x_1^5 + x_1^3 x_2^2 + x_1^3 + x_1^2 x_2^2 + \\ & x_1^2 x_2 + x_1 x_2^5 + x_1 x_2^4 + x_1 x_2^3 + x_1 x_2^2 + \\ & x_1 x_2 + x_1 + x_2^7 + x_2^4 + x_2^3 + x_2^2 + 1) + \\ & x_1^5 x_2^2 + x_1^5 x_2 + x_1^5 + x_1^4 x_2^2 + \\ & x_1^3 x_2^3 + x_1^2 x_2 + x_1^2 + x_1 x_2^6 + \\ & x_1 x_2 + x_1 + x_2^7 + x_2^6 \,. \end{split}$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Goppa codes					

Consider irreducible Goppa codes, $\Gamma(L,g)$ such that $L = \mathbb{F}_{q^m}$. These codes admit also the following parity-check matrix H:

$$H = \left(\begin{array}{ccc} \frac{1}{\gamma - \zeta_0}, & \frac{1}{\gamma - \zeta_1}, & \cdots, & \frac{1}{\gamma - \zeta_{q^{m-1}}} \end{array}\right),$$

where $\gamma \in \mathbb{F}_{q^{mr}}$ is any root of g(x) and $\mathbb{F}_{q^m} = \{\zeta_i \mid 0 \leq i \leq q^m - 1\}$. We can extend the definition of nth-root codes to **generalized nth-root codes**, by allowing also $\mathcal{P} \subset \mathbb{F}_Q[X]$ with $\mathbb{F}_{q^m} \subset \mathbb{F}_Q$. In this sense, an irreducible Goppa code $\Gamma(L,g)$ can be considered as a generalized nth-root code $\Omega(q, q^m - 1, q^{mr}, \mathbb{F}_{q^{mr}}, \mathcal{P})$, where $\mathcal{P} = \{g(x)\} = \{\frac{1}{\gamma - x}\}$

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Goppa codes					

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Other families of codes

- Reed-Muller codes
- Hermitian codes

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Goppa codes					

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Other families of codes

- Reed-Muller codes
- Hermitian codes

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion ●○
Further research					

We can investigate on

- general error locator polynomial for nth-root non proper;
- which other class of codes are nth-root;
- which representation of nth-root permits to find a sparse general error locator polynomial.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion ●○
Further research					

We can investigate on

- general error locator polynomial for nth-root non proper;
- which other class of codes are nth-root;
- which representation of nth-root permits to find a sparse general error locator polynomial.

Definitions and properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion ●○
Further research					

We can investigate on

- general error locator polynomial for nth-root non proper;
- which other class of codes are nth-root;
- which representation of nth-root permits to find a sparse general error locator polynomial.

OOO	d properties	Examples 000	Weight distribution	General error locator polynomial	Othr family of codes	Conclusion
Bibliography						
	Fitzpatrick,	P., On the k	ey equation, IEEE Tr	ans. Inform. Theory, 1995, volume	= 41, 1290–1302, 5.	
	M. Giorgetti presented at Linz, Austria	, " <i>About th</i> Workshop I a, 1-6 may 2	e nth-root codes: a G D1: Groebner Bases in 006.	roebner basis approach to the weig n Cryptography, Coding Theory, an	<i>ht computation</i> ", poste d Algebraic Combinato	er rics,
	M. Giorgetti Coding and	, "A Gröbne Cryptograpł	er basis approach to ti ny, 22-23 may 2006, E	he weight computation of some new SCRI, UCC Cork, Ireland.	<i>v codes</i> ", Workshop on	I
	M. Giorgetti BCRI preprir	, M. Sala, A nt, www.bcr:	<i>commutative algebra</i> i.ucc.ie, number 58	a approach to linear codes, Universi , Boole Centre BCRI, UCC Cork, Ir	ty College Cork, 2006, eland.	
	M. Giorgetti Cryptograph	, M. Sala "(y, 16-20 Ap	General error locator p ril 2007, INRIA, Paris	oolynomials for nth-root codes", Wo , France.	orkshop on Coding and	I
	T. Mora, E. n < 63, Uni UCC Cork, I	Orsini, M. S versity Colle reland.	Sala, <i>General error lo</i> ge Cork, 2006, BCRI	cator polynomials for binary cyclic preprint, www.bcri.ucc.ie, numb	codes with $t <= 2$ and er 43, Boole Centre BC	d CRI,
	E. Orsini, M IEEE Trans.	. Sala, <i>Gen</i> Inform. The	eral error locator poly eory, 2007, vol. 53, pa	nomials for binary cyclic codes with g. 1095–1107.	$h \ t \ <= 2 \ and \ n \ < \ 63,$	
	E. Orsini, M vol. 200 pag	. Sala, <i>Corre</i> es 191–226,	ecting errors and eras number 1-2.	ures via the syndrome variety, J. Po	ure Appl. Algebra, 2005	ō,
	M. Caboara,	T. Mora, 7	The Chen-Reed-Helles	eth-Truong decoding algorithm and	l the Gianni-Kalkbrenne	er

Groebner shape theorem, Applicable Algebra in Engineering, Communication and Computing 2002, vol. 13,

p. 209-232