On some algebraic interpretation of classical codes

Marta Giorgetti

Department of Physic and Mathematics, Università dell'Insubria, Como

Soria Summer School on Computational Mathematics
2-11 July 2008
(1) Definitions and properties

- General nth-root codes
(2) Examples
- First example
- Second example: not all codes can be seen as proper maximal
- Third example
(3) Weight distribution
- Constructing ideals
- Algorithms
- Weight distribution for cosets

4. General error locator polynomial

- Definition
- Ideals for the decoding of nth-root codes
(5) Othr family of codes
- Cyclic codes
- Goppa codes

6 Conclusion

- Further research
- Bibliography

Generalize good properties of cyclic codes

Cyclic codes

- have a rich algebraic structure
- fast sharp estimates on their most important parameters and
- exact determination of parameters via commutative algebra techniques;
- posses decoding algorithm which is extremely efficient.

Our goal is to extend algebraic structure of cyclic codes;

Generalize good properties of cyclic codes

Cyclic codes

- have a rich algebraic structure
- fast sharp estimates on their most important parameters and
- exact determination of parameters via commutative algebra techniques;
- posses decoding algorithm which is extremely efficient.

Our goal is to extend algebraic structure of cyclic codes;

Generalize good properties of cyclic codes

Cyclic codes

- have a rich algebraic structure
- fast sharp estimates on their most important parameters and
- exact determination of parameters via commutative algebra techniques;
- posses decoding algorithm which is extremely efficient.

Our goal is to extend algebraic structure of cyclic codes;

Generalize good properties of cyclic codes

Cyclic codes

- have a rich algebraic structure
- fast sharp estimates on their most important parameters and
- exact determination of parameters via commutative algebra techniques;
- posses decoding algorithm which is extremely efficient.

Our goal is to extend algebraic structure of cyclic codes;

Generalize good properties of cyclic codes

Cyclic codes

- have a rich algebraic structure
- fast sharp estimates on their most important parameters and
- exact determination of parameters via commutative algebra techniques;
- posses decoding algorithm which is extremely efficient.

Our goal is to extend algebraic structure of cyclic codes;

Definition

Let

- \mathbf{q} be a power of prime, \mathbb{F}_{q} is the finite field of q elements,
- $\mathrm{n} \in \mathbb{N}, n \geq 1$ such that $(n, q)=1$,
- $\mathbf{R}_{\mathbf{n}}=\left\{\bar{z} \in \overline{\mathbb{F}}_{q} \mid \bar{z}^{n}=1\right\}$
- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_{n} \subseteq \mathbb{F}_{q^{m}}$, not necessary the smallest,
- $L \subset R_{n} \cup\{0\}, L=\left\{I_{1}, \ldots, I_{N}\right\}$,
- $\mathcal{P}=\left\{g_{1}(x), g_{2}(x), \ldots, g_{r}(x)\right\} \subset \mathbb{F}_{q^{m}}[x]$ such that $\forall i=1, \ldots, N$ exists at least $j=1, \ldots, r$ such that $\varepsilon_{j}\left(l_{i}\right) \neq 0$

Definition

Let

- q be a power of prime, \mathbb{F}_{q} is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that $(n, q)=1$,
- $\mathrm{R}_{\mathrm{n}}=\left\{\bar{z} \in \mathbb{F}_{q} \mid \bar{z}^{n}=1\right\}$,
- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_{n} \subseteq \mathbb{F}_{q^{m}}$, not necessary the smallest,
- $\mathbf{L} \subset R_{n} \cup\{0\}, L=\left\{I_{1}, \ldots, I_{N}\right\}$,
- $\mathcal{P}=\left\{g_{1}(x), g_{2}(x), \ldots, g_{r}(x)\right\} \subset \mathbb{F}_{q^{m}}[x]$ such that $\forall i=1, \ldots, N$ exists at least $j=1, \ldots, r$ such that $g_{j}\left(l_{i}\right) \neq 0$

Definition

Let

- q be a power of prime, \mathbb{F}_{q} is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that $(n, q)=1$,
- $\mathbf{R}_{\mathbf{n}}=\left\{\bar{z} \in \overline{\mathbb{F}}_{q} \mid \bar{z}^{n}=1\right\}$,
- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_{n} \subseteq \mathbb{F}_{q^{m}}$, not necessary the smallest,
- $\mathbf{L} \subset R_{n} \cup\{0\}, L=\left\{I_{1}, \ldots, I_{N}\right\}$,
- $\mathcal{P}=\left\{g_{1}(x), g_{2}(x), \ldots, g_{r}(x)\right\} \subset \mathbb{F}_{q^{m}}[x]$ such that $\forall i=1, \ldots, N$ exists at least $j=1, \ldots, r$ such that $g_{j}\left(l_{i}\right) \neq 0$

Definition

- \mathbf{q} be a power of prime, \mathbb{F}_{q} is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that $(n, q)=1$,
- $\mathbf{R}_{\mathbf{n}}=\left\{\bar{z} \in \overline{\mathbb{F}}_{q} \mid \bar{z}^{n}=1\right\}$,
- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_{n} \subseteq \mathbb{F}_{q^{m}}$, not necessary the smallest,

- $\mathcal{P}=\left\{g_{1}(x), g_{2}(x), \ldots, g_{r}(x)\right\} \subset \mathbb{F}_{q^{m}}[x]$ such that $\forall i=1, \ldots, N$ exists at least $j=1, \ldots, r$ such that $g_{j}\left(l_{i}\right) \neq 0$

Definition

- \mathbf{q} be a power of prime, \mathbb{F}_{q} is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that $(n, q)=1$,
- $\mathbf{R}_{\mathbf{n}}=\left\{\bar{z} \in \overline{\mathbb{F}}_{q} \mid \bar{z}^{n}=1\right\}$,
- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_{n} \subseteq \mathbb{F}_{q^{m}}$, not necessary the smallest,
- $\mathbf{L} \subset R_{n} \cup\{0\}, L=\left\{I_{1}, \ldots, I_{N}\right\}$,
- $\mathcal{P}=\left\{g_{1}(x), g_{2}(x), \ldots, g_{r}(x)\right\} \subset \mathbb{F}_{q^{m}}[x]$ such that

Definition

Let

- \mathbf{q} be a power of prime, \mathbb{F}_{q} is the finite field of q elements,
- $\mathbf{n} \in \mathbb{N}, n \geq 1$ such that $(n, q)=1$,
- $\mathbf{R}_{\mathbf{n}}=\left\{\bar{z} \in \overline{\mathbb{F}}_{q} \mid \bar{z}^{n}=1\right\}$,
- $\mathbf{m} \in \mathbb{N}, m \geq 1$ such that $R_{n} \subseteq \mathbb{F}_{q^{m}}$, not necessary the smallest,
- $\mathbf{L} \subset R_{n} \cup\{0\}, L=\left\{I_{1}, \ldots, I_{N}\right\}$,
- $\mathcal{P}=\left\{g_{1}(x), g_{2}(x), \ldots, g_{r}(x)\right\} \subset \mathbb{F}_{q^{m}}[x]$ such that $\forall i=1, \ldots, N$ exists at least $j=1, \ldots, r$ such that $g_{j}\left(l_{i}\right) \neq 0$.

Definition

Then $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ is the nth-root code defined over \mathbb{F}_{q} such that

$$
H=\left(\begin{array}{ccc}
g_{1}\left(I_{1}\right), & \ldots, & g_{1}\left(I_{N}\right) \\
g_{2}\left(I_{1}\right), & \ldots, & g_{2}\left(I_{N}\right) \\
\vdots & & \vdots \\
g_{r}\left(I_{1}\right), & \ldots, & g_{r}\left(I_{N}\right)
\end{array}\right)=\left(\begin{array}{c}
g_{1}(L) \\
g_{2}(L) \\
\vdots \\
g_{r}(L)
\end{array}\right)
$$

is its parity-check matrix.

General nth-root codes

Definition

Remark

$C=\left(q, n, q^{m}, L, \mathcal{P}\right)$ is linear over \mathbb{F}_{q}, its length is $N=|L|$ and its distance d is greater than or equal to 2, because there are no columns in H composed only of zeros.

Remark
Since any function from $\mathbb{F}_{q^{m}}$ to itself can be expressed as a polynomial, we can accept in \mathcal{P} also rational functions of type f / g $f, g \in \mathbb{F}_{q^{m}}$, such that $g(\bar{x}) \neq 0$ for any $\bar{x} \in \mathbb{F}_{q^{m}}$.

Definition

Remark

$C=\left(q, n, q^{m}, L, \mathcal{P}\right)$ is linear over \mathbb{F}_{q}, its length is $N=|L|$ and its distance d is greater than or equal to 2, because there are no columns in H composed only of zeros.

Remark

Since any function from $\mathbb{F}_{q^{m}}$ to itself can be expressed as a polynomial, we can accept in \mathcal{P} also rational functions of type f / g, $f, g \in \mathbb{F}_{q^{m}}$, such that $g(\bar{x}) \neq 0$ for any $\bar{x} \in \mathbb{F}_{q^{m}}$.

General nth-root codes

Properties

Definition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code and $v \in\left(\mathbb{F}_{q}\right)^{N}$.

- If $\bar{L}=\emptyset$, we say that C is maximal.
- If $\mathcal{P} \subset \mathbb{F}_{q}[x]$, we say that C is proper.
- If $0 \notin L$, we say that C is zerofree, non-zerofree otherwise.

General nth-root codes

Properties

Definition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code and $v \in\left(\mathbb{F}_{q}\right)^{N}$.

- If $\bar{L}=\emptyset$, we say that C is maximal.
- If $\mathcal{P} \subset \mathbb{F}_{q}[x]$, we say that C is proper.
- If $0 \notin L$, we say that C is zerofree, non-zerofree otherwise.

Properties

Definition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code and $v \in\left(\mathbb{F}_{q}\right)^{N}$.

- If $\bar{L}=\emptyset$, we say that C is maximal.
- If $\mathcal{P} \subset \mathbb{F}_{q}[x]$, we say that C is proper.
- If $0 \notin L$, we say that C is zerofree, non-zerofree otherwise.

Properties

Definition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code and $v \in\left(\mathbb{F}_{q}\right)^{N}$.

- If $\bar{L}=\emptyset$, we say that C is maximal.
- If $\mathcal{P} \subset \mathbb{F}_{q}[x]$, we say that C is proper.
- If $0 \notin L$, we say that C is zerofree, non-zerofree otherwise.

Proposition

Let C be a linear code over \mathbb{F}_{q} of length N and $d \geq 2$. Then C is an nth-root code for any $n \geq N-1,(n, q)=1$. In particular:
(1) if $n=N$, then C can be maximal zerofree,
(2) if $n=N-1$, then C is maximal non-zerofree.

Proposition

Let C be a linear code over \mathbb{F}_{q} of length N and $d \geq 2$. Then C is an nth-root code for any $n \geq N-1,(n, q)=1$. In particular:
(1) if $n=N$, then C can be maximal zerofree,
(2) if $n=N-1$, then C is maximal non-zerofree.

Corollary
Let C be a linear code. C is an nth-root code if and only if $d \geq 2$.
\downarrow Skip proofs

Let C be a linear code over \mathbb{F}_{q} of length N, dimension k and $d \geq 2$, with paritycheck matrix $H=\left(h_{i, j}\right) \in\left(\mathbb{F}_{q}\right)^{(N-k) \times N}$. Since $d \geq 2$ there is no $j=1, \ldots, N$ such that $h_{i, j}=0, \forall i=1, \ldots N-k$. Let n be a natural number such that $n \geq N-1$ and $(n, q)=1$. Let $R_{n}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the set of n th-roots of unity over \mathbb{F}_{q}.

- Suppose that $n \geq N$. Let L be a subset of $R_{n},|L|=N$, and $r=N-k$. Thanks to the Lagrange interpolation theorem we can find r polynomials $g_{i}(x) \in \mathbb{F}_{q^{m}}[x]$ such that $g_{i}\left(\alpha_{j}\right)=h_{i, j} \forall \alpha_{j} \in L, i=1, \ldots, r, j=1, \ldots, N$, viewing any $h_{i, j}$ as an element of $\mathbb{F}_{q^{m}}$. We collect polynomials $g_{i}(x)$ in set $\mathcal{P}=\left\{g_{i}\right\}_{1 \leq i \leq r}$. Polynomials $g_{i}(x)$ are such that for any $i=1, \cdots, r$ there is at least one $1 \leq j \leq r$ such that $g_{j}\left(\alpha_{i}\right) \neq 0$. Then it is obvious that code C can be seen as the zerofree nth-root code $\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$.
- With the above construction, if $n=N$ code C is maximal, since $L=R_{n}$.
- Let L be a set composed of 0 and $N-1$ elements of R_{n}. With the above argument it is easy to proof that C is a non-zerofree nth-root code. If $n=N-1$, code C is maximal non-zerofree, since $L=R_{n} \cup\{0\}$.

Let

- $\mathbf{q}=\mathbf{2}, \mathbf{n}=\mathbf{7}, \mathbf{q}^{\mathbf{m}}=\mathbf{8}, \mathbf{L}=\mathbb{F}_{\mathbf{2}^{3}}$,

$$
\mathcal{P}=\left\{g_{1}(\mathbf{x})=\frac{1}{x^{2}+x+1}, g_{2}(x)=\frac{x}{x^{2}+x+1}\right\}
$$

- $C=\Omega\left(2,7,8, \mathbb{F}_{8},\left\{g_{1}, g_{2}\right\}\right)$ is

Let

- $\mathbf{q}=\mathbf{2}, \mathbf{n}=\mathbf{7}, \mathbf{q}^{\mathbf{m}}=\mathbf{8}, \mathbf{L}=\mathbb{F}_{\mathbf{2}^{3}}$,

$$
\mathcal{P}=\left\{g_{1}(\mathbf{x})=\frac{1}{x^{2}+x+1}, g_{2}(x)=\frac{x}{x^{2}+x+1}\right\}
$$

- $C=\Omega\left(2,7,8, \mathbb{F}_{8},\left\{g_{1}, g_{2}\right\}\right)$ is
- non-zerofree $(0 \in L)$,
- maximal $\left(\bar{L}=R_{n} \backslash L=\emptyset\right)$,
- proper $\left(g_{1}(x), g_{2}(x) \in \mathbb{F}_{2}(x)\right)$
- parity-check matrix is the following:

Let

- $\mathbf{q}=\mathbf{2}, \mathbf{n}=\mathbf{7}, \mathbf{q}^{\mathbf{m}}=\mathbf{8}, \mathbf{L}=\mathbb{F}_{\mathbf{2}^{3}}$,

$$
\mathcal{P}=\left\{g_{1}(\mathbf{x})=\frac{1}{x^{2}+x+1}, g_{2}(x)=\frac{x}{x^{2}+x+1}\right\}
$$

- $C=\Omega\left(2,7,8, \mathbb{F}_{8},\left\{g_{1}, g_{2}\right\}\right)$ is
- non-zerofree $(0 \in L)$,
- maximal $\left(L=R_{n} \backslash L=\emptyset\right)$,
- proper $\left(g_{1}(x), g_{2}(x) \in \mathbb{F}_{2}(x)\right)$
- parity-check matrix is the following:

Let

- $\mathbf{q}=\mathbf{2}, \mathbf{n}=\mathbf{7}, \mathbf{q}^{\mathbf{m}}=\mathbf{8}, \mathbf{L}=\mathbb{F}_{\mathbf{2}^{3}}$,

$$
\mathcal{P}=\left\{g_{1}(x)=\frac{1}{x^{2}+x+1}, g_{2}(x)=\frac{x}{x^{2}+x+1}\right\}
$$

- $C=\Omega\left(2,7,8, \mathbb{F}_{8},\left\{g_{1}, g_{2}\right\}\right)$ is
- non-zerofree $(0 \in L)$,
- maximal $\left(\bar{L}=R_{n} \backslash L=\emptyset\right)$,
- parity-check matrix is the following:

Let

- $\mathbf{q}=\mathbf{2}, \mathbf{n}=\mathbf{7}, \mathbf{q}^{\mathbf{m}}=\mathbf{8}, \mathbf{L}=\mathbb{F}_{\mathbf{2}^{3}}$,

$$
\mathcal{P}=\left\{g_{1}(\mathbf{x})=\frac{1}{x^{2}+x+1}, g_{2}(\mathbf{x})=\frac{x}{x^{2}+x+1}\right\}
$$

- $C=\Omega\left(2,7,8, \mathbb{F}_{8},\left\{g_{1}, g_{2}\right\}\right)$ is
- non-zerofree $(0 \in L)$,
- maximal $\left(\bar{L}=R_{n} \backslash L=\emptyset\right)$,
- proper $\left(g_{1}(x), g_{2}(x) \in \mathbb{F}_{2}(x)\right)$
- parity-check matrix is the following:

Let

- $\mathbf{q}=\mathbf{2}, \mathbf{n}=\mathbf{7}, \mathbf{q}^{\mathbf{m}}=\mathbf{8}, \mathbf{L}=\mathbb{F}_{\mathbf{2}^{3}}$,

$$
\mathcal{P}=\left\{\mathbf{g}_{1}(\mathbf{x})=\frac{1}{x^{2}+x+1}, g_{2}(\mathbf{x})=\frac{x}{x^{2}+x+1}\right\}
$$

- $C=\Omega\left(2,7,8, \mathbb{F}_{8},\left\{g_{1}, g_{2}\right\}\right)$ is
- non-zerofree $(0 \in L)$,
- maximal $\left(\bar{L}=R_{n} \backslash L=\emptyset\right)$,
- proper $\left(g_{1}(x), g_{2}(x) \in \mathbb{F}_{2}(x)\right)$
- parity-check matrix is the following:

$$
\begin{aligned}
& H=\left(\begin{array}{llllllll}
g_{1}(1) & g_{1}(\beta) & g_{1}\left(\beta^{2}\right) & g_{1}\left(\beta^{3}\right) & g_{1}\left(\beta^{4}\right) & g_{1}\left(\beta^{5}\right) & g_{1}\left(\beta^{6}\right) & g_{1}(0) \\
g_{2}(1) & g_{2}(\beta) & g_{2}\left(\beta^{2}\right) & g_{2}\left(\beta^{3}\right) & g_{2}\left(\beta^{4}\right) & g_{2}\left(\beta^{5}\right) & g_{2}\left(\beta^{6}\right) & g_{2}(0)
\end{array}\right), \\
& \text { i.e. } \\
& H=\left(\begin{array}{llllllll}
1 & \beta^{2} & \beta^{4} & \beta^{2} & \beta & \beta & \beta^{4} & 1 \\
1 & \beta^{3} & \beta^{6} & \beta^{5} & \beta^{5} & \beta^{6} & \beta^{3} & 0
\end{array}\right) .
\end{aligned}
$$

It is easy to see that C is an $[8,2,5]$ code with generator matrix

$$
G=\left(\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

and weight distribution

$$
A_{0}=1, A_{1}=A_{2}=A_{3}=A_{4}=0, A_{5}=2, A_{6}=1
$$

Let $\mathbf{q}=\mathbf{2}, \mathbf{n}=\mathbf{5}, \mathbf{q}^{\mathbf{m}}=\mathbf{2}^{\mathbf{4}}, \mathbf{L}=\mathbf{R}_{\mathbf{5}}$ and $\mathcal{P}=\{\mathbf{g}\}$, where $g=\gamma^{12} x^{4}+\gamma^{11} x^{3}+x^{2}+\gamma^{14} x+\gamma^{3}$ and γ is a primitive element of \mathbb{F}_{16} with minimal polynomial $x^{4}+x+1$. Let $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{2}, \mathbf{5}, \mathbf{2}^{\mathbf{4}}, \mathbf{R}_{\mathbf{5}}, \mathcal{P}\right)$. Code C is maximal $(\bar{L}=\emptyset)$ and zerofree $(0 \notin L)$ and its parity-check matrix is the following:

$$
H=\left(g\left(\gamma^{3}\right), g\left(\gamma^{6}\right), g\left(\gamma^{9}\right), g\left(\gamma^{12}\right), g\left(\gamma^{15}\right)\right)=\left(\gamma^{6}, \gamma^{2}, \gamma^{3}, \gamma^{14}, \gamma^{15}\right)
$$

It is easy to see that C is an $[5,2,3]$ code with generator matrix

$$
G=\left(\begin{array}{lllll}
\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right)
$$

By contradiction: if C is proper maximal then $C=\Omega\left(2,5,2^{4}, R_{5}, \mathcal{P}^{\prime}\right)$, where $\mathcal{P}^{\prime}=\left\{g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right\} \subset \mathbb{F}_{2}[x]$. Its parity-check matrix is then

$$
H^{\prime}=\left(\begin{array}{ccccc}
g_{1}^{\prime}\left(\gamma^{3}\right), & g_{1}^{\prime}\left(\gamma^{6}\right), & g_{1}^{\prime}\left(\gamma^{9}\right), & g_{1}^{\prime}\left(\gamma^{12}\right), & g_{1}^{\prime}\left(\gamma^{15}\right) \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
g_{i}^{\prime}\left(\gamma^{3}\right), & g_{i}^{\prime}\left(\gamma^{6}\right), & g_{i}^{\prime}\left(\gamma^{9}\right), & g_{i}^{\prime}\left(\gamma^{12}\right), & g_{i}^{\prime}\left(\gamma^{15}\right) \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
g_{r}^{\prime}\left(\gamma^{3}\right), & g_{r}^{\prime}\left(\gamma^{6}\right), & g_{r}^{\prime}\left(\gamma^{9}\right), & g_{r}^{\prime}\left(\gamma^{12}\right), & g_{r}^{\prime}\left(\gamma^{15}\right)
\end{array}\right)
$$

Let
$\mathbf{e}_{\mathbf{1}}=\mathbf{g}_{\mathbf{i}}^{\prime}\left(\gamma^{\mathbf{3}}\right), \mathbf{e}_{\mathbf{2}}=\mathbf{g}_{\mathbf{i}}^{\prime}\left(\gamma^{6}\right), \mathbf{e}_{3}=\mathbf{g}_{\mathbf{i}}^{\prime}\left(\gamma^{9}\right), \mathbf{e}_{4}=\mathbf{g}_{\mathbf{i}}^{\prime}\left(\gamma^{12}\right), \mathbf{e}_{\mathbf{5}}=\mathbf{g}_{\mathbf{i}}^{\prime}\left(\gamma^{15}\right)$,
for some $i=1, \ldots, r$ and they must satisfy $\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{2}+\mathbf{e}_{3}=\mathbf{0}$ and $\mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}=\mathbf{0}$.

$$
\mathbf{J} \subset \mathbb{F}_{16}\left[\mathbf{b}_{0}, \ldots, \mathbf{b}_{15}, \mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{5}\right]
$$

has at least a solution $\varepsilon=\left(\overline{\mathbf{b}}_{\mathbf{0}}, \ldots, \overline{\mathbf{b}}_{15}, \overline{\mathbf{e}}_{\mathbf{1}}, \ldots, \overline{\mathbf{e}}_{5}\right)$ in $\mathcal{V}(J)$ such that $\left(\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}, \bar{e}_{5}\right) \neq(0,0,0,0,0)$.

$$
\begin{array}{rlll}
J=< & e_{1}+e_{2}+e_{3}, & e_{3}+e_{4}+e_{5}, & \left\{b_{i}^{2}+b_{i}\right\}_{0 \leq i \leq 15}, \\
& \left\{e_{i}^{16}+e_{i}\right\}_{1 \leq i \leq 5}, & g^{\prime}\left(\gamma^{3}\right)-e_{1}, & g^{\prime}\left(\gamma^{6}\right)-e_{2}, \\
& g^{\prime}\left(\gamma^{9}\right)-e_{3} & g^{\prime}\left(\gamma^{12}\right)-e_{4}, & g^{\prime}\left(\gamma^{15}\right)-e_{5}>,
\end{array}
$$

A computer computation shows that a Gröbner basis of J contains $\left\{\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{5}\right\}$ and so $\mathcal{V}(J)$ does not contain ε, hence g^{\prime} does not exist. This means that no polynomial in \mathcal{P} can have coefficients in \mathbb{F}_{2}, which proves our claim.

Remark

In order to define the same nth-root code it is possible to use different n. For example to define a linear code with length $N=5$, we can use the five 5th roots of unity or five elements chosen from the set of the seven 7th roots of unity.

Let C be a linear binary code, having parity-check matrix

Remark

In order to define the same nth-root code it is possible to use different n. For example to define a linear code with length $N=5$, we can use the five 5th roots of unity or five elements chosen from the set of the seven 7th roots of unity.

Let C be a linear binary code, having parity-check matrix

$$
H=\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

First case: maximal, zerofree nth-root code $\Omega\left(2,5,2^{4}, L_{1}, \mathcal{P}_{1}\right)$, where

$$
\begin{gathered}
L_{1}=R_{5}=\left\{\gamma^{3}, \gamma^{6}, \gamma^{9}, \gamma^{12}, \gamma^{15}\right\} \subset \mathbb{F}_{16}=<\gamma>\cup\{0\}, \\
\mathcal{P}_{1} \subset \mathbb{F}_{16}[x] \text { is } \mathcal{P}_{1}=\left\{g_{1}, g_{2}\right\}, \text { with } \\
g_{1}=\gamma^{7} x^{4}+\gamma^{14} x^{3}+\gamma^{11} x^{2}+\gamma^{13} x+1, \\
g_{2}=\gamma^{2} x^{4}+\gamma^{4} x^{3}+\gamma x^{2}+\gamma^{8} x+1 .
\end{gathered}
$$

Second case: non-maximal, zerofree nth-root code

 $C=\Omega\left(2,7,2^{3}, L_{2}, \mathcal{P}_{2}\right)$, where$$
\begin{gathered}
L_{2} \subset R_{7}=\mathbb{F}_{8}^{*}=<\beta>, L_{2}=\left\{\beta, \beta^{2}, \beta^{3}, \beta^{4}, \beta^{5}\right\} \\
\mathcal{P}_{2} \subset \mathbb{F}_{2^{3}}[t] \text { is } \mathcal{P}_{2}=\left\{p_{1}, p_{2}\right\}, \text { with } \\
p_{1}=t^{4}+t^{2}+t+1 \\
p_{2}=\beta^{4} t^{4}+\beta^{6} t^{3}+t+\beta^{2}
\end{gathered}
$$

Third case: non-maximal, non-zerofree nth-root code

 $C=\Omega\left(2,7,2^{3}, L_{3}, \mathcal{P}_{3}\right)$, where$$
\begin{gathered}
L_{3} \subset \mathbb{F}_{8}, L_{3}=\left\{\beta, \beta^{2}, \beta^{3}, \beta^{4}, 0\right\}, \\
\mathcal{P}_{3} \subset \mathbb{F}_{8}[z] \text { is } \mathcal{P}_{3}=\left\{h_{1}, h_{2}\right\}, \text { with } \\
h_{1}=\beta^{5} z^{4}+z^{3}+\beta^{5} z^{2}+\beta^{4} z \\
h_{2}=\beta^{6} z^{4}+\beta^{3} z^{2}+\beta^{5} z+1
\end{gathered}
$$

First case: maximal, zerofree nth-root code

Second case: non-maximal, zerofree nth-root code

Third case: non-maximal, non-zerofree nth-root code

Note however that code C cannot be seen as a maximal non-zerofree code.

Constructing ideals

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code, w and \hat{w} be natural numbers such that $2 \leq w \leq N=|L|, 1 \leq \hat{w} \leq N-1$.

Constructing ideals

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code, w and \hat{w} be natural numbers such that $2 \leq w \leq N=|L|, 1 \leq \hat{w} \leq N-1$. We denote by $J_{w}(C)$ and $\hat{J}_{\hat{w}}(C)$ the following two ideals:

$$
\begin{aligned}
& J_{w}=J_{w}(C)=J_{w}\left(q, n, q^{m}, L, \mathcal{P}\right) \subset \mathbb{F}_{q^{m}}\left[z_{1}, \ldots, z_{w}, y_{1}, \ldots, y_{w}\right], \\
& \hat{J}_{\hat{w}}=\hat{J}_{\hat{w}}(C)=\hat{J}_{\hat{w}}\left(q, n, q^{m}, L, \mathcal{P}\right) \subset \mathbb{F}_{q^{m}}\left[z_{1}, \ldots, z_{\hat{w}}, y_{1}, \ldots, y_{\hat{w}}, \nu\right]
\end{aligned}
$$

Constructing ideals

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code, w and \hat{w} be natural numbers such that $2 \leq w \leq N=|L|, 1 \leq \hat{w} \leq N-1$. We denote by $J_{w}(C)$ and $\hat{J}_{\hat{w}}(C)$ the following two ideals:

$$
\begin{aligned}
& J_{w}=J_{w}(C)=J_{w}\left(q, n, q^{m}, L, \mathcal{P}\right) \subset \mathbb{F}_{q^{m}}\left[z_{1}, \ldots, z_{w}, y_{1}, \ldots, y_{w}\right], \\
& \hat{J}_{\hat{w}}=\hat{J}_{\hat{w}}(C)=\hat{J}_{\hat{w}}\left(q, n, q^{m}, L, \mathcal{P}\right) \subset \mathbb{F}_{q^{m}}\left[z_{1}, \ldots, z_{\hat{w}}, y_{1}, \ldots, y_{\hat{w}}, \nu\right],
\end{aligned}
$$

$$
\left.\begin{array}{rl}
J_{w}=\langle\quad & \left\{\sum_{h=1}^{w} y_{h} g_{s}\left(z_{h}\right)\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq w} \\
& \left\{p_{i j}\left(z_{i}, z_{j}\right)\right\}_{1 \leq i<j \leq w},\left\{\frac{z_{j}^{n}-1}{\prod_{l \in \bar{L}}\left(z_{j}-l\right)}\right\}_{1 \leq j \leq w} \tag{1}
\end{array}\right\rangle,
$$

$$
\begin{align*}
\hat{J}_{\hat{w}}=\langle\quad & \left\{\sum_{h=1}^{\hat{w}} y_{h} g_{s}\left(z_{h}\right)+\nu g_{s}(0)\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq \hat{w}} \\
& \nu^{q-1}-1,\left\{p_{i j}\left(z_{i}, z_{j}\right)\right\}_{1 \leq i<j \leq \hat{w}},\left\{\frac{z_{j}^{n}-1}{\prod_{l \in \bar{L}}\left(z_{j}-l\right)}\right\}_{1 \leq j \leq \hat{w}} \tag{2}
\end{align*}
$$

where $p_{i j}=\sum_{h=0}^{n-1} z_{i}^{h} z_{j}^{n-1-h}=\frac{z_{i}^{n}-z_{j}^{n}}{z_{i}-z_{j}}$ are in $\mathbb{F}_{q}\left[z_{i}, z_{j}\right]$.

We denote by $\eta\left(\mathbf{J}_{\mathbf{w}}\right)$ and $\hat{\eta}\left(\hat{\mathbf{J}}_{\hat{\mathbf{w}}}\right)$ the integers $\eta\left(J_{w}\right)=\left|\mathcal{V}\left(J_{w}\right)\right|$, $\hat{\eta}\left(\hat{\jmath}_{\hat{w}}\right)=\left|\mathcal{V}\left(\hat{\jmath}_{\hat{w}}\right)\right|$.

Remark

Ideals J_{w} and $\hat{J}_{\hat{w}}$ are radical, since they contain polynomials $y_{j}^{q}-y_{j}$ and $z_{j}^{n+1}-z_{j}$.

Constructing ideals

If we are in the binary case $(q=2)$, variables $y_{j}, j=1, \ldots, w$, and ν are 1 , and so we can omit them and the ideals become:

$$
\begin{gather*}
J_{w}=J_{w}(C)=J_{w}\left(2, n, 2^{m}, L, \mathcal{P}\right) \subset \mathbb{F}_{2^{m}}\left[z_{1}, \ldots, z_{w}\right], \\
\hat{\jmath}_{\hat{w}}=\hat{\jmath}_{\hat{w}}(C)=\hat{\jmath}_{\hat{w}}\left(2, n, 2^{m}, L, \mathcal{P}\right) \subset \mathbb{F}_{2^{m}}\left[z_{1}, \ldots, z_{\hat{w}}\right], \\
J_{w}=\left\langle\left\{\sum_{h=1}^{w} g_{s}\left(z_{h}\right)\right\}_{1 \leq s \leq r},\left\{p_{i j}\left(z_{i}, z_{j}\right)\right\}_{1 \leq i<j \leq w}\left\{\frac{z_{j}^{n}-1}{\prod_{l \in \bar{L}}\left(z_{j}-l\right)}\right\}_{1 \leq j \leq w}\right\rangle ; \\
\hat{\jmath}_{\hat{w}}=\left\langle\left\{\sum_{h=1}^{\hat{w}} g_{s}\left(z_{h}\right)+g_{s}(0)\right\}_{1 \leq s \leq r},\left\{p_{i j}\left(z_{i}, z_{j}\right)\right\}_{1 \leq i<j \leq \hat{w}},\left\{\frac{z_{j}^{n}-1}{\prod_{l \in \bar{L}}\left(z_{j}-l\right)}\right\}_{1 \leq j \leq \hat{w}}\right\rangle \tag{3}
\end{gather*}
$$

Proposition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code.
In the zerofree case, there is at least one codeword of weight w
in C if and only if there exists at least one solution of $\mathrm{J}_{\mathbf{w}}(\mathbf{C})$.
In the non-zerofree case, there is at least one codeword of
weight w in C if and only if there exists at least one solution of
$\mathrm{J}_{\mathrm{w}}(\mathrm{C})$ or of $\hat{\mathrm{J}}_{\mathrm{w}-1}(\mathrm{C})$.
Moreover the number of codewords of weight w is
in the zerofree case and
in the non-zerofree case

Proposition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code.
In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $J_{w}(\mathbf{C})$.
In the non-zerofree case, there is at least one codeword of
weight win C if and only if there exists at least one solution of $\mathrm{J}_{\mathrm{w}}(\mathrm{C})$ or of $\hat{\mathrm{J}}_{\mathrm{w}-1}(\mathrm{C})$
Moreover the number of codewords of weight w is

Proposition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code.
In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $\mathrm{J}_{\mathbf{w}}(\mathbf{C})$.
In the non-zerofree case, there is at least one codeword of weight \mathbf{w} in C if and only if there exists at least one solution of $\mathrm{J}_{\mathrm{w}}(\mathrm{C})$ or of $\hat{\mathrm{J}}_{\mathrm{w}-1}(\mathrm{C})$.
Moreover the number of codewords of weight w is

Proposition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code.
In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $\mathrm{J}_{\mathbf{w}}(\mathbf{C})$.
In the non-zerofree case, there is at least one codeword of weight \mathbf{w} in C if and only if there exists at least one solution of $\mathrm{J}_{\mathrm{w}}(\mathrm{C})$ or of $\hat{\mathrm{J}}_{\mathrm{w}-1}(\mathrm{C})$.
Moreover the number of codewords of weight w is

in the zerofree case and

Proposition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code.
In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $\mathrm{J}_{\mathbf{w}}(\mathbf{C})$.
In the non-zerofree case, there is at least one codeword of weight \mathbf{w} in C if and only if there exists at least one solution of $\mathrm{J}_{\mathrm{w}}(\mathrm{C})$ or of $\hat{\mathrm{J}}_{\mathrm{w}-1}(\mathrm{C})$.
Moreover the number of codewords of weight w is

$$
\begin{array}{ll}
\mathbf{A}_{\mathbf{w}}=\frac{\eta\left(\mathbf{J}_{\mathbf{w}}\right)}{\mathbf{w}!} & \text { in the zerofree case and } \\
\mathbf{A}_{\mathbf{w}}=\frac{\eta\left(\mathrm{J}_{\mathbf{w}}\right)}{w!}+\frac{\left.\hat{\eta}\left(\hat{J}_{\mathbf{w}}-1\right)\right)}{(w-1)!} & \text { in the non-zerofree case }
\end{array}
$$

Proposition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be an nth-root code.
In the zerofree case, there is at least one codeword of weight w in C if and only if there exists at least one solution of $\mathrm{J}_{\mathbf{w}}(\mathbf{C})$.
In the non-zerofree case, there is at least one codeword of weight \mathbf{w} in C if and only if there exists at least one solution of $\mathrm{J}_{\mathrm{w}}(\mathrm{C})$ or of $\hat{\mathrm{J}}_{\mathrm{w}-1}(\mathrm{C})$.
Moreover the number of codewords of weight w is

$$
\begin{array}{ll}
\mathbf{A}_{\mathbf{w}}=\frac{\eta\left(\mathbf{J}_{\mathbf{w}}\right)}{\mathbf{w}!} & \text { in the zerofree case and } \\
\mathbf{A}_{\mathbf{w}}=\frac{\eta\left(\mathbf{J}_{\mathbf{w}}\right)}{\mathbf{w}!}+\frac{\eta\left(\hat{\mathbf{J}}_{\mathbf{w}}\right)}{(\mathbf{w}-\mathbf{1})!} & \text { in the non-zerofree case }
\end{array}
$$

INPUT: a zerofree nth-root code $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{q}, \mathbf{n}, \mathbf{q}^{\mathbf{m}}, \mathbf{L}, \mathcal{P}\right)$, the element A_{w} of the weight distribution of C construct ideal $\mathrm{J}_{\mathrm{w}}=\mathrm{J}_{\mathrm{w}}(\mathrm{C})$
compute a Gröbner basis \mathcal{G}_{w} of J_{w} use \mathcal{G}_{w} to get the number $\eta\left(\mathrm{J}_{w}\right)$ of points in $\mathcal{V}\left(J_{w}\right)$ return $\frac{\eta\left(\mathrm{J}_{\mathrm{w}}\right)}{\mathrm{w} \mid}$

INPUT: a zerofree nth-root code $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{q}, \mathbf{n}, \mathbf{q}^{\mathbf{m}}, \mathbf{L}, \mathcal{P}\right)$, an integer $2 \leq \mathbf{w} \leq|L|$
OUTPUT: the element A_{w} of the weight distribution of C
construct ideal $\mathrm{J}_{\mathrm{w}}=\mathrm{J}_{\mathrm{w}}(\mathrm{C})$
compute a Gröbner basis \mathcal{G}_{w} of J_{w}
use \mathcal{G}_{w} to get the number $\eta\left(\mathrm{J}_{w}\right)$ of points in $\mathcal{V}\left(J_{w}\right)$ return $\frac{\eta\left(\mathrm{J}_{\mathrm{w}}\right)}{\mathrm{w}}$

INPUT: a zerofree nth-root code $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{q}, \mathbf{n}, \mathbf{q}^{\mathbf{m}}, \mathbf{L}, \mathcal{P}\right)$, an integer $2 \leq \mathbf{w} \leq|L|$
OUTPUT: the element $\mathbf{A}_{\mathbf{w}}$ of the weight distribution of C
construct ideal $\mathrm{J}_{\mathrm{w}}=\mathrm{J}_{\mathrm{w}}(\mathrm{C})$
compute a Gröbner basis \mathcal{G}_{w} of J_{w}
use \mathcal{G}_{w} to get the number $\eta\left(\mathrm{J}_{w}\right)$ of points in $\mathcal{V}\left(J_{w}\right)$
return

INPUT: a zerofree nth-root code $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{q}, \mathbf{n}, \mathbf{q}^{\mathbf{m}}, \mathbf{L}, \mathcal{P}\right)$, an integer $2 \leq \mathbf{w} \leq|L|$
OUTPUT: the element $\mathbf{A}_{\mathbf{w}}$ of the weight distribution of C
STEP 1: construct ideal $\mathbf{J}_{\mathbf{w}}=\mathbf{J}_{\mathbf{w}}(\mathbf{C})$
STEP 2:
compute a Gröbner basis \mathcal{S}_{w} of J_{w}

INPUT: a zerofree nth-root code $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{q}, \mathbf{n}, \mathbf{q}^{\mathbf{m}}, \mathbf{L}, \mathcal{P}\right)$, an integer $2 \leq \mathbf{w} \leq|L|$
OUTPUT: the element $\mathbf{A}_{\mathbf{w}}$ of the weight distribution of C
STEP 1: construct ideal $\mathbf{J}_{\mathbf{w}}=\mathbf{J}_{\mathbf{w}}(\mathbf{C})$
STEP 2: compute a Gröbner basis \mathcal{G}_{w} of J_{w}
STEP 3:
use \mathcal{G}_{w} to get the number $\eta\left(\mathrm{J}_{w}\right)$ of points in $\mathcal{V}\left(J_{w}\right)$

INPUT: a zerofree nth-root code $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{q}, \mathbf{n}, \mathbf{q}^{\mathbf{m}}, \mathbf{L}, \mathcal{P}\right)$, an integer $2 \leq \mathbf{w} \leq|L|$
OUTPUT: the element $\mathbf{A}_{\mathbf{w}}$ of the weight distribution of C
STEP 1: construct ideal $\mathbf{J}_{\mathbf{w}}=\mathbf{J}_{\mathbf{w}}(\mathbf{C})$
STEP 2: compute a Gröbner basis \mathcal{G}_{w} of J_{w}
STEP 3: use \mathcal{G}_{w} to get the number $\eta\left(\boldsymbol{J}_{\mathbf{w}}\right)$ of points in $\mathcal{V}\left(J_{w}\right)$

INPUT: a zerofree nth-root code $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{q}, \mathbf{n}, \mathbf{q}^{\mathbf{m}}, \mathbf{L}, \mathcal{P}\right)$, an integer $2 \leq \mathbf{w} \leq|L|$
OUTPUT: the element $\mathbf{A}_{\mathbf{w}}$ of the weight distribution of C
STEP 1: construct ideal $\mathbf{J}_{\mathbf{w}}=\mathbf{J}_{\mathbf{w}}(\mathbf{C})$
STEP 2: compute a Gröbner basis \mathcal{G}_{w} of J_{w}
STEP 3: use \mathcal{G}_{w} to get the number $\eta\left(\mathbf{J}_{\mathbf{w}}\right)$ of points in $\mathcal{V}\left(J_{w}\right)$
STEP 4: return $\frac{\eta\left(\mathbf{J}_{\mathrm{w}}\right)}{\mathrm{w}!}$

INPUT: a non-zerofree nth-root code $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$, an integer $2 \leq w \leq|L|$
OUTPUT: the element A_{w} of the weight distribution of C
STEP 1: construct ideals $J_{w}=J_{w}(C)$ and $\hat{J}_{w-1}=\hat{J}_{w-1}(C)$
STEP 2: compute a Gröbner basis \mathcal{G}_{w} of J_{w} and
compute aGröbner basis \hat{G}_{w-1} of \hat{J}_{w-1}
STEP 3: use \mathcal{G}_{w} to get the number $\eta\left(J_{w}\right)$ of points in $\mathcal{V}\left(J_{w}\right)$ and use \hat{G}_{w-1} to get the number $\hat{\eta}\left(\hat{J}_{w-1}\right)$ of points in $\mathcal{V}\left(\hat{J}_{w-1}\right)$
STEP 4: return $\frac{\eta\left(J_{w}\right)}{w!}+\frac{\hat{\eta}\left(\hat{\jmath}_{w-1}\right)}{(w-1)!}$

Let C as in the first Example:

$$
C=\Omega\left(2,7,8, \mathbb{F}_{8},\left\{g_{1}, g_{2}\right\}\right), g_{1}(x)=\frac{1}{x^{2}+x+1}, g_{2}(x)=\frac{x}{x^{2}+x+1}
$$

$$
w=2, J_{2}(C) \subseteq \mathbb{F}_{2}\left[z_{1}, z_{2}\right] \text { and } \hat{J}_{1}(C) \subseteq \mathbb{F}_{2}\left[z_{1}\right] \text { : }
$$

$$
J_{2}(C)=\left\langle g_{1}\left(z_{1}\right)+g_{1}\left(z_{2}\right), g_{2}\left(z_{1}\right)+g_{2}\left(z_{2}\right), z_{1}^{7}-1, z_{2}^{7}-1, p_{1,2}\left(z_{1}, z_{2}\right)\right\rangle
$$

$$
\hat{J}_{1}(C)=\left\langle g_{1}\left(z_{1}\right)+g_{1}(0), g_{2}\left(z_{1}\right)+g_{2}(0), z_{1}^{7}-1\right\rangle
$$

\mathcal{G}_{2} and $\hat{\mathcal{G}}_{1}$ are trivial and hence there are no words of weight 2. The same for $w=3,4$.

Let C as in the first Example:

$$
C=\Omega\left(2,7,8, \mathbb{F}_{8},\left\{g_{1}, g_{2}\right\}\right), g_{1}(x)=\frac{1}{x^{2}+x+1}, g_{2}(x)=\frac{x}{x^{2}+x+1} .
$$

- $w=2, J_{2}(C) \subseteq \mathbb{F}_{2}\left[z_{1}, z_{2}\right]$ and $\hat{J}_{1}(C) \subseteq \mathbb{F}_{2}\left[z_{1}\right]$:

$$
\begin{gathered}
J_{2}(C)=\left\langle g_{1}\left(z_{1}\right)+g_{1}\left(z_{2}\right), g_{2}\left(z_{1}\right)+g_{2}\left(z_{2}\right), z_{1}^{7}-1, z_{2}^{7}-1, p_{1,2}\left(z_{1}, z_{2}\right)\right\rangle \\
\hat{J}_{1}(C)=\left\langle g_{1}\left(z_{1}\right)+g_{1}(0), g_{2}\left(z_{1}\right)+g_{2}(0), z_{1}^{7}-1\right\rangle
\end{gathered}
$$

\mathcal{G}_{2} and $\hat{\mathcal{G}}_{1}$ are trivial and hence there are no words of weight 2. The same for $w=3,4$.

- $w=5$, construct J_{5} and $\hat{J}_{4}: \mathcal{G}_{5}$ is trivial, but basis $\hat{\mathcal{G}}_{4}$ has the following leading terms

$$
\left\{z_{1} z_{2}, z_{1}^{2}, z_{1} z_{3}^{2}, z_{2}^{3}, z_{1} z_{4}^{3}, z_{3}^{4}, z_{2}^{2} z_{3}^{2}, z_{4}^{5}, z_{2}^{2} z_{4}^{3}, z_{3}^{3} z_{4}^{3}\right\} .
$$

These monomials permit us to compute the number $\hat{\eta}\left(\hat{J}_{4}\right)=48$. So that $A_{5}=\frac{\eta\left(J_{5}\right)}{5!}+\frac{\hat{\eta}\left(\hat{\jmath}_{4}\right)}{4!}=\frac{48}{4!}=2$. Note that the 2 words of weight 5 in C have the last component non zero.
for \hat{J}_{5} we get an empty variety. The words of weight 6 are then $A_{6}=\frac{\eta\left(J_{6}\right)}{6!}+\frac{\hat{\eta}\left(\hat{J}_{5}\right)}{5!}=\frac{720}{6!}=1$

- $w=5$, construct J_{5} and $\hat{J}_{4}: \mathcal{G}_{5}$ is trivial, but basis $\hat{\mathcal{G}}_{4}$ has the following leading terms

$$
\left\{z_{1} z_{2}, z_{1}^{2}, z_{1} z_{3}^{2}, z_{2}^{3}, z_{1} z_{4}^{3}, z_{3}^{4}, z_{2}^{2} z_{3}^{2}, z_{4}^{5}, z_{2}^{2} z_{4}^{3}, z_{3}^{3} z_{4}^{3}\right\} .
$$

These monomials permit us to compute the number $\hat{\eta}\left(\hat{J}_{4}\right)=48$. So that $A_{5}=\frac{\eta\left(J_{5}\right)}{5!}+\frac{\hat{\eta}\left(\hat{J}_{4}\right)}{4!}=\frac{48}{4!}=2$. Note that the 2 words of weight 5 in C have the last component non zero.

- Computing \mathcal{G}_{6} we have a non trivial result, $\eta\left(J_{6}\right)=720$, and for \hat{J}_{5} we get an empty variety. The words of weight 6 are then $A_{6}=\frac{\eta\left(J_{6}\right)}{6!}+\frac{\hat{\eta}\left(\hat{J}_{5}\right)}{5!}=\frac{720}{6!}=1$.

w	$\mathcal{G}\left(J_{w}\right)$	$\hat{\mathcal{G}}\left(\hat{J}_{w-1}\right)$	$\eta\left(J_{w}\right)$	$\hat{\eta}\left(\hat{J}_{w-1}\right)$	A_{w}
$2,3,4,7$	$\{1\}$	$\{1\}$	0	0	0
5	$\{1\}$	not trivial	0	48	2
6	not trivial	$\{1\}$	720	0	1
8	-	$\{1\}$	-	0	0

Definition

The elements in $\left(\mathbb{F}_{q}^{m}\right)^{n-k}, \sigma=\mathbf{H x}$ are called syndromes. We say that σ is the syndrome corresponding to x.

Definition
Let $C \subseteq\left(\mathbb{F}_{q}\right)^{N}$ be an (N, k) code. For any vector $a \in\left(\mathbb{F}_{q}\right)^{n}$ the set
in called a coset (or translate) of C.

Definition

The elements in $\left(\mathbb{F}_{q}^{m}\right)^{n-k}, \sigma=\mathbf{H x}$ are called syndromes. We say that σ is the syndrome corresponding to x.

Definition

Let $C \subseteq\left(\mathbb{F}_{q}\right)^{N}$ be an (N, k) code. For any vector $a \in\left(\mathbb{F}_{q}\right)^{n}$ the set

$$
a+C=\{a+x: x \in C\}
$$

in called a coset (or translate) of C.

We give as in the code case

- ideals for the zerofree case and in the non-zerofree case;
- proposition for A_{w} in the the zerofree case and in the
non-zerofree case;
- algorithms the zerofree case and in the non-zerofree case.
- Skip coset

We give as in the code case

- ideals for the zerofree case and in the non-zerofree case;
- proposition for A_{w} in the the zerofree case and in the non-zerofree case;
- algorithms the zerofree case and in the non-zerofree case.
* Skip coset

We give as in the code case

- ideals for the zerofree case and in the non-zerofree case;
- proposition for A_{w} in the the zerofree case and in the non-zerofree case;
- algorithms the zerofree case and in the non-zerofree case.

[^0]\[

$$
\begin{align*}
& J_{w}(a+C) \subset \mathbb{F}_{q^{m}}\left[z_{1}, \ldots, z_{w}, y_{1}, \ldots, y_{w}\right], \\
& \hat{\jmath}_{\hat{w}}(a+C) \subset \mathbb{F}_{q^{m}}\left[z_{1}, \ldots, z_{\hat{w}}, y_{1}, \ldots, y_{\hat{w}}, \nu\right], \\
& J_{w}(a+C)=\left\langle\quad\left\{\sum_{h=1}^{w} y_{h} g_{s}\left(z_{h}\right)-\sigma(\mathbf{a})_{s}\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq w},\right. \\
& \left.\left\{p_{i j}\left(z_{i}, z_{j}\right)\right\}_{1 \leq i<j \leq w},\left\{\frac{z_{j}^{n}-1}{\prod_{l \in \bar{L}}\left(z_{j}-l\right)}\right\}_{1 \leq j \leq w}\right\rangle ; \tag{4}\\
& \hat{\jmath}_{\hat{w}}(a+C)=\left\langle\quad\left\{\sum_{h=1}^{\hat{w}} y_{h} g_{s}\left(z_{h}\right)+\nu g_{s}(0)-\sigma(a)_{s}\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq \hat{w}}\right. \\
& \left.\nu^{q-1}-1,\left\{p_{i j}\left(z_{i}, z_{j}\right)\right\}_{1 \leq i<j \leq \hat{w}},\left\{\frac{z_{j}^{n}-1}{\left.\prod_{i \in \bar{L}} z_{j}-1\right)}\right\}_{1 \leq j \leq \hat{w}}\right\rangle . \tag{5}\\
& \eta\left(J_{w}(a+C)\right)=\left|\mathcal{V}\left(J_{w}(a+C)\right)\right|, \quad \hat{\eta}\left(\hat{\jmath}_{\hat{w}}(a+C)\right)=\left|\mathcal{V}\left(\hat{\jmath}_{\hat{w}}(a+C)\right)\right| .
\end{align*}
$$
\]

$$
\begin{align*}
& J_{w}(a+C) \subset \mathbb{F}_{q^{m}}\left[z_{1}, \ldots, z_{w}, y_{1}, \ldots, y_{w}\right], \\
& \hat{\jmath}_{\hat{w}}(a+C) \subset \mathbb{F}_{q^{m}}\left[z_{1}, \ldots, z_{\hat{w}}, y_{1}, \ldots, y_{\hat{w}}, \nu\right], \\
& J_{w}(a+C)=\left\langle\quad\left\{\sum_{h=1}^{w} y_{h} g_{s}\left(z_{h}\right)-\sigma(\mathbf{a})_{s}\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq w},\right. \\
& \left.\left\{p_{i j}\left(z_{i}, z_{j}\right)\right\}_{1 \leq i<j \leq w},\left\{\frac{z_{j}^{n}-1}{\prod_{l \in \bar{L}}\left(z_{j}-l\right)}\right\}_{1 \leq j \leq w}\right\rangle ; \tag{4}\\
& \hat{\jmath}_{\hat{w}}(a+C)=\left\langle\quad\left\{\sum_{h=1}^{\hat{w}} y_{h} g_{s}\left(z_{h}\right)+\nu g_{s}(0)-\sigma(a)_{s}\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq \hat{w}}\right. \\
& \left.\nu^{q-1}-1,\left\{p_{i j}\left(z_{i}, z_{j}\right)\right\}_{1 \leq i<j \leq \hat{w}},\left\{\frac{z_{j}^{n}-1}{\left.\prod_{i \in \bar{L}} z_{j}-1\right)}\right\}_{1 \leq j \leq \hat{w}}\right\rangle . \tag{5}\\
& \eta\left(J_{w}(a+C)\right)=\left|\mathcal{V}\left(J_{w}(a+C)\right)\right|, \quad \hat{\eta}\left(\hat{\jmath}_{\hat{w}}(a+C)\right)=\left|\mathcal{V}\left(\hat{\jmath}_{\hat{w}}(a+C)\right)\right| .
\end{align*}
$$

Proposition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right), a \in\left(\mathbb{F}_{q}\right)^{N} \backslash C$, and $a+C$ a coset of code C. In the zerofree case, there is at least one vector of weight w in coset $a+C$ if and only if there is at least one solution of $J_{w}(a+C)$. In the non-zerofree case, there is at least one vector of weight w in $a+C$ if and only if there is at least one solution of $J_{w}(a+C)$ or of $\hat{\jmath}_{w-1}(a+C)$. Furthermore, the number of vectors of weight w in $a+C$ is

$$
\begin{array}{ll}
A_{w}(a)=\frac{\eta\left(J_{w}(a+C)\right)}{w!} & \text { in the zerofree case and } \\
A_{w}(a)=\frac{\eta\left(J_{w}(a+C)\right)}{w!}+\frac{\hat{\eta}\left(\hat{\jmath}_{w-1}(a+C)\right)}{(w-1)!} & \text { in the non-zerofree case }
\end{array}
$$

Definition

\diamond Let \mathcal{L}_{C} be a polynomial in $\mathbb{F}_{q}[X, z]$, where $X=\left(x_{1}, \ldots, x_{r}\right)$. Then \mathcal{L}_{C} is a general error locator polynomial of C if
(1) $\mathcal{L}_{C}(X, z)=z^{t}+a_{t-1} z^{t-1}+\cdots+a_{0}$, with $a_{j} \in \mathbb{F}_{q}[X]$, $0 \leq j \leq t-1$, that is, \mathcal{L}_{C} is a monic polynomial with degree t with respect to the variable z and its coefficients are in $\mathbb{F}_{q}[X]$;
(2) given a syndrome $\mathbf{s}=\left(\bar{s}_{1}, \ldots \bar{s}_{r}\right) \in\left(\mathbb{F}_{q^{m}}\right)^{N-k}$, corresponding to a vector error of weight $\mu \leq t$ and error locations $\left\{k_{1}, \ldots, k_{\mu}\right\}$, if we evaluate the X variables in \mathbf{s}, then the roots of $\mathcal{L}_{C}(\mathbf{s}, z)$ are $\{\alpha^{k_{1}}, \ldots, \alpha^{k_{\mu}}, \underbrace{0, \ldots, 0}_{t-\mu}\}$.

Definition

Let \mathcal{L} be a polynomial in $\mathbb{F}_{q}[X, W, z], X=\left(x_{1}, \ldots, x_{r}\right)$ and $W=\left(w_{\nu}, \ldots, w_{1}\right)$, where $\nu \geq 1$ is the number of erasures that occurred. Then \mathcal{L} is a general error locator polynomial of type ν of C if
(1) $\mathcal{L}(X, W, z)=z^{\tau}+a_{\tau-1} z^{\tau-1}+\cdots+a_{0}$, with $a_{j} \in \mathbb{F}_{q}[X, W]$, for any $0 \leq j \leq \tau-1$, that is, \mathcal{L} is a monic polynomial with degree τ in the variable z and coefficients in $\mathbb{F}_{q}[X, W]$;
(2) for any syndrome $\mathbf{s}=\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right)$ and any erasure location vector $\mathbf{w}=\left(\bar{w}_{1}, \ldots, \bar{w}_{\nu}\right)$, corresponding to an error of weight $\mu \leq \tau$ and error locations $\left\{k_{1}, \ldots, k_{\mu}\right\}$, if we evaluate the X variables in \mathbf{s} and the W variables in \mathbf{w}, then the roots of $\mathcal{L}(\mathbf{s}, \mathbf{w}, z)$ are $\{\alpha^{k_{1}}, \ldots, \alpha^{k_{\mu}}, \underbrace{0, \ldots, 0}_{\tau-\mu}\}$.

Definition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be a zerofree maximal nth-root code, with correction capability t. We denote by $\mathbf{J}^{\mathbf{C}, \mathbf{t}}$ the ideal $J^{C, t} \subset \mathbb{F}_{q^{m}}\left[x_{1}, \ldots, x_{r}, z_{t}, \ldots, z_{1}, y_{1}, \ldots, y_{t}\right]$,

$$
\begin{align*}
J^{C, t}=\langle\quad & \left\{\sum_{h=1}^{t} y_{h} g_{s}\left(z_{h}\right)-x_{s}\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq t}, \\
& \left.\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, 1 \leq i, j \leq t},\left\{z_{j}^{n+1}-z_{j}\right\}_{1 \leq j \leq t}\right\rangle \tag{6}
\end{align*}
$$

where $p(x, y)=\sum_{h=0}^{n-1} x^{h} y^{n-1-h}$. We denote by $\mathcal{G}^{C, t}$ the totaly reduced Gröbner basis of $J^{C, t}$ w.r.t. >.

- x_{1}, \ldots, x_{r} represent correctable syndromes,
- z_{1}, \ldots, z_{t} error locations and
- y_{1}, \ldots, y_{t} error values.

Definition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be a zerofree maximal nth-root code, with correction capability t. We denote by $\mathbf{J}^{\mathbf{C}, \mathbf{t}}$ the ideal $J^{C, t} \subset \mathbb{F}_{q^{m}}\left[x_{1}, \ldots, x_{r}, z_{t}, \ldots, z_{1}, y_{1}, \ldots, y_{t}\right]$,

$$
\left.\begin{array}{rl}
J^{C, t}=\langle\quad & \left\{\sum_{h=1}^{t} y_{h} g_{s}\left(z_{h}\right)-x_{s}\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq t}, \\
& \left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, 1 \leq i, j \leq t},\left\{z_{j}^{n+1}-z_{j}\right\}_{1 \leq j \leq t} \tag{6}
\end{array}\right\rangle,
$$

where $p(x, y)=\sum_{h=0}^{n-1} x^{h} y^{n-1-h}$. We denote by $\mathcal{G}^{C, t}$ the totaly reduced Gröbner basis of $J^{C, t}$ w.r.t. >.

- x_{1}, \ldots, x_{r} represent correctable syndromes,
\square
- y_{1}, \ldots, y_{t} error values.

Definition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be a zerofree maximal nth-root code, with correction capability t. We denote by $\mathbf{J}^{\mathbf{C}, \mathbf{t}}$ the ideal $J^{C, t} \subset \mathbb{F}_{q^{m}}\left[x_{1}, \ldots, x_{r}, z_{t}, \ldots, z_{1}, y_{1}, \ldots, y_{t}\right]$,

$$
\left.\begin{array}{rl}
J^{C, t}=\langle\quad & \left\{\sum_{h=1}^{t} y_{h} g_{s}\left(z_{h}\right)-x_{s}\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq t}, \\
& \left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, 1 \leq i, j \leq t},\left\{z_{j}^{n+1}-z_{j}\right\}_{1 \leq j \leq t} \tag{6}
\end{array}\right\rangle,
$$

where $p(x, y)=\sum_{h=0}^{n-1} x^{h} y^{n-1-h}$. We denote by $\mathcal{G}^{C, t}$ the totaly reduced Gröbner basis of $J^{C, t}$ w.r.t. >.

- x_{1}, \ldots, x_{r} represent correctable syndromes,
- z_{1}, \ldots, z_{t} error locations and

Definition

Let $C=\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$ be a zerofree maximal nth-root code, with correction capability t. We denote by $\mathbf{J}^{\mathbf{C}, \mathbf{t}}$ the ideal $J^{C, t} \subset \mathbb{F}_{q^{m}}\left[x_{1}, \ldots, x_{r}, z_{t}, \ldots, z_{1}, y_{1}, \ldots, y_{t}\right]$,

$$
\left.\begin{array}{rl}
J^{C, t}=\langle\quad & \left\{\sum_{h=1}^{t} y_{h} g_{s}\left(z_{h}\right)-x_{s}\right\}_{1 \leq s \leq r},\left\{y_{j}^{q-1}-1\right\}_{1 \leq j \leq t}, \\
& \left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, 1 \leq i, j \leq t},\left\{z_{j}^{n+1}-z_{j}\right\}_{1 \leq j \leq t} \tag{6}
\end{array}\right\rangle,
$$

where $p(x, y)=\sum_{h=0}^{n-1} x^{h} y^{n-1-h}$. We denote by $\mathcal{G}^{C, t}$ the totaly reduced Gröbner basis of $J^{C, t}$ w.r.t. >.

- x_{1}, \ldots, x_{r} represent correctable syndromes,
- z_{1}, \ldots, z_{t} error locations and
- y_{1}, \ldots, y_{t} error values.

Lemma

Ideal $J^{C, t}$ is radical and stratified.

Proposition (\%)
In Gröbner basis $G^{\text {C.t }}$ there exists a unique polynomial of type

$$
g=z_{t}^{t}+\mathrm{a}_{t-1} z_{t}^{t-1}+\ldots+\mathrm{a}_{0}, \mathrm{a}_{i} \in \mathbb{F}_{q}[X] .
$$

Lemma

Ideal $J^{C, t}$ is radical and stratified.

Proposition (\%)

In Gröbner basis $\mathcal{G}^{C, t}$ there exists a unique polynomial of type

$$
g=z_{t}^{t}+\mathrm{a}_{t-1} z_{t}^{t-1}+\ldots+\mathrm{a}_{0}, \mathrm{a}_{i} \in \mathbb{F}_{q}[X] .
$$

Theorem

If code C is a proper maximal zerofree nth-root code with correction capability t, then C possesses a general error locator polynomial.

Theorem

If code C is a proper maximal zerofree nth-root code with correction capability t, then C possesses a general error locator polynomial. «skip proof

Proof.

- A polynomial of type $g=z_{t}^{t}+a_{t-1} z_{t}^{t-1}+\ldots+a_{0}$, with $a_{i} \in \mathbb{F}_{q^{m}}[X]$, exists in $J^{C, t}$ (Proposition \&).
- Since C is proper, all polynomials in ideal $J^{C, t}$ have coefficients in \mathbb{F}_{q} and so g must be in $\mathbb{F}_{q}\left[X, z_{t}\right]$. Polynomial $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ satisfies:
- So $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ is a general error locator polynomial for C.

Proof.

- A polynomial of type $g=z_{t}^{t}+\mathrm{a}_{t-1} z_{t}^{t-1}+\ldots+\mathrm{a}_{0}$, with $a_{i} \in \mathbb{F}_{q^{m}}[X]$, exists in $J^{C, t}$ (Proposition \&).
- Since C is proper, all polynomials in ideal $J^{C, t}$ have coefficients in \mathbb{F}_{q} and so g must be in $\mathbb{F}_{q}\left[X, z_{t}\right]$. Polynomial $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ satisfies:
- So $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ is a general error locator polynomial for C.

Proof.

- A polynomial of type $g=z_{t}^{t}+\mathrm{a}_{t-1} z_{t}^{t-1}+\ldots+\mathrm{a}_{0}$, with $a_{i} \in \mathbb{F}_{q^{m}}[X]$, exists in $J^{C, t}$ (Proposition \&).
- Since C is proper, all polynomials in ideal $J^{C, t}$ have coefficients in \mathbb{F}_{q} and so g must be in $\mathbb{F}_{q}\left[X, z_{t}\right]$. Polynomial $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ satisfies:

- So $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ is a general error locator polynomial for C.

Proof.

- A polynomial of type $g=z_{t}^{t}+\mathrm{a}_{t-1} z_{t}^{t-1}+\ldots+\mathrm{a}_{0}$, with $a_{i} \in \mathbb{F}_{q^{m}}[X]$, exists in $J^{C, t}$ (Proposition \&).
- Since C is proper, all polynomials in ideal $J^{C, t}$ have coefficients in \mathbb{F}_{q} and so g must be in $\mathbb{F}_{q}\left[X, z_{t}\right]$. Polynomial $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ satisfies:
- condition (1) in Definition (\diamond);
- condition (2) in Definition (\diamond), because correctable syndromes

- So $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ is a general error locator polynomial for C.

Proof.

- A polynomial of type $g=z_{t}^{t}+\mathrm{a}_{t-1} z_{t}^{t-1}+\ldots+\mathrm{a}_{0}$, with $a_{i} \in \mathbb{F}_{q^{m}}[X]$, exists in $J^{C, t}$ (Proposition \&).
- Since C is proper, all polynomials in ideal $J^{C, t}$ have coefficients in \mathbb{F}_{q} and so g must be in $\mathbb{F}_{q}\left[X, z_{t}\right]$. Polynomial $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ satisfies:
- condition (1) in Definition (\diamond);
- condition (2) in Definition (\diamond), because correctable syndromes are in $\mathcal{V}\left(J^{C, t} \cap \mathbb{F}_{q}[X]\right)$ and
- So $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ is a general error locator polynomial for C.

Proof.

- A polynomial of type $g=z_{t}^{t}+\mathrm{a}_{t-1} z_{t}^{t-1}+\ldots+\mathrm{a}_{0}$, with $a_{i} \in \mathbb{F}_{q^{m}}[X]$, exists in $J^{C, t}$ (Proposition \&).
- Since C is proper, all polynomials in ideal $J^{C, t}$ have coefficients in \mathbb{F}_{q} and so g must be in $\mathbb{F}_{q}\left[X, z_{t}\right]$. Polynomial $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ satisfies:
- condition (1) in Definition (\diamond);
- condition (2) in Definition (\diamond), because correctable syndromes are in $\mathcal{V}\left(J^{C, t} \cap \mathbb{F}_{q}[X]\right)$ and
- g is in $J^{C, t}$.
- So $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ is a general error locator polynomial for C.

Proof.

- A polynomial of type $g=z_{t}^{t}+\mathrm{a}_{t-1} z_{t}^{t-1}+\ldots+\mathrm{a}_{0}$, with $a_{i} \in \mathbb{F}_{q^{m}}[X]$, exists in $J^{C, t}$ (Proposition \&).
- Since C is proper, all polynomials in ideal $J^{C, t}$ have coefficients in \mathbb{F}_{q} and so g must be in $\mathbb{F}_{q}\left[X, z_{t}\right]$. Polynomial $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ satisfies:
- condition (1) in Definition (\diamond);
- condition (2) in Definition (\diamond), because correctable syndromes are in $\mathcal{V}\left(J^{C, t} \cap \mathbb{F}_{q}[X]\right)$ and
- g is in $J^{C, t}$.
- So $\mathcal{L}=g\left(X, z_{t}\right) \in \mathbb{F}_{q}\left[X, z_{t}\right]$ is a general error locator polynomial for C.

Cyclic codes are proper maximal zerofree nth-root codes \Longrightarrow cyclic codes have general error locator polynomials.

Ideals for the decoding of nth-root codes

Example: first method

Let

- C be the $[5,2,3]$ linear code over \mathbb{F}_{2};
- generator matrix $G=$
- $t=1$,
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^{4}+z+1$);

Ideals for the decoding of nth-root codes

Example: first method

Let

- C be the $[5,2,3]$ linear code over \mathbb{F}_{2};

- $t=1$;
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^{4}+z+1$);

Ideals for the decoding of nth-root codes

Example: first method

Let

- C be the $[5,2,3]$ linear code over \mathbb{F}_{2};
- generator matrix $G=\left(\begin{array}{ccccc}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1\end{array}\right)$;
- $t=1$;
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^{4}+z+1$);

Example: first method

Let

- C be the $[5,2,3]$ linear code over \mathbb{F}_{2};
- generator matrix $G=\left(\begin{array}{ccccc}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1\end{array}\right)$;
- $t=1$;
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $z^{4}+z+1$);

Example: first method

Let

- C be the $[5,2,3]$ linear code over \mathbb{F}_{2};
- generator matrix $G=\left(\begin{array}{ccccc}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1\end{array}\right)$;
- $t=1$;
- γ be a primitive element of \mathbb{F}_{16} (minimal polynomial $\left.z^{4}+z+1\right) ;$

Ideals for the decoding of nth-root codes

Example: first method

- parity-check matrix $H=\left(\gamma^{6}, \gamma^{2}, \gamma^{3}, \gamma^{14}, 1\right)$
- $C=\Omega\left(2,5,2^{4}, R_{5}, \mathcal{P}^{\prime}\right)$, where
- the Gröbner basis \mathcal{G}^{\prime} w.r.t. the lexicographical order induced by $x_{1}<z_{1}$, its elements are:

$$
\mathcal{G}_{x_{1}, z_{1}}^{\prime}=z_{1}+x_{1}^{3} .
$$

There is only one polynomial in z_{1} of degree 1 , as we expected, and it is another general error locator polynomial for C.

Ideals for the decoding of nth-root codes

Example: first method

- parity-check matrix $H=\left(\gamma^{6}, \gamma^{2}, \gamma^{3}, \gamma^{14}, 1\right)$
- $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{2}, \mathbf{5}, \mathbf{2}^{4}, \mathbf{R}_{5}, \mathcal{P}^{\prime}\right)$, where
- the Gröbner basis \mathcal{G}^{\prime} w.r.t. the lexicographical order induced by $x_{1}<z_{1}$, its elements are:

There is only one polynomial in z_{1} of degree 1 , as we expected, and it is another general error locator polynomial for C.

Ideals for the decoding of n th-root codes

Example: first method

- parity-check matrix $H=\left(\gamma^{6}, \gamma^{2}, \gamma^{3}, \gamma^{14}, 1\right)$
- $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{2}, \mathbf{5}, \mathbf{2}^{4}, \mathbf{R}_{\mathbf{5}}, \mathcal{P}^{\prime}\right)$, where $\mathcal{P}^{\prime}=\left\{\gamma^{12} x^{4}+\gamma^{11} x^{3}+x^{2}+\gamma^{14} x+\gamma^{3}\right\}$.
- the Gröbner basis \mathcal{G}^{\prime} w.r.t. the lexicographical order induced by $x_{1}<z_{1}$, its elements are:

There is only one polynomial in z_{1} of degree 1 , as we expected, and it is another general error locator polynomial for C.

Example: first method

- parity-check matrix $H=\left(\gamma^{6}, \gamma^{2}, \gamma^{3}, \gamma^{14}, 1\right)$
- $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{2}, \mathbf{5}, \mathbf{2}^{4}, \mathbf{R}_{5}, \mathcal{P}^{\prime}\right)$, where

$$
\mathcal{P}^{\prime}=\left\{\gamma^{12} x^{4}+\gamma^{11} x^{3}+x^{2}+\gamma^{14} x+\gamma^{3}\right\} .
$$

- the Gröbner basis \mathcal{G}^{\prime} w.r.t. the lexicographical order induced by $x_{1}<z_{1}$, its elements are:

$$
\begin{gathered}
\mathcal{G}_{x_{1}}^{\prime}=x_{1}^{5}+\left(\gamma^{3}\right) x_{1}^{4}+\left(\gamma^{3}+\gamma\right) x_{1}^{2}+\gamma^{2} x_{1}+\left(\gamma^{2}+\gamma+1\right) \\
\mathcal{G}_{x_{1}, z_{1}}^{\prime}=\mathbf{z}_{1}+x_{1}^{3} .
\end{gathered}
$$

There is only one polynomial in z_{1} of degree 1 , as we expected, and it is another general error locator polynomial for C.

Example: first method

- parity-check matrix $H=\left(\gamma^{6}, \gamma^{2}, \gamma^{3}, \gamma^{14}, 1\right)$
- $\mathbf{C}=\boldsymbol{\Omega}\left(\mathbf{2}, \mathbf{5}, \mathbf{2}^{4}, \mathbf{R}_{\mathbf{5}}, \mathcal{P}^{\prime}\right)$, where

$$
\mathcal{P}^{\prime}=\left\{\gamma^{12} x^{4}+\gamma^{11} x^{3}+x^{2}+\gamma^{14} x+\gamma^{3}\right\} .
$$

- the Gröbner basis \mathcal{G}^{\prime} w.r.t. the lexicographical order induced by $x_{1}<z_{1}$, its elements are:

$$
\begin{gathered}
\mathcal{G}_{x_{1}}^{\prime}=x_{1}^{5}+\left(\gamma^{3}\right) x_{1}^{4}+\left(\gamma^{3}+\gamma\right) x_{1}^{2}+\gamma^{2} x_{1}+\left(\gamma^{2}+\gamma+1\right) \\
\mathcal{G}_{x_{1}, z_{1}}^{\prime}=\mathbf{z}_{1}+x_{1}^{3} .
\end{gathered}
$$

There is only one polynomial in z_{1} of degree 1 , as we expected, and it is another general error locator polynomial for C.

Ideals for the decoding of nth-root codes

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$;
- an general error locator polynomial $z+f(x)$ (the degree t of z is 1) must satisfy the following conditions:

Ideals for the decoding of nth-root codes

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$; z is 1) must satisfy the following conditions:

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$;
- an general error locator polynomial $z+f(x)$ (the degree t of z is 1) must satisfy the following conditions:
- $f(x)$ has degree at most 5
- coefficients $b_{i} \in \mathbb{F}_{2}$,

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$;
- an general error locator polynomial $z+f(x)$ (the degree t of z is 1) must satisfy the following conditions:
- $f\left(e_{i}\right)=\alpha^{i}, \quad \forall 1 \leq i \leq 5, \quad$ and $f(0)=0$.
- $f(x)$ has degree at most 5
- coefficients $b_{i} \in \mathbb{F}_{2}$,

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$;
- an general error locator polynomial $z+f(x)$ (the degree t of z is 1) must satisfy the following conditions:
- $f\left(e_{i}\right)=\alpha^{i}, \quad \forall 1 \leq i \leq 5, \quad$ and $f(0)=0$.
- $f(x)$ has degree at most 5

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$;
- an general error locator polynomial $z+f(x)$ (the degree t of z is 1) must satisfy the following conditions:
- $f\left(e_{i}\right)=\alpha^{i}, \quad \forall 1 \leq i \leq 5, \quad$ and $f(0)=0$.
- $f(x)$ has degree at most 5
- coefficients $b_{i} \in \mathbb{F}_{2}$,

Example: second method

We suppose that error general locator polynomial exist. Let

- C be the code studied in the previous examples;
- parity-check matrix is a row, $H=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$;
- an general error locator polynomial $z+f(x)$ (the degree t of z is 1) must satisfy the following conditions:
- $f\left(e_{i}\right)=\alpha^{i}, \quad \forall 1 \leq i \leq 5, \quad$ and $f(0)=0$.
- $f(x)$ has degree at most 5
- coefficients $b_{i} \in \mathbb{F}_{2}$,

$$
f(x)=b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x\left(f(0)=0 \Rightarrow b_{0}=0\right)
$$

Example: second method

- The Gröbner basis of ideal $J \subset \mathbb{F}_{16}\left[b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right]$ given by

$$
\begin{aligned}
J=\langle & e_{1}+e_{2}+e_{3}, e_{3}+e_{4}+e_{5},\left\{e_{i}^{15}+1\right\}_{1 \leq i \leq 5},\left\{b_{i}^{2}+b_{i}\right\}_{1 \leq i \leq 5}, \\
& \left.f\left(e_{1}\right)+\gamma^{3}, f\left(e_{2}\right)+\gamma^{6}, f\left(e_{3}\right)+\gamma^{9}, f\left(e_{4}\right)+\gamma^{12}, f\left(e_{5}\right)+\gamma^{15}\right\rangle
\end{aligned}
$$

where relations $e_{1}=e_{2}+e_{3}, e_{4}=e_{3}+e_{5}$ follow from matrix G.

We obtain:

Example: second method

- The Gröbner basis of ideal $J \subset \mathbb{F}_{16}\left[b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right]$ given by

$$
J=\left\langle\begin{array}{ll}
e_{1}+e_{2}+e_{3}, e_{3}+e_{4}+e_{5},\left\{e_{i}^{15}+1\right\}_{1 \leq i \leq 5},\left\{b_{i}^{2}+b_{i}\right\}_{1 \leq i \leq 5}, \\
& \left.f\left(e_{1}\right)+\gamma^{3}, f\left(e_{2}\right)+\gamma^{6}, f\left(e_{3}\right)+\gamma^{9}, f\left(e_{4}\right)+\gamma^{12}, f\left(e_{5}\right)+\gamma^{15}\right\rangle
\end{array}\right.
$$

where relations $e_{1}=e_{2}+e_{3}, e_{4}=e_{3}+e_{5}$ follow from matrix G.

We obtain:

Example: second method

- The Gröbner basis of ideal $J \subset \mathbb{F}_{16}\left[b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right]$ given by

$$
\begin{aligned}
J=\langle & e_{1}+e_{2}+e_{3}, e_{3}+e_{4}+e_{5},\left\{e_{i}^{15}+1\right\}_{1 \leq i \leq 5},\left\{b_{i}^{2}+b_{i}\right\}_{1 \leq i \leq 5}, \\
& \left.f\left(e_{1}\right)+\gamma^{3}, f\left(e_{2}\right)+\gamma^{6}, f\left(e_{3}\right)+\gamma^{9}, f\left(e_{4}\right)+\gamma^{12}, f\left(e_{5}\right)+\gamma^{15}\right\rangle
\end{aligned}
$$

where relations $e_{1}=e_{2}+e_{3}, e_{4}=e_{3}+e_{5}$ follow from matrix G.

We obtain:

$$
e_{1}=\gamma^{6}, e_{2}=\gamma^{2}, e_{3}=\gamma^{3}, e_{4}=\gamma^{14}, e_{5}=1
$$

Example: second method

- The Gröbner basis of ideal
$J \subset \mathbb{F}_{16}\left[b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right]$ given by

$$
\begin{aligned}
J=\langle & e_{1}+e_{2}+e_{3}, e_{3}+e_{4}+e_{5},\left\{e_{i}^{15}+1\right\}_{1 \leq i \leq 5},\left\{b_{i}^{2}+b_{i}\right\}_{1 \leq i \leq 5}, \\
& \left.f\left(e_{1}\right)+\gamma^{3}, f\left(e_{2}\right)+\gamma^{6}, f\left(e_{3}\right)+\gamma^{9}, f\left(e_{4}\right)+\gamma^{12}, f\left(e_{5}\right)+\gamma^{15}\right\rangle
\end{aligned}
$$

where relations $e_{1}=e_{2}+e_{3}, e_{4}=e_{3}+e_{5}$ follow from matrix G.

We obtain:

$$
e_{1}=\gamma^{6}, e_{2}=\gamma^{2}, e_{3}=\gamma^{3}, e_{4}=\gamma^{14}, e_{5}=1
$$

- $H=\left(\gamma^{6}, \gamma^{2}, \gamma^{3}, \gamma^{14}, 1\right)$ and the general error locator polynomial is $f(x)=x^{3}$, as in the first method, part B.

Ideals for the decoding of n th-root codes

Let

- τ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2 \tau+\mu<d$.

We have to find solutions of equations of type:

where

Let

- τ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2 \tau+\mu<d$.

We have to find solutions of equations of type:

Let

- τ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2 \tau+\mu<d$.

We have to find solutions of equations of type:

$$
\begin{equation*}
\bar{s}_{j}+\sum_{l=1}^{\tau} a_{l} g_{j}\left(\alpha^{k_{l}}\right)+\sum_{\bar{l}=1}^{\nu} \bar{c}_{\bar{l}} g_{j}\left(\alpha^{h_{\bar{l}}}\right), \quad j=1, \ldots, r \tag{7}
\end{equation*}
$$

where

Let

- τ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2 \tau+\mu<d$.

We have to find solutions of equations of type:

$$
\begin{equation*}
\bar{s}_{j}+\sum_{l=1}^{\tau} a_{l} g_{j}\left(\alpha^{k_{l}}\right)+\sum_{\bar{l}=1}^{\nu} \bar{c}_{\bar{l}} g_{j}\left(\alpha^{h_{\bar{l}}}\right), \quad j=1, \ldots, r \tag{7}
\end{equation*}
$$

where

- $\left\{k_{l}\right\},\left\{a_{l}\right\}$ and $\left\{c_{I}\right\}$ are unknown

Let

- τ be a natural number corresponding to the number of errors,
- μ be a natural number corresponding to the number of erasures and such that $2 \tau+\mu<d$.

We have to find solutions of equations of type:

$$
\begin{equation*}
\bar{s}_{j}+\sum_{l=1}^{\tau} a_{l} g_{j}\left(\alpha^{k_{l}}\right)+\sum_{\bar{l}=1}^{\nu} \bar{c}_{\bar{l}} g_{j}\left(\alpha^{h_{\bar{l}}}\right), \quad j=1, \ldots, r \tag{7}
\end{equation*}
$$

where

- $\left\{k_{l}\right\},\left\{a_{l}\right\}$ and $\left\{c_{I}\right\}$ are unknown
- $\left\{\bar{s}_{j}\right\},\left\{h_{\bar{T}}\right\}$ are known.

We introduce

- variables $W=\left(w_{\nu}, \ldots, w_{1}\right)$, where $\left\{w_{h}\right\}$ stand for erasure locations $\left(\alpha^{h_{\top}}\right)$;
- $U=\left(u_{1}, \ldots, u_{\nu}\right)$, where $\left\{u_{h}\right\}$ stand for erasure values $\bar{c}_{\bar{T}}$ $(h=1, \ldots, \nu)$.

When the word $v(x)$ is received, the number ν of erasures and their positions $\left\{w_{h}\right\}$ are known.
$\left\{x_{j}\right\}$ stand for the syndromes $(j=1, \ldots, r)$, as:

We introduce

- variables $W=\left(w_{\nu}, \ldots, w_{1}\right)$, where $\left\{w_{h}\right\}$ stand for erasure locations ($\alpha^{h_{T}}$);
- $U=\left(u_{1}, \ldots, u_{\nu}\right)$, where $\left\{u_{h}\right\}$ stand for erasure values $\bar{c}_{\bar{T}}$ $(h=1, \ldots, \nu)$.

When the word $v(x)$ is received, the number ν of erasures and their positions $\left\{w_{h}\right\}$ are known.
$\left\{x_{j}\right\}$ stand for the syndromes $(j=1, \ldots, r)$, as:

We introduce

- variables $W=\left(w_{\nu}, \ldots, w_{1}\right)$, where $\left\{w_{h}\right\}$ stand for erasure locations ($\alpha^{h_{i}}$);
- $U=\left(u_{1}, \ldots, u_{\nu}\right)$, where $\left\{u_{\mathrm{h}}\right\}$ stand for erasure values $\bar{c}_{\bar{I}}$ (h $=1, \ldots, \nu$).

When the word $v(x)$ is received, the number ν of erasures and their positions $\left\{w_{h}\right\}$ are known.
$\left\{x_{j}\right\}$ stand for the syndromes $(j=1, \ldots, r)$, as:

We introduce

- variables $W=\left(w_{\nu}, \ldots, w_{1}\right)$, where $\left\{w_{h}\right\}$ stand for erasure locations ($\alpha^{h_{T}}$);
- $U=\left(u_{1}, \ldots, u_{\nu}\right)$, where $\left\{u_{\mathrm{h}}\right\}$ stand for erasure values $\bar{c}_{\bar{I}}$ (h=1, \ldots, ν).
When the word $v(x)$ is received, the number ν of erasures and their positions $\left\{w_{h}\right\}$ are known.

We introduce

- variables $W=\left(w_{\nu}, \ldots, w_{1}\right)$, where $\left\{w_{h}\right\}$ stand for erasure locations ($\alpha^{h_{T}}$);
- $U=\left(u_{1}, \ldots, u_{\nu}\right)$, where $\left\{u_{\mathrm{h}}\right\}$ stand for erasure values $\bar{c}_{\bar{I}}$ ($\mathrm{h}=1, \ldots, \nu$).
When the word $v(x)$ is received, the number ν of erasures and their positions $\left\{w_{h}\right\}$ are known.
$\left\{x_{j}\right\}$ stand for the syndromes $(j=1, \ldots, r)$, as:

$$
\begin{aligned}
& J^{C, \tau, \nu}=\langle \\
& \left\{\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}\right\}_{j=1, \ldots, r,}, \\
& \left\{z_{i}^{n+1}-z_{i}\right\}_{i=1, \ldots, \tau} \text {, } \\
& \left\{y_{i}^{q-1}-1\right\}_{i=1, \ldots, \tau} \text {, } \\
& \left\{u_{h}^{q}-u_{h}\right\}_{h=1, \ldots, \nu}, \\
& \left\{w_{h}^{n}-1\right\}_{h=1, \ldots, \nu} \text {, } \\
& \left\{x_{j}^{q^{m}}-x_{j}\right\}_{j=1, \ldots, r}, \\
& \left\{p\left(w_{h}, w_{k}\right)\right\}_{h \neq k, h, k=1, \ldots, \nu}, \\
& \left.\left\{z_{i} p\left(z_{i}, w_{h}\right)\right\}_{i=1, \ldots, \tau, h=1, \ldots, \nu}, \quad\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, i, j=1, \ldots, \tau}\right\rangle .
\end{aligned}
$$

We observe that polynomials:

- \square $u_{j} g_{j}\left(w_{j}\right)-x_{j}$ characterize the n th-root code;
e $z_{i}^{n+1}-z_{i}$ ensure that z_{i} are nth-roots of unity or 0 ;
- $y_{i}^{q-1}-1, w_{h}^{n}-1, u_{h}^{q}-u_{h}$ ensure that $y_{i}, w_{h} \in \mathbb{F}_{q}^{*}$ and $u_{h} \in \mathbb{F}_{q} ;$
- $z_{i} p\left(z_{i}, w_{h}\right)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p\left(w_{h}, w_{k}\right)$ ensure that any two erasure locations are distinct;
- $z_{i} z_{i} p\left(z_{i}, z_{j}\right)$ ensure that any two error locations are distinct.

Ideals for the decoding of nth-root codes

$$
\begin{aligned}
& J^{C, \tau, \nu}=\langle \\
& \left\{\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}\right\}_{j=1, \ldots, r,}, \\
& \left\{z_{i}^{n+1}-z_{i}\right\}_{i=1, \ldots, \tau}, \quad\left\{y_{i}^{q-1}-1\right\}_{i=1, \ldots, \tau}, \\
& \left\{u_{h}^{q}-u_{h}\right\}_{h=1, \ldots, \nu}, \quad\left\{w_{h}^{n}-1\right\}_{h=1, \ldots, \nu}, \\
& \left\{x_{j}^{q^{m}}-x_{j}\right\}_{j=1, \ldots, r}, \quad\left\{p\left(w_{h}, w_{k}\right)\right\}_{h \neq k, h, k=1, \ldots, \nu}, \\
& \left.\left\{z_{i} p\left(z_{i}, w_{h}\right)\right\}_{i=1, \ldots, \tau, h=1, \ldots, \nu}, \quad\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, i, j=1, \ldots, \tau}\right\rangle .
\end{aligned}
$$

We observe that polynomials:

- $\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}$ characterize the nth-root code;
- $z_{i}^{n+1}-z_{i}$ ensure that z_{i} are nth-roots of unity or $0 ;$
- $y_{i}^{q-1}-1, w_{h}^{n}-1, u_{h}^{q}-u_{h}$ ensure that $y_{i}, w_{h} \in \mathbb{F}_{q}^{*}$ and $u_{h} \in \mathbb{F}_{q}$;
- $z_{i} p\left(z_{i}, w_{h}\right)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p\left(w_{h}, w_{k}\right)$ ensure that any two erasure locations are distinct;
- $z_{i} z_{j} p\left(z_{i}, z_{j}\right)$ ensure that any two error locations are distinct.

$$
\begin{aligned}
& J^{C, \tau, \nu}=\langle \\
& \left\{\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{\bar{l}}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}\right\}_{j=1, \ldots, r,}, \\
& \left\{z_{i}^{n+1}-z_{i}\right\}_{i=1, \ldots, \tau}, \quad\left\{y_{i}^{q-1}-1\right\}_{i=1, \ldots, \tau}, \\
& \left\{u_{h}^{q}-u_{h}\right\}_{h=1, \ldots, \nu}, \quad\left\{w_{h}^{n}-1\right\}_{h=1, \ldots, \nu}, \\
& \left\{x_{j}^{q^{m}}-x_{j}\right\}_{j=1, \ldots, r}, \quad\left\{p\left(w_{h}, w_{k}\right)\right\}_{h \neq k, h, k=1, \ldots, \nu}, \\
& \left.\left\{z_{i} p\left(z_{i}, w_{h}\right)\right\}_{i=1, \ldots, \tau, h=1, \ldots, \nu}, \quad\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, i, j=1, \ldots, \tau}\right\rangle .
\end{aligned}
$$

We observe that polynomials:

- $\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}$ characterize the nth-root code;
- $z_{i}^{n+1}-z_{i}$ ensure that z_{i} are nth-roots of unity or 0 ;
- $y_{i}^{q-1}-1, w_{h}^{n}-1, u_{h}^{q}-u_{h}$ ensure that $y_{i}, w_{h} \in \mathbb{F}_{q}^{*}$ and $u_{h} \in \mathbb{F}_{q}$;
- $z_{i} p\left(z_{i}, w_{h}\right)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p\left(w_{h}, w_{k}\right)$ ensure that any two erasure locations are distinct;
- $z_{i} z_{j} p\left(z_{i}, z_{j}\right)$ ensure that any two error locations are distinct.

Ideals for the decoding of nth-root codes

$$
\begin{aligned}
& J^{C, \tau, \nu}=\langle \\
& \left\{\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{i} g_{j}\left(w_{i}\right)-x_{j}\right\}_{j=1, \ldots, r,}, \\
& \left\{z_{i}^{n+1}-z_{i}\right\}_{i=1, \ldots, \tau}, \quad\left\{y_{i}^{q-1}-1\right\}_{i=1, \ldots, \tau}, \\
& \left\{u_{h}^{q}-u_{h}\right\}_{h=1, \ldots, \nu}, \quad\left\{w_{h}^{n}-1\right\}_{h=1, \ldots, \nu}, \\
& \left\{x_{j}^{q^{m}}-x_{j}\right\}_{j=1, \ldots, r}, \quad\left\{p\left(w_{h}, w_{k}\right)\right\}_{h \neq k, h, k=1, \ldots, \nu} \text {, } \\
& \left.\left\{z_{i} p\left(z_{i}, w_{h}\right)\right\}_{i=1, \ldots, \tau, h=1, \ldots, \nu}, \quad\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, i, j=1, \ldots, \tau}\right\rangle .
\end{aligned}
$$

We observe that polynomials:

- $\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}$ characterize the nth-root code;
- $z_{i}^{n+1}-z_{i}$ ensure that z_{i} are nth-roots of unity or 0 ;
- $y_{i}^{q-1}-1, w_{h}^{n}-1, u_{h}^{q}-u_{h}$ ensure that $y_{i}, w_{h} \in \mathbb{F}_{q}^{*}$ and $u_{h} \in \mathbb{F}_{q} ;$
- $z_{i} p\left(z_{i}, w_{h}\right)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p\left(w_{h}, w_{k}\right)$ ensure that any two erasure locations are distinct;
- $z_{i} z_{j} p\left(z_{i}, z_{j}\right)$ ensure that any two error locations are distinct.

$$
\begin{aligned}
& J^{C, \tau, \nu}=\langle \\
& \left\{\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{\bar{l}}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}\right\}_{j=1, \ldots, r,}, \\
& \left\{z_{i}^{n+1}-z_{i}\right\}_{i=1, \ldots, \tau}, \quad\left\{y_{i}^{q-1}-1\right\}_{i=1, \ldots, \tau}, \\
& \left\{u_{h}^{q}-u_{h}\right\}_{h=1, \ldots, \nu}, \quad\left\{w_{h}^{n}-1\right\}_{h=1, \ldots, \nu}, \\
& \left\{x_{j}^{q^{m}}-x_{j}\right\}_{j=1, \ldots, r}, \quad\left\{p\left(w_{h}, w_{k}\right)\right\}_{h \neq k, h, k=1, \ldots, \nu}, \\
& \left.\left\{z_{i} p\left(z_{i}, w_{h}\right)\right\}_{i=1, \ldots, \tau, h=1, \ldots, \nu}, \quad\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, i, j=1, \ldots, \tau}\right\rangle .
\end{aligned}
$$

We observe that polynomials:

- $\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}$ characterize the nth-root code;
- $z_{i}^{n+1}-z_{i}$ ensure that z_{i} are nth-roots of unity or 0 ;
- $y_{i}^{q-1}-1, w_{h}^{n}-1, u_{h}^{q}-u_{h}$ ensure that $y_{i}, w_{h} \in \mathbb{F}_{q}^{*}$ and $u_{h} \in \mathbb{F}_{q} ;$
- $z_{i} p\left(z_{i}, w_{h}\right)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p\left(w_{h}, w_{k}\right)$ ensure that any two erasure locations are distinct;
- $z_{i} z_{j} p\left(z_{i}, z_{j}\right)$ ensure that any two error locations are distinct.

$$
\begin{aligned}
& J^{C, \tau, \nu}=\left\langle\quad\left\{\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}\right\}_{j=1, \ldots, r,},\right. \\
& \left\{z_{i}^{n+1}-z_{i}\right\}_{i=1, \ldots, \tau}, \quad\left\{y_{i}^{q-1}-1\right\}_{i=1, \ldots, \tau}, \\
& \left\{u_{h}^{q}-u_{h}\right\}_{h=1, \ldots, \nu}, \quad\left\{w_{h}^{n}-1\right\}_{h=1, \ldots, \nu}, \\
& \left\{x_{j}^{q^{m}}-x_{j}\right\}_{j=1, \ldots, r}, \quad\left\{p\left(w_{h}, w_{k}\right)\right\}_{h \neq k, h, k=1, \ldots, \nu}, \\
& \left.\left\{z_{i} p\left(z_{i}, w_{h}\right)\right\}_{i=1, \ldots, \tau, h=1, \ldots, \nu}, \quad\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, i, j=1, \ldots, \tau}\right\rangle .
\end{aligned}
$$

We observe that polynomials:

- $\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}$ characterize the nth-root code;
- $z_{i}^{n+1}-z_{i}$ ensure that z_{i} are nth-roots of unity or 0 ;
- $y_{i}^{q-1}-1, w_{h}^{n}-1, u_{h}^{q}-u_{h}$ ensure that $y_{i}, w_{h} \in \mathbb{F}_{q}^{*}$ and $u_{h} \in \mathbb{F}_{q} ;$
- $z_{i} p\left(z_{i}, w_{h}\right)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p\left(w_{h}, w_{k}\right)$ ensure that any two erasure locations are distinct;

$$
\begin{aligned}
& J^{C, \tau, \nu}=\left\langle\quad\left\{\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}\right\}_{j=1, \ldots, r,},\right. \\
& \left\{z_{i}^{n+1}-z_{i}\right\}_{i=1, \ldots, \tau}, \quad\left\{y_{i}^{q-1}-1\right\}_{i=1, \ldots, \tau}, \\
& \left\{u_{h}^{q}-u_{h}\right\}_{h=1, \ldots, \nu}, \quad\left\{w_{h}^{n}-1\right\}_{h=1, \ldots, \nu}, \\
& \left\{x_{j}^{q^{m}}-x_{j}\right\}_{j=1, \ldots, r}, \quad\left\{p\left(w_{h}, w_{k}\right)\right\}_{h \neq k, h, k=1, \ldots, \nu}, \\
& \left.\left\{z_{i} p\left(z_{i}, w_{h}\right)\right\}_{i=1, \ldots, \tau, h=1, \ldots, \nu}, \quad\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, i, j=1, \ldots, \tau}\right\rangle .
\end{aligned}
$$

We observe that polynomials:

- $\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}$ characterize the nth-root code;
- $z_{i}^{n+1}-z_{i}$ ensure that z_{i} are nth-roots of unity or 0 ;
- $y_{i}^{q-1}-1, w_{h}^{n}-1, u_{h}^{q}-u_{h}$ ensure that $y_{i}, w_{h} \in \mathbb{F}_{q}^{*}$ and $u_{h} \in \mathbb{F}_{q} ;$
- $z_{i} p\left(z_{i}, w_{h}\right)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p\left(w_{h}, w_{k}\right)$ ensure that any two erasure locations are distinct;
- $z_{i} z_{j} p\left(z_{i}, z_{j}\right)$ ensure that any two error locations are distinct.

$$
\begin{aligned}
& J^{C, \tau, \nu}=\left\langle\quad\left\{\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}\right\}_{j=1, \ldots, r,},\right. \\
& \left\{z_{i}^{n+1}-z_{i}\right\}_{i=1, \ldots, \tau}, \quad\left\{y_{i}^{q-1}-1\right\}_{i=1, \ldots, \tau}, \\
& \left\{u_{h}^{q}-u_{h}\right\}_{h=1, \ldots, \nu}, \quad\left\{w_{h}^{n}-1\right\}_{h=1, \ldots, \nu}, \\
& \left\{x_{j}^{q^{m}}-x_{j}\right\}_{j=1, \ldots, r}, \quad\left\{p\left(w_{h}, w_{k}\right)\right\}_{h \neq k, h, k=1, \ldots, \nu}, \\
& \left.\left\{z_{i} p\left(z_{i}, w_{h}\right)\right\}_{i=1, \ldots, \tau, h=1, \ldots, \nu}, \quad\left\{z_{i} z_{j} p\left(z_{i}, z_{j}\right)\right\}_{i \neq j, i, j=1, \ldots, \tau}\right\rangle .
\end{aligned}
$$

We observe that polynomials:

- $\sum_{l=1}^{\tau} y_{l} g_{j}\left(z_{l}\right)+\sum_{l}^{\nu} u_{l} g_{j}\left(w_{l}\right)-x_{j}$ characterize the nth-root code;
- $z_{i}^{n+1}-z_{i}$ ensure that z_{i} are nth-roots of unity or 0 ;
- $y_{i}^{q-1}-1, w_{h}^{n}-1, u_{h}^{q}-u_{h}$ ensure that $y_{i}, w_{h} \in \mathbb{F}_{q}^{*}$ and $u_{h} \in \mathbb{F}_{q} ;$
- $z_{i} p\left(z_{i}, w_{h}\right)$ ensure that an error cannot occur in a position corresponding to an erasure;
- $p\left(w_{h}, w_{k}\right)$ ensure that any two erasure locations are distinct;
- $z_{i} z_{j} p\left(z_{i}, z_{j}\right)$ ensure that any two error locations are distinct. Ideal $J^{C, \tau, \nu}$ depends only on code C and on ν.

Proposition

In Gröbner basis $\mathcal{G}^{C, \tau, \nu}$ there is a unique polynomial of type

$$
g=z_{\tau}^{\tau}+\mathrm{a}_{\tau-1} z^{\tau-1}+\ldots+\mathrm{a}_{0}, \mathrm{a}_{i} \in \mathbb{F}_{q^{m}}[X, W]
$$

Theorem
If code C is a proper maximal zerofree nth-root code, then C possesses general error locator polynomials of type ν, for any $\nu \geq 0$.

Proposition

In Gröbner basis $\mathcal{G}^{C, \tau, \nu}$ there is a unique polynomial of type

$$
g=z_{\tau}^{\tau}+\mathrm{a}_{\tau-1} z^{\tau-1}+\ldots+\mathrm{a}_{0}, \mathrm{a}_{i} \in \mathbb{F}_{q^{m}}[X, W]
$$

Theorem

If code C is a proper maximal zerofree nth-root code, then C possesses general error locator polynomials of type ν, for any $\nu \geq 0$.

Example III

Let C^{\prime} be the shortened code obtained from code C presented in Example I. Code C^{\prime} is a $[7,1,6]$ linear code, so that τ (errors) and μ (erasures) satisfy relation $\tau+\mu<6$. If $\tau=1, \mu=2$, the syndrome ideal is

$$
\begin{aligned}
J= & \left\{g_{1}\left(z_{1}\right)+u_{1} g_{1}\left(w_{1}\right)+u_{2} g\left(w_{2}\right)+x_{1}, g_{2}\left(z_{1}\right)+u_{1} g_{2}\left(w_{1}\right)+u_{2} g_{2}\left(w_{2}\right)+x_{2},\right. \\
& z_{1}^{8}-z_{1}, w_{1}^{7}-1, w_{2}^{7}-1, x_{1}^{8}-x_{1}, x_{2}^{8}+x_{2}, u_{1}^{2}+u_{1}, u_{2}^{2}+u_{2}, \\
& \left.z_{1} p\left(z_{1}, w_{1}\right), z_{1} p\left(z_{1}, w_{2}\right), p\left(w_{1}, w_{2}\right)\right\}
\end{aligned}
$$

and in the reduced Gröbner basis there is only one polynomial having z_{1} as leading term (see Appendix of [4]).

Definition

Let g be a divisor of $x^{n}-1$ over \mathbb{F}_{q}. We define S_{C} as the set $S_{C}=\left\{i_{1}, \ldots, i_{n-k} \mid g\left(\alpha^{i_{j}}\right)=0,1 \leq i_{j} \leq n\right\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$
H=\left(\begin{array}{ccccc}
1 & \alpha^{i_{1}} & \alpha^{2 i_{1}} & \ldots & \alpha^{(n-1) i_{1}} \\
1 & \alpha^{i_{2}} & \alpha^{2 i_{2}} & \ldots & \alpha^{(n-1) i_{2}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{i_{n-k}} & \alpha^{2 i_{n-k}} & \cdots & \alpha^{(n-1) i_{n-k}}
\end{array}\right)
$$

The cyclic code C generated by g is the linear code C over \mathbb{F}_{q} such that H is a parity-check matrix for C.

- C as the nth-root code $\Omega\left(q, n, q^{m}, R_{n},\left\{x^{i_{j}} \mid i_{j} \in S_{C}\right\}\right)$
\square
Prodosition
Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial

Definition

Let g be a divisor of $x^{n}-1$ over \mathbb{F}_{q}. We define S_{C} as the set $S_{C}=\left\{i_{1}, \ldots, i_{n-k} \mid g\left(\alpha^{i_{j}}\right)=0,1 \leq i_{j} \leq n\right\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$
H=\left(\begin{array}{ccccc}
1 & \alpha^{i_{1}} & \alpha^{2 i_{1}} & \ldots & \alpha^{(n-1) i_{1}} \\
1 & \alpha^{i_{2}} & \alpha^{2 i_{2}} & \ldots & \alpha^{(n-1) i_{2}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{i_{n-k}} & \alpha^{2 i_{n-k}} & \cdots & \alpha^{(n-1) i_{n-k}}
\end{array}\right)
$$

The cyclic code C generated by g is the linear code C over \mathbb{F}_{q} such that H is a parity-check matrix for C.

- $L=R_{n}$, i.e. $L=\left\{\alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}$
- C as the nth-root code $\Omega\left(q, n, q^{m}, R_{n},\left\{x^{i_{j}} \mid i_{j} \in S_{C}\right\}\right)$
\square
Dronosition
Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial

Definition

Let g be a divisor of $x^{n}-1$ over \mathbb{F}_{q}. We define S_{C} as the set $S_{C}=\left\{i_{1}, \ldots, i_{n-k} \mid g\left(\alpha^{i_{j}}\right)=0,1 \leq i_{j} \leq n\right\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$
H=\left(\begin{array}{ccccc}
1 & \alpha^{i_{1}} & \alpha^{2 i_{1}} & \ldots & \alpha^{(n-1) i_{1}} \\
1 & \alpha^{i_{2}} & \alpha^{2 i_{2}} & \ldots & \alpha^{(n-1) i_{2}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{i_{n-k}} & \alpha^{2 i_{n-k}} & \ldots & \alpha^{(n-1) i_{n-k}}
\end{array}\right)
$$

The cyclic code C generated by g is the linear code C over \mathbb{F}_{q} such that H is a parity-check matrix for C.

- $L=R_{n}$, i.e. $L=\left\{\alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}$
- $\mathcal{P}=\left\{x^{i_{j}} \mid i_{j} \in S_{C}\right\}$

Proposition
Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial

Definition

Let g be a divisor of $x^{n}-1$ over \mathbb{F}_{q}. We define S_{C} as the set $S_{C}=\left\{i_{1}, \ldots, i_{n-k} \mid g\left(\alpha^{i_{j}}\right)=0,1 \leq i_{j} \leq n\right\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$
H=\left(\begin{array}{ccccc}
1 & \alpha^{i_{1}} & \alpha^{2 i_{1}} & \ldots & \alpha^{(n-1) i_{1}} \\
1 & \alpha^{i_{2}} & \alpha^{2 i_{2}} & \cdots & \alpha^{(n-1) i_{2}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{i_{n-k}} & \alpha^{2 i_{n-k}} & \cdots & \alpha^{(n-1) i_{n-k}}
\end{array}\right)
$$

The cyclic code C generated by g is the linear code C over \mathbb{F}_{q} such that H is a parity-check matrix for C.

- $L=R_{n}$, i.e. $L=\left\{\alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}$
- $\mathcal{P}=\left\{x^{i_{j}} \mid i_{j} \in S_{C}\right\}$
- C as the nth-root code $\Omega\left(q, n, q^{m}, R_{n},\left\{x^{i_{j}} \mid i_{j} \in S_{C}\right\}\right)$
\square Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial

Definition

Let g be a divisor of $x^{n}-1$ over \mathbb{F}_{q}. We define S_{C} as the set $S_{C}=\left\{i_{1}, \ldots, i_{n-k} \mid g\left(\alpha^{i_{j}}\right)=0,1 \leq i_{j} \leq n\right\}$ of all powers of α that are roots of g. Let H be the following matrix:

$$
H=\left(\begin{array}{ccccc}
1 & \alpha^{i_{1}} & \alpha^{2 i_{1}} & \cdots & \alpha^{(n-1) i_{1}} \\
1 & \alpha^{i_{2}} & \alpha^{2 i_{2}} & \cdots & \alpha^{(n-1) i_{2}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{i_{n-k}} & \alpha^{2 i_{n-k}} & \cdots & \alpha^{(n-1) i_{n-k}}
\end{array}\right)
$$

The cyclic code C generated by g is the linear code C over \mathbb{F}_{q} such that H is a parity-check matrix for C.

- $L=R_{n}$, i.e. $L=\left\{\alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}$
- $\mathcal{P}=\left\{x^{i_{j}} \mid i_{j} \in S_{C}\right\}$
- C as the nth-root code $\Omega\left(q, n, q^{m}, R_{n},\left\{x^{i_{j}} \mid i_{j} \in S_{C}\right\}\right)$

Proposition

Any cyclic code is a proper maximal zerofree nth-root code. As a consequence, it possesses a general error locator polynomial.

Shortened cyclic codes
Shortened cyclic codes can be seen as nth-root codes: if D is a subset of positions where cyclic code C is shortened, then code $C(D)$ is an nth-root code $\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$, where q, n and \mathcal{P} are as above and $L=\left\{\alpha^{j} \mid 1 \leq j \leq n, j \notin D\right\}$.

Reed Solomon code
A RS code is a cyclic code with generator polynomial primitive element of $\mathbb{F}_{q^{m}}$. A RS code can be treated as an nth-root code $\Omega\left(q, n, q^{m}, \mathbb{F}_{q^{m}}^{*},\left\{x^{i} \mid i=b, b+1, \ldots, b+\delta-2\right\}\right)$

Shortened cyclic codes
Shortened cyclic codes can be seen as nth-root codes: if D is a subset of positions where cyclic code C is shortened, then code $C(D)$ is an nth-root code $\Omega\left(q, n, q^{m}, L, \mathcal{P}\right)$, where q, n and \mathcal{P} are as above and $L=\left\{\alpha^{j} \mid 1 \leq j \leq n, j \notin D\right\}$.

Reed Solomon code
A RS code is a cyclic code with generator polynomial $g(x)=\left(x-\alpha^{b}\right)\left(x-\alpha^{b+1}\right) \ldots\left(x-\alpha^{b-\delta-2}\right)$, where α is the primitive element of $\mathbb{F}_{q^{m}}$. A RS code can be treated as an nth-root code $\Omega\left(q, n, q^{m}, \mathbb{F}_{q^{m}}^{*},\left\{x^{i} \mid i=b, b+1, \ldots, b+\delta-2\right\}\right)$.

Definition

Let $g(z) \in \mathbb{F}_{q^{m}}[z], \operatorname{deg}(g)=r \geq 2$, and let $L=\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$ denote a subset of elements of $\mathbb{F}_{q^{m}}$ which are not roots of $g(z)$. Then the Goppa code $\Gamma(L, g)$ is defined as the set of all vectors $c=\left(c_{1}, \ldots, c_{N}\right)$ with components in \mathbb{F}_{q} that satisfy the condition:

$$
\sum_{i=1}^{N} \frac{c_{i}}{z-\alpha_{i}} \equiv 0 \quad \bmod g(z)
$$

A parity-check matrix for $\Gamma(L, g)$ can be written as:

$$
H=\left(\begin{array}{cccc}
\frac{1}{g\left(\alpha_{1}\right)} & \frac{1}{g\left(\alpha_{2}\right)} & \cdots & \frac{1}{g\left(\alpha_{N}\right)} \\
\frac{\alpha_{1}}{g\left(\alpha_{1}\right)} & \frac{\alpha_{2}}{g\left(\alpha_{2}\right)} & \cdots & \frac{\alpha_{N}}{g\left(\alpha_{N}\right)} \\
\frac{\alpha_{1}^{2}}{g\left(\alpha_{1}\right)} & \frac{\alpha_{2}^{2}}{g\left(\alpha_{2}\right)} & \cdots & \frac{\alpha_{N}^{2}}{g\left(\alpha_{N}\right)} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\alpha_{1}^{r-1}}{g\left(\alpha_{1}\right)} & \frac{\alpha_{2}^{r-1}}{g\left(\alpha_{2}\right)} & \cdots & \frac{\alpha_{N}^{r-1}}{g\left(\alpha_{N}\right)}
\end{array}\right) .
$$

- Setting q, m and L as in definition, $n=q^{m}-1$,

$$
\mathcal{P}=\left\{\frac{x^{i}}{g(x)}, \forall i=0, \ldots, r-1\right\}
$$

- It follows that classical Goppa code $\Gamma(L, g)$ over \mathbb{F}_{q} is the nth-root code

$$
\Gamma=\Omega\left(q, q^{m}-1, q^{m}, L,\left\{\left.\frac{x^{i}}{g(x)} \right\rvert\, i=0, \ldots, r-1\right\}\right)
$$

Proposition

If the Goppa polynomial g is in $\mathbb{F}_{q}[x]$, then $\Gamma(L, g)$ is a proper nth-root code. In particular, if $L=\mathbb{F}_{q^{m}} \backslash\{0\}$, code $\Gamma(L, g)$ is proper and maximal.

Thenrem
Any classical Goppa code $\Gamma(L, g)$ such that $g \in \mathbb{F}_{q}[x]$ and $L=\mathbb{F}_{q^{m}}^{*}$ admits a general error locator polynomial.

- Setting q, m and L as in definition, $n=q^{m}-1$,

$$
\mathcal{P}=\left\{\frac{x^{i}}{g(x)}, \forall i=0, \ldots, r-1\right\}
$$

- It follows that classical Goppa code $\Gamma(L, g)$ over \mathbb{F}_{q} is the nth-root code

$$
\Gamma=\Omega\left(q, q^{m}-1, q^{m}, L,\left\{\left.\frac{x^{i}}{g(x)} \right\rvert\, i=0, \ldots, r-1\right\}\right) .
$$

Proposition

If the Goppa polynomial g is in $\mathbb{F}_{q}[x]$, then $\Gamma(L, g)$ is a proper nth-root code. In particular, if $L=\mathbb{F}_{q^{m}} \backslash\{0\}$, code $\Gamma(L, g)$ is proper and maximal.
\square
Any classical Goppa code $\Gamma(L, g)$ such that $g \in \mathbb{F}_{q}[x]$ and $L=\mathbb{F}_{q^{m}}^{*}$ admits a general error locator polynomial.

- Setting q, m and L as in definition, $n=q^{m}-1$,

$$
\mathcal{P}=\left\{\frac{x^{i}}{g(x)}, \forall i=0, \ldots, r-1\right\}
$$

- It follows that classical Goppa code $\Gamma(L, g)$ over \mathbb{F}_{q} is the nth-root code

$$
\Gamma=\Omega\left(q, q^{m}-1, q^{m}, L,\left\{\left.\frac{x^{i}}{g(x)} \right\rvert\, i=0, \ldots, r-1\right\}\right) .
$$

Proposition

If the Goppa polynomial g is in $\mathbb{F}_{q}[x]$, then $\Gamma(L, g)$ is a proper nth-root code. In particular, if $L=\mathbb{F}_{q^{m}} \backslash\{0\}$, code $\Gamma(L, g)$ is proper and maximal.

Any classical Goppa code $\Gamma(L, g)$ such that $g \in \mathbb{F}_{q}[x]$ and $L=\mathbb{F}_{a^{m}}^{*}$ admits a general error locator polynomial.

- Setting q, m and L as in definition, $n=q^{m}-1$, $\mathcal{P}=\left\{\frac{x^{i}}{g(x)}, \forall i=0, \ldots, r-1\right\}$
- It follows that classical Goppa code $\Gamma(L, g)$ over \mathbb{F}_{q} is the nth-root code

$$
\Gamma=\Omega\left(q, q^{m}-1, q^{m}, L,\left\{\left.\frac{x^{i}}{g(x)} \right\rvert\, i=0, \ldots, r-1\right\}\right) .
$$

Proposition

If the Goppa polynomial g is in $\mathbb{F}_{q}[x]$, then $\Gamma(L, g)$ is a proper nth-root code. In particular, if $L=\mathbb{F}_{q^{m}} \backslash\{0\}$, code $\Gamma(L, g)$ is proper and maximal.

Theorem

Any classical Goppa code $\Gamma(L, g)$ such that $g \in \mathbb{F}_{q}[x]$ and
$L=\mathbb{F}_{q^{m}}^{*}$ admits a general error locator polynomial.

Consider the nth-root code of the first Example, shortened in position 0 . It is a classical Goppa code with $g(x)=x^{2}+x+1$ and $L=\mathbb{F}_{8}^{*}$.
A general error locator polynomial for this code is

$$
\begin{aligned}
\mathcal{L}= & \mathbf{z}_{2}^{2}+ \\
& z_{2}\left(x_{1}^{5} x_{2}^{2}+x_{1}^{5}+x_{1}^{3} x_{2}^{2}+x_{1}^{3}+x_{1}^{2} x_{2}^{2}+\right. \\
& x_{1}^{2} x_{2}+x_{1} x_{2}^{5}+x_{1} x_{2}^{4}+x_{1} x_{2}^{3}+x_{1} x_{2}^{2}+ \\
& \left.x_{1} x_{2}+x_{1}+x_{2}^{7}+x_{2}^{4}+x_{2}^{3}+x_{2}^{2}+1\right)+ \\
& x_{1}^{5} x_{2}^{2}+x_{1}^{5} x_{2}+x_{1}^{5}+x_{1}^{4} x_{2}^{2}+ \\
& x_{1}^{3} x_{2}^{3}+x_{1}^{2} x_{2}+x_{1}^{2}+x_{1} x_{2}^{6}+ \\
& x_{1} x_{2}+x_{1}+x_{2}^{7}+x_{2}^{6} .
\end{aligned}
$$

Consider irreducible Goppa codes, $\Gamma(L, g)$ such that $L=\mathbb{F}_{q^{m}}$. These codes admit also the following parity-check matrix H :

$$
H=\left(\begin{array}{cccc}
\frac{1}{\gamma-\zeta_{0}}, & \frac{1}{\gamma-\zeta_{1}}, & \cdots, & \frac{1}{\gamma-\zeta_{q} m-1}
\end{array}\right)
$$

where $\gamma \in \mathbb{F}_{q^{m r}}$ is any root of $g(x)$ and $\mathbb{F}_{q^{m}}=\left\{\zeta_{i} \mid 0 \leq i \leq q^{m}-1\right\}$. We can extend the definition of nth-root codes to generalized nthroot codes, by allowing also $\mathcal{P} \subset \mathbb{F}_{Q}[X]$ with $\mathbb{F}_{q^{m}} \subset \mathbb{F}_{Q}$. In this sense, an irreducible Goppa code $\Gamma(L, g)$ can be considered as a generalized nth-root code $\Omega\left(q, q^{m}-1, q^{m r}, \mathbb{F}_{q^{m r}}, \mathcal{P}\right)$, where $\mathcal{P}=\{g(x)\}=\left\{\frac{1}{\gamma-x}\right\}$

Other families of codes

- Reed-Muller codes
- Hermitian codes

Other families of codes

- Reed-Muller codes
- Hermitian codes

We can investigate on

- general error locator polynomial for nth-root non proper;
- which other class of codes are nth-root;
- which representation of nth-root permits to find a sparse general error locator polynomial.

We can investigate on

- general error locator polynomial for nth-root non proper;
- which other class of codes are nth-root;
- which representation of nth-root permits to find a sparse general error locator polynomial.

We can investigate on

- general error locator polynomial for nth-root non proper;
- which other class of codes are nth-root;
- which representation of nth-root permits to find a sparse general error locator polynomial.

Fitzpatrick, P., On the key equation, IEEE Trans. Inform. Theory, 1995, volume $=41,1290-1302,5$.
M. Giorgetti, "About the nth-root codes: a Groebner basis approach to the weight computation", poster presented at Workshop D1: Groebner Bases in Cryptography, Coding Theory, and Algebraic Combinatorics, Linz, Austria, 1-6 may 2006.
M. Giorgetti, "A Gröbner basis approach to the weight computation of some new codes", Workshop on Coding and Cryptography, 22-23 may 2006, BCRI, UCC Cork, Ireland.
M. Giorgetti, M. Sala, A commutative algebra approach to linear codes, University College Cork, 2006, BCRI preprint, www.bcri.ucc.ie, number 58, Boole Centre BCRI, UCC Cork, Ireland.
M. Giorgetti, M. Sala "General error locator polynomials for nth-root codes", Workshop on Coding and Cryptography, 16-20 April 2007, INRIA, Paris, France.

T. Mora, E. Orsini, M. Sala, General error locator polynomials for binary cyclic codes with $t<=2$ and $n<63$, University College Cork, 2006, BCRI preprint, www.bcri.ucc.ie, number 43, Boole Centre BCRI, UCC Cork, Ireland.
E. Orsini, M. Sala, General error locator polynomials for binary cyclic codes with $t<=2$ and $n<63$, IEEE Trans. Inform. Theory, 2007, vol. 53, pag. 1095-1107.
E. Orsini, M. Sala, Correcting errors and erasures via the syndrome variety, J. Pure Appl. Algebra, 2005, vol. 200 pages 191-226, number 1-2.
M. Caboara, T. Mora, The Chen-Reed-Helleseth-Truong decoding algorithm and the Gianni-Kalkbrenner Groebner shape theorem, Applicable Algebra in Engineering, Communication and Computing 2002, vol. 13, p. 209-232

[^0]: *Skip coset

