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Generalize good properties of cyclic codes

Cyclic codes

have a rich algebraic structure

fast sharp estimates on their most important parameters and
exact determination of parameters via commutative algebra
techniques;

posses decoding algorithm which is extremely efficient.

Our goal is to extend algebraic structure of cyclic codes;
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General nth-root codes

Definition

Let

q be a power of prime, Fq is the finite field of q elements,

n ∈ N, n ≥ 1 such that (n, q) = 1,

Rn= {z̄ ∈ F̄q|z̄n = 1},
m ∈ N,m ≥ 1 such that Rn ⊆ Fqm , not necessary the smallest,

L ⊂ Rn ∪ {0}, L = {l1, . . . , lN},
P= {g1(x), g2(x), . . . , gr (x)} ⊂ Fqm [x ] such that
∀i = 1, . . . ,N exists at least j = 1, . . . , r such that gj(li ) 6= 0 .
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General nth-root codes

Definition

Then C = Ω(q, n, qm, L,P) is the nth-root code defined over Fq

such that

H =


g1(l1), . . . , g1(lN)
g2(l1), . . . , g2(lN)

...
...

gr (l1), . . . , gr (lN)

 =


g1(L)
g2(L)

...
gr (L)


is its parity-check matrix.
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General nth-root codes

Definition

Remark

C = (q, n, qm, L,P) is linear over Fq, its length is N = |L| and its
distance d is greater than or equal to 2, because there are no
columns in H composed only of zeros.

Remark

Since any function from Fqm to itself can be expressed as a
polynomial, we can accept in P also rational functions of type f /g,
f , g ∈ Fqm , such that g(x̄) 6= 0 for any x̄ ∈ Fqm .
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General nth-root codes

Properties

Definition

Let C = Ω(q, n, qm, L,P) be an nth-root code and v ∈ (Fq)N .

If L̄ = ∅, we say that C is maximal.

If P ⊂ Fq[x ], we say that C is proper.

If 0 /∈ L, we say that C is zerofree, non-zerofree otherwise.
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General nth-root codes

Proposition

Let C be a linear code over Fq of length N and d ≥ 2. Then C is
an nth-root code for any n ≥ N − 1, (n, q) = 1. In particular:

1 if n = N, then C can be maximal zerofree,

2 if n = N − 1, then C is maximal non-zerofree.

Proof

Corollary

Let C be a linear code. C is an nth-root code if and only if d ≥ 2.
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General nth-root codes

Let C be a linear code over Fq of length N, dimension k and d ≥ 2, with parity-
check matrix H = (hi,j) ∈ (Fq)(N−k)×N . Since d ≥ 2 there is no j = 1, . . . ,N
such that hi,j = 0, ∀i = 1, . . .N − k. Let n be a natural number such that
n ≥ N − 1 and (n, q) = 1. Let Rn = {α1, . . . , αn} be the set of nth-roots of
unity over Fq.

Suppose that n ≥ N. Let L be a subset of Rn, |L| = N, and r = N − k.
Thanks to the Lagrange interpolation theorem we can find r polynomials
gi (x) ∈ Fqm [x ] such that gi (αj) = hi,j ∀αj ∈ L, i = 1, . . . , r , j = 1, . . . ,N,
viewing any hi,j as an element of Fqm . We collect polynomials gi (x) in set
P = {gi}1≤i≤r . Polynomials gi (x) are such that for any i = 1, · · · , r there
is at least one 1 ≤ j ≤ r such that gj(αi ) 6= 0. Then it is obvious that
code C can be seen as the zerofree nth-root code Ω(q, n, qm, L,P).

With the above construction, if n = N code C is maximal, since L = Rn.

Let L be a set composed of 0 and N − 1 elements of Rn. With the above
argument it is easy to proof that C is a non-zerofree nth-root code.
If n = N − 1, code C is maximal non-zerofree, since L = Rn ∪ {0}.

Back
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First example

Let

q = 2,n = 7,qm = 8,L = F23 ,

P = {g1(x) = 1
x2+x+1

, g2(x) = x
x2+x+1

}
C = Ω(2, 7, 8,F8, {g1, g2}) is

non-zerofree (0 ∈ L),
maximal (L̄ = Rn \ L = ∅),
proper (g1(x), g2(x) ∈ F2(x))
parity-check matrix is the following:

H =

(
g1(1) g1(β) g1(β2) g1(β3) g1(β4) g1(β5) g1(β6) g1(0)
g2(1) g2(β) g2(β2) g2(β3) g2(β4) g2(β5) g2(β6) g2(0)

)
,

i.e.

H =

(
1 β2 β4 β2 β β β4 1
1 β3 β6 β5 β5 β6 β3 0

)
.
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First example

It is easy to see that C is an [8, 2, 5] code with generator matrix

G =

(
1 0 0 1 0 1 1 1
0 1 1 1 1 1 1 0

)
and weight distribution

A0 = 1, A1 = A2 = A3 = A4 = 0, A5 = 2, A6 = 1
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Second example: not all codes can be seen as proper maximal

Let q = 2, n = 5, qm = 24, L = R5 and P = {g},
where g = γ12x4 + γ11x3 + x2 + γ14x + γ3 and γ is a primitive
element of F16 with minimal polynomial x4 + x + 1.
Let C = Ω(2, 5, 24,R5,P). Code C is maximal (L̄ = ∅) and ze-
rofree (0 /∈ L) and its parity-check matrix is the following:

H =
(
g(γ3), g(γ6), g(γ9), g(γ12), g(γ15)

)
=
(
γ6, γ2, γ3, γ14, γ15

)
.

It is easy to see that C is an [5,2,3] code with generator matrix

G =

(
1 1 1 0 0
0 0 1 1 1

)
.
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Second example: not all codes can be seen as proper maximal

By contradiction: if C is proper maximal
then C = Ω(2, 5, 24,R5,P

′), where P′ = {g ′1, . . . , g ′r} ⊂ F2[x ].
Its parity-check matrix is then

H ′ =



g ′1(γ3), g ′1(γ6), g ′1(γ9), g ′1(γ12), g ′1(γ15)
...

. . .
. . .

. . .
...

g ′i (γ3), g ′i (γ6), g ′i (γ9), g ′i (γ12), g ′i (γ15)
...

. . .
. . .

. . .
...

g ′r (γ3), g ′r (γ6), g ′r (γ9), g ′r (γ12), g ′r (γ15)

 .

Let

e1 = g′i(γ
3), e2 = g′i(γ

6), e3 = g′i(γ
9), e4 = g′i(γ

12), e5 = g′i(γ
15),

for some i = 1, . . . , r and
they must satisfy e1 + e2 + e3 = 0 and e3 + e4 + e5 = 0.
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Second example: not all codes can be seen as proper maximal

J ⊂ F16[b0, . . . ,b15, e1, . . . , e5]

has at least a solution ε = (b̄0, . . . , b̄15, ē1, . . . , ē5) in V(J) such
that (ē1, ē2, ē3, ē4, ē5) 6= (0, 0, 0, 0, 0).

J =< e1 + e2 + e3, e3 + e4 + e5,
{

b2
i + bi

}
0≤i≤15

,{
e16
i + ei

}
1≤i≤5

, g ′(γ3)− e1, g ′(γ6)− e2,

g ′(γ9)− e3 g ′(γ12)− e4, g ′(γ15)− e5 >,
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Second example: not all codes can be seen as proper maximal

A computer computation shows that a Gröbner basis of J contains
{e1, . . . , e5} and so V(J) does not contain ε, hence g ′ does not exist.
This means that no polynomial in P can have coefficients in F2,
which proves our claim.
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Third example

Remark

In order to define the same nth-root code it is possible to use
different n. For example to define a linear code with length N = 5,
we can use the five 5th roots of unity or five elements chosen from
the set of the seven 7th roots of unity.

Let C be a linear binary code, having parity-check matrix

H =

(
1 1 0 1 0
0 0 1 1 1

)
.
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Third example

First case: maximal, zerofree nth-root code

Ω(2, 5, 24, L1,P1), where

L1 = R5 = {γ3, γ6, γ9, γ12, γ15} ⊂ F16 =< γ > ∪{0},

P1 ⊂ F16[x ] is P1 = {g1, g2}, with

g1 = γ7x4 + γ14x3 + γ11x2 + γ13x + 1,

g2 = γ2x4 + γ4x3 + γx2 + γ8x + 1 .
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Third example

Second case: non-maximal, zerofree nth-root code

C = Ω(2, 7, 23, L2,P2), where

L2 ⊂ R7 = F∗8 =< β >, L2 = {β, β2, β3, β4, β5},

P2 ⊂ F23 [t] is P2 = {p1, p2}, with

p1 = t4 + t2 + t + 1,

p2 = β4t4 + β6t3 + t + β2 .
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Third example

Third case: non-maximal, non-zerofree nth-root code

C = Ω(2, 7, 23, L3,P3), where

L3 ⊂ F8, L3 = {β, β2, β3, β4, 0},

P3 ⊂ F8[z ] is P3 = {h1, h2}, with

h1 = β5z4 + z3 + β5z2 + β4z ,

h2 = β6z4 + β3z2 + β5z + 1 .
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Third example

First case: maximal, zerofree nth-root code

Second case: non-maximal, zerofree nth-root code

Third case: non-maximal, non-zerofree nth-root code

Observation

Note however that code C cannot be seen as a maximal non-zerofree
code.
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Constructing ideals

Let C = Ω(q, n, qm, L,P) be an nth-root code, w and ŵ be natural
numbers such that 2 ≤ w ≤ N = |L|, 1 ≤ ŵ ≤ N − 1.
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Constructing ideals

Let C = Ω(q, n, qm, L,P) be an nth-root code, w and ŵ be natural
numbers such that 2 ≤ w ≤ N = |L|, 1 ≤ ŵ ≤ N − 1. We denote
by Jw (C ) and Ĵŵ (C ) the following two ideals:

Jw = Jw (C ) = Jw (q, n, qm, L,P) ⊂ Fqm [z1, . . . , zw , y1, . . . , yw ],

Ĵŵ = Ĵŵ (C ) = Ĵŵ (q, n, qm, L,P) ⊂ Fqm [z1, . . . , zŵ , y1, . . . , yŵ , ν],
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Ĵŵ = Ĵŵ (C ) = Ĵŵ (q, n, qm, L,P) ⊂ Fqm [z1, . . . , zŵ , y1, . . . , yŵ , ν],

Jw = 〈 {
∑w

h=1 yhgs(zh)}1≤s≤r ,
{

yq−1
j − 1

}
1≤j≤w

,

{pij(zi , zj)}1≤i<j≤w ,
{

zn
j −1∏

l∈L̄(zj−l)

}
1≤j≤w

〉
(1)

Ĵŵ = 〈
{∑ŵ

h=1 yhgs(zh) + νgs(0)
}

1≤s≤r
,
{

yq−1
j − 1

}
1≤j≤ŵ

νq−1 − 1, {pij(zi , zj)}1≤i<j≤ŵ ,
{

zn
j −1∏

l∈L̄(zj−l)

}
1≤j≤ŵ

〉
(2)

where pij =
∑n−1

h=0 zh
i zn−1−h

j =
zn
i −zn

j

zi−zj
are in Fq[zi , zj ].
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Constructing ideals

We denote by η(Jw) and η̂(Ĵŵ) the integers η(Jw ) = |V(Jw )|,
η̂(Ĵŵ ) = |V(Ĵŵ )|.

Remark

Ideals Jw and Ĵŵ are radical, since they contain polynomials
yq
j − yj and zn+1

j − zj .
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Constructing ideals

If we are in the binary case (q = 2), variables yj , j = 1, . . . ,w , and
ν are 1, and so we can omit them and the ideals become:

Jw = Jw (C) = Jw (2, n, 2m, L,P) ⊂ F2m [z1, . . . , zw ] ,

Ĵŵ = Ĵŵ (C) = Ĵŵ (2, n, 2m, L,P) ⊂ F2m [z1, . . . , zŵ ],

Jw = 〈

{
w∑

h=1

gs(zh)

}
1≤s≤r

, {pij(zi , zj)}1≤i<j≤w

{
zn
j − 1∏

l∈L̄(zj − l)

}
1≤j≤w

〉;

Ĵŵ = 〈

{
ŵ∑

h=1

gs(zh) + gs(0)

}
1≤s≤r

, {pij(zi , zj)}1≤i<j≤ŵ ,

{
zn
j − 1∏

l∈L̄(zj − l)

}
1≤j≤ŵ

〉

(3)
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Constructing ideals

Proposition

Let C = Ω(q, n, qm, L,P) be an nth-root code.
In the zerofree case, there is at least one codeword of weight w
in C if and only if there exists at least one solution of Jw(C).
In the non-zerofree case, there is at least one codeword of
weight w in C if and only if there exists at least one solution of
Jw(C) or of Ĵw−1(C).
Moreover the number of codewords of weight w is

Aw = η(Jw)
w! in the zerofree case and

Aw = η(Jw)
w! +

η̂(Ĵw−1)
(w−1)! in the non-zerofree case
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Algorithms

INPUT: a zerofree nth-root code C = Ω(q,n,qm,L,P),
an integer 2 ≤ w ≤ |L|

OUTPUT: the element Aw of the weight distribution of C

STEP 1: construct ideal Jw = Jw(C)
STEP 2: compute a Gröbner basis Gw of Jw

STEP 3: use Gw to get the number η(Jw) of points in V(Jw )

STEP 4: return η(Jw)
w!



Definitions and properties Examples Weight distribution General error locator polynomial Othr family of codes Conclusion

Algorithms

INPUT: a zerofree nth-root code C = Ω(q,n,qm,L,P),
an integer 2 ≤ w ≤ |L|

OUTPUT: the element Aw of the weight distribution of C

STEP 1: construct ideal Jw = Jw(C)
STEP 2: compute a Gröbner basis Gw of Jw
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Algorithms
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Algorithms

INPUT: a non-zerofree nth-root code C = Ω(q, n, qm, L,P),
an integer 2 ≤ w ≤ |L|

OUTPUT: the element Aw of the weight distribution of C

STEP 1: construct ideals Jw = Jw (C ) and Ĵw−1 = Ĵw−1(C )
STEP 2: compute a Gröbner basis Gw of Jw and

compute aGröbner basis Ĝw−1 of Ĵw−1

STEP 3: use Gw to get the number η(Jw ) of points in V(Jw ) and

use Ĝw−1 to get the number η̂(Ĵw−1) of points in V(Ĵw−1)

STEP 4: return η(Jw )
w ! + η̂(Ĵw−1)

(w−1)!
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Algorithms

Let C as in the first Example:

C = Ω(2, 7, 8,F8, {g1, g2}), g1(x) =
1

x2 + x + 1
, g2(x) =

x

x2 + x + 1
.

w = 2, J2(C ) ⊆ F2[z1, z2] and Ĵ1(C ) ⊆ F2[z1]:

J2(C ) = 〈g1(z1)+g1(z2), g2(z1)+g2(z2), z7
1−1, z7

2−1, p1,2(z1, z2)〉

Ĵ1(C ) = 〈g1(z1) + g1(0), g2(z1) + g2(0), z7
1 − 1〉

G2 and Ĝ1 are trivial and hence there are no words of weight
2. The same for w = 3, 4.
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Algorithms

w = 5, construct J5 and Ĵ4: G5 is trivial, but basis Ĝ4 has the
following leading terms{

z1z2, z2
1 , z1z2

3 , z3
2 , z1z3

4 , z4
3 , z2

2 z2
3 , z5

4 , z2
2 z3

4 , z3
3 z3

4

}
.

These monomials permit us to compute the number

η̂(Ĵ4) = 48. So that A5 = η(J5)
5! + η̂(Ĵ4)

4! = 48
4! = 2. Note that

the 2 words of weight 5 in C have the last component non
zero.

Computing G6 we have a non trivial result, η(J6) = 720, and
for Ĵ5 we get an empty variety. The words of weight 6 are

then A6 = η(J6)
6! + η̂(Ĵ5)

5! = 720
6! = 1.
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η̂(Ĵ4) = 48. So that A5 = η(J5)
5! + η̂(Ĵ4)
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Algorithms

w G(Jw ) Ĝ(Ĵw−1) η(Jw ) η̂(Ĵw−1) Aw

2,3,4,7 {1} {1} 0 0 0

5 {1} not trivial 0 48 2

6 not trivial {1} 720 0 1

8 – {1} – 0 0
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Weight distribution for cosets

Definition

The elements in (Fm
q )n−k , σ = Hx are called syndromes. We say

that σ is the syndrome corresponding to x .

Definition

Let C ⊆ (Fq)N be an (N, k) code. For any vector a ∈ (Fq)n the set

a + C = {a + x : x ∈ C}

in called a coset (or translate) of C .
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Weight distribution for cosets

We give as in the code case

ideals for the zerofree case and in the non-zerofree case;

proposition for Aw in the the zerofree case and in the
non-zerofree case;

algorithms the zerofree case and in the non-zerofree case.

Skip coset
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Weight distribution for cosets

Jw (a + C) ⊂ Fqm [z1, . . . , zw , y1, . . . , yw ],
Ĵŵ (a + C) ⊂ Fqm [z1, . . . , zŵ , y1, . . . , yŵ , ν],

Jw (a + C) = 〈
{∑w

h=1 yhgs(zh)− σ(a)s

}
1≤s≤r

,
{
yq−1

j − 1
}

1≤j≤w
,

{pij(zi , zj)}1≤i<j≤w ,
{

zn
j −1∏

l∈L̄(zj−l)

}
1≤j≤w

〉; (4)

Ĵŵ (a + C) = 〈
{∑ŵ

h=1 yhgs(zh) + νgs(0)− σ(a)s

}
1≤s≤r

,
{
yq−1

j − 1
}

1≤j≤ŵ

νq−1 − 1, {pij(zi , zj)}1≤i<j≤ŵ ,
{

zn
j −1∏

l∈L̄(zj−l)

}
1≤j≤ŵ

〉.
(5)

η(Jw (a + C)) = |V(Jw (a + C))|, η̂(Ĵŵ (a + C)) = |V(Ĵŵ (a + C))|.
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Weight distribution for cosets

Proposition

Let C = Ω(q, n, qm, L,P), a ∈ (Fq)N \ C , and a + C a coset of
code C . In the zerofree case, there is at least one vector of weight
w in coset a + C if and only if there is at least one solution of
Jw (a + C ). In the non-zerofree case, there is at least one vector of
weight w in a + C if and only if there is at least one solution of
Jw (a + C ) or of Ĵw−1(a + C ). Furthermore, the number of vectors
of weight w in a + C is

Aw (a) = η(Jw (a+C))
w ! in the zerofree case and

Aw (a) = η(Jw (a+C))
w ! + η̂(Ĵw−1(a+C))

(w−1)! in the non-zerofree case
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Definition

Definition

♦ Let LC be a polynomial in Fq[X , z ], where X = (x1, . . . , xr ).
Then LC is a general error locator polynomial of C if

1 LC (X , z) = z t + at−1z t−1 + · · ·+ a0, with aj ∈ Fq[X ],
0 ≤ j ≤ t − 1, that is, LC is a monic polynomial with degree t
with respect to the variable z and its coefficients are in Fq[X ];

2 given a syndrome s = (s1, . . . sr ) ∈ (Fqm)N−k , corresponding
to a vector error of weight µ ≤ t and error locations
{k1, . . . , kµ}, if we evaluate the X variables in s, then the
roots of LC (s, z) are {αk1 , . . . , αkµ , 0, . . . , 0︸ ︷︷ ︸

t−µ

}.
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Definition

Definition

Let L be a polynomial in Fq[X ,W , z ], X = (x1, . . . , xr ) and
W = (wν , . . . ,w1), where ν ≥ 1 is the number of erasures that
occurred. Then L is a general error locator polynomial of type
ν of C if

1 L(X ,W ,z) = zτ + aτ−1zτ−1 + · · ·+ a0, with aj ∈ Fq[X ,W ],
for any 0 ≤ j ≤ τ − 1, that is, L is a monic polynomial with
degree τ in the variable z and coefficients in Fq[X ,W ];

2 for any syndrome s = (s1, . . . , sr ) and any erasure location
vector w= (w 1, . . . , wν), corresponding to an error of weight
µ ≤ τ and error locations {k1, . . . , kµ}, if we evaluate the X
variables in s and the W variables in w, then the roots of
L(s,w, z) are {αk1 , . . . , αkµ , 0, . . . , 0︸ ︷︷ ︸

τ−µ

}.
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Ideals for the decoding of nth-root codes

Definition

Let C = Ω(q, n, qm, L,P) be a zerofree maximal nth-root code,
with correction capability t. We denote by JC,t the ideal
JC ,t ⊂ Fqm [x1, . . . , xr , zt , . . . , z1, y1, . . . , yt ],

JC ,t = 〈
{∑t

h=1 yhgs(zh)− xs

}
1≤s≤r

,
{

yq−1
j − 1

}
1≤j≤t

,

{zizjp(zi , zj)}i 6=j , 1≤i ,j≤t ,
{

zn+1
j − zj

}
1≤j≤t

〉
(6)

where p(x , y) =
∑n−1

h=0 xhyn−1−h. We denote by GC ,t the totaly
reduced Gröbner basis of JC ,t w.r.t. >.

x1, . . . , xr represent correctable syndromes,

z1, . . . , zt error locations and

y1, . . . , yt error values.
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Ideals for the decoding of nth-root codes
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Ideals for the decoding of nth-root codes

Lemma

Ideal JC ,t is radical and stratified.

Proposition (♣)

In Gröbner basis GC ,t there exists a unique polynomial of type

g = z t
t + at−1z t−1

t + . . .+ a0, ai ∈ Fq[X ].
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Ideals for the decoding of nth-root codes

Theorem

If code C is a proper maximal zerofree nth-root code with
correction capability t, then C possesses a general error locator
polynomial.
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Ideals for the decoding of nth-root codes

Theorem

If code C is a proper maximal zerofree nth-root code with
correction capability t, then C possesses a general error locator
polynomial. Skip proof
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Ideals for the decoding of nth-root codes

Proof.

A polynomial of type g = z t
t + at−1z t−1

t + . . .+ a0, with
ai ∈ Fqm [X ], exists in JC ,t (Proposition ♣).

Since C is proper, all polynomials in ideal JC ,t have
coefficients in Fq and so g must be in Fq[X , zt ]. Polynomial
L = g(X , zt) ∈ Fq[X , zt ] satisfies:

condition (1) in Definition (♦);
condition (2) in Definition (♦), because correctable syndromes
are in V(JC ,t ∩ Fq[X ]) and
g is in JC ,t .

So L = g(X , zt) ∈ Fq[X , zt ] is a general error locator
polynomial for C .
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Ideals for the decoding of nth-root codes

Cyclic codes are proper maximal zerofree nth-root codes =⇒
cyclic codes have general error locator polynomials.
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Ideals for the decoding of nth-root codes

Example: first method

Let

C be the [5, 2, 3] linear code over F2;

generator matrix G =

(
1 1 1 0 0
0 0 1 1 1

)
;

t = 1;

γ be a primitive element of F16 (minimal polynomial
z4 + z + 1);
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Ideals for the decoding of nth-root codes

Example: first method

parity-check matrix H = (γ6, γ2, γ3, γ14, 1)

C = Ω(2, 5, 24,R5,P
′), where

P′ = {γ12x4 + γ11x3 + x2 + γ14x + γ3} .
the Gröbner basis G′ w.r.t. the lexicographical order induced
by x1 < z1, its elements are:

G
′
x1

= x5
1 + (γ3)x4

1 + (γ3 + γ)x2
1 + γ2x1 + (γ2 + γ + 1)

G
′
x1,z1

= z1 + x3
1 .

There is only one polynomial in z1 of degree 1, as we expected,
and it is another general error locator polynomial for C .
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Ideals for the decoding of nth-root codes

Example: second method

We suppose that error general locator polynomial exist. Let

C be the code studied in the previous examples;

parity-check matrix is a row, H = (e1, e2, e3, e4, e5);

an general error locator polynomial z + f (x) (the degree t of
z is 1) must satisfy the following conditions:

f (ei ) = αi , ∀1 ≤ i ≤ 5, and f (0) = 0 .
f (x) has degree at most 5
coefficients bi ∈ F2,

⇓
f (x) = b5x5 + b4x4 + b3x3 + b2x2 + b1x (f (0) = 0⇒ b0 = 0).
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Ideals for the decoding of nth-root codes

Example: second method

The Gröbner basis of ideal
J ⊂ F16[b1, b2, b3, b4, b5, e1, e2, e3, e4, e5] given by

J = 〈 e1 + e2 + e3, e3 + e4 + e5, {e15
i + 1}1≤i≤5, {b2

i + bi}1≤i≤5,
f (e1) + γ3, f (e2) + γ6, f (e3) + γ9, f (e4) + γ12, f (e5) + γ15〉

where relations e1 = e2 + e3, e4 = e3 + e5 follow from
matrix G .

We obtain:

e1 = γ6, e2 = γ2, e3 = γ3, e4 = γ14, e5 = 1

⇓
H = (γ6, γ2, γ3, γ14, 1) and the general error locator
polynomial is f (x) = x3, as in the first method, part B.
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Ideals for the decoding of nth-root codes

Let

τ be a natural number corresponding to the number of errors,

µ be a natural number corresponding to the number of
erasures and such that 2τ + µ < d .

We have to find solutions of equations of type:

s̄j +
τ∑

l=1

algj(α
kl ) +

ν∑
l̄=1

c̄̄lgj(α
hl̄ ), j = 1, . . . , r (7)

where

{kl}, {al} and {cl̄} are unknown
{s̄j}, {hl̄} are known.

Skip erasures
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Ideals for the decoding of nth-root codes

We introduce

variables W = (wν , . . . ,w1), where {wh} stand for erasure
locations (αhl̄ );
U = (u1, . . . , uν), where {uh} stand for erasure values c̄l̄

(h = 1, . . . , ν).

When the word v(x) is received, the number ν of erasures and
their positions {wh} are known.

{xj} stand for the syndromes (j = 1, . . . , r), as:
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Skip description for the erasure ideal
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Ideals for the decoding of nth-root codes

JC ,τ,ν = 〈
{∑τ

l=1 ylgj(zl) +
∑ν

l̄ ul̄gj(wl̄)− xj

}
j=1,...,r,

,

{zn+1
i − zi}i=1,...,τ , {yq−1

i − 1}i=1,...,τ ,
{uq

h − uh}h=1,...,ν , {wn
h − 1}h=1,...,ν ,

{xqm

j − xj}j=1,...,r , {p(wh,wk)}h 6=k,h,k=1,...,ν ,

{zip(zi ,wh)}i=1,...,τ,h=1,...,ν , {zizjp(zi , zj)}i 6=j,i,j=1,...,τ 〉.
We observe that polynomials:∑τ

l=1 ylgj(zl) +
∑ν

l̄ ul̄gj(wl̄)− xj characterize the nth-root
code;

zn+1
i − zi ensure that zi are nth-roots of unity or 0;

yq−1
i − 1, wn

h − 1, uq
h − uh ensure that yi ,wh ∈ F∗q and

uh ∈ Fq;

zip(zi ,wh) ensure that an error cannot occur in a position
corresponding to an erasure;

p(wh,wk) ensure that any two erasure locations are distinct;

zizjp(zi , zj) ensure that any two error locations are distinct.

Ideal JC ,τ,ν depends only on code C and on ν.
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Ideals for the decoding of nth-root codes

Proposition

In Gröbner basis GC ,τ,ν there is a unique polynomial of type

g = zττ + aτ−1zτ−1 + . . .+ a0, ai ∈ Fqm [X ,W ].

Theorem

If code C is a proper maximal zerofree nth-root code, then C
possesses general error locator polynomials of type ν, for
any ν ≥ 0.
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Ideals for the decoding of nth-root codes

Example III

Let C ′ be the shortened code obtained from code C presented in
Example I. Code C ′ is a [7, 1, 6] linear code, so that τ (errors) and
µ (erasures) satisfy relation τ + µ < 6. If τ = 1, µ = 2, the
syndrome ideal is

J = {g1(z1) + u1g1(w1) + u2g(w2) + x1, g2(z1) + u1g2(w1) + u2g2(w2) + x2,
z8

1 − z1,w
7
1 − 1,w 7

2 − 1, x8
1 − x1, x

8
2 + x2, u

2
1 + u1, u

2
2 + u2,

z1p(z1,w1), z1p(z1,w2), p(w1,w2)}

and in the reduced Gröbner basis there is only one polynomial
having z1 as leading term (see Appendix of [4]).
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Cyclic codes

Definition

Let g be a divisor of xn − 1 over Fq. We define SC as the set
SC = {i1, . . . , in−k |g(αij ) = 0, 1 ≤ ij ≤ n} of all powers of α that are roots of
g . Let H be the following matrix:

H =


1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 α
in−k α

2in−k . . . α
(n−1)in−k

 .

The cyclic code C generated by g is the linear code C over Fq such that H is
a parity-check matrix for C .

L = Rn, i.e. L = {α, α2, . . . , αn}
P = {x ij | ij ∈ SC}
C as the nth-root code Ω(q, n, qm,Rn, {x ij | ij ∈ SC})

Proposition

Any cyclic code is a proper maximal zerofree nth-root code. As a consequence,
it possesses a general error locator polynomial.
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Cyclic codes

Shortened cyclic codes

Shortened cyclic codes can be seen as nth-root codes: if D is a
subset of positions where cyclic code C is shortened, then code
C (D) is an nth-root code Ω(q, n, qm, L,P), where q, n and P are
as above and L = {αj | 1 ≤ j ≤ n, j 6∈ D}.

Reed Solomon code

A RS code is a cyclic code with generator polynomial
g(x) = (x − αb)(x − αb+1) . . . (x − αb−δ−2), where α is the
primitive element of Fqm . A RS code can be treated as an nth-root
code Ω(q, n, qm,F∗qm , {x i | i = b, b + 1, . . . , b + δ − 2}).
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Goppa codes

Definition

Let g(z) ∈ Fqm [z ], deg(g) = r ≥ 2, and let L = {α1, . . . , αN}
denote a subset of elements of Fqm which are not roots of g(z).
Then the Goppa code Γ(L, g) is defined as the set of all vectors
c = (c1, . . . , cN) with components in Fq that satisfy the condition:

N∑
i=1

ci

z − αi
≡ 0 mod g(z) .

A parity-check matrix for Γ(L, g) can be written as:

H =



1
g(α1)

1
g(α2)

· · · 1
g(αN )

α1
g(α1)

α2
g(α2)

· · · αN
g(αN )

α2
1

g(α1)

α2
2

g(α2)
· · · α2

N
g(αN )

...
...

. . .
...

αr−1
1

g(α1)

αr−1
2

g(α2)
· · · αr−1

N
g(αN )


.
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Goppa codes

Setting q, m and L as in definition, n = qm − 1,
P = { x i

g(x) , ∀i = 0, . . . , r − 1}
It follows that classical Goppa code Γ(L, g) over Fq is the
nth-root code

Γ = Ω

(
q, qm − 1, qm, L,

{
x i

g(x)
|i = 0, . . . , r − 1

})
.

Proposition

If the Goppa polynomial g is in Fq[x ], then Γ(L, g) is a proper
nth-root code. In particular, if L = Fqm \ {0}, code Γ(L, g) is
proper and maximal.

Theorem

Any classical Goppa code Γ(L, g) such that g ∈ Fq[x ] and
L = F∗qm admits a general error locator polynomial.
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})
.

Proposition

If the Goppa polynomial g is in Fq[x ], then Γ(L, g) is a proper
nth-root code. In particular, if L = Fqm \ {0}, code Γ(L, g) is
proper and maximal.

Theorem

Any classical Goppa code Γ(L, g) such that g ∈ Fq[x ] and
L = F∗qm admits a general error locator polynomial.
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Goppa codes

Consider the nth-root code of the first Example, shortened in
position 0. It is a classical Goppa code with g(x) = x2 + x + 1 and
L = F∗8.
A general error locator polynomial for this code is

L =z2
2+

z2(x5
1 x2

2 + x5
1 + x3

1 x2
2 + x3

1 + x2
1 x2

2 +

x2
1 x2 + x1x5

2 + x1x4
2 + x1x3

2 + x1x2
2 +

x1x2 + x1 + x7
2 + x4

2 + x3
2 + x2

2 + 1)+

x5
1 x2

2 + x5
1 x2 + x5

1 + x4
1 x2

2 +

x3
1 x3

2 + x2
1 x2 + x2

1 + x1x6
2 +

x1x2 + x1 + x7
2 + x6

2 .
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Goppa codes

Consider irreducible Goppa codes, Γ(L, g) such that L = Fqm .
These codes admit also the following parity-check matrix H:

H =
(

1
γ−ζ0

, 1
γ−ζ1

, · · · , 1
γ−ζqm−1

)
,

where γ ∈ Fqmr is any root of g(x) and Fqm = {ζi | 0 ≤ i ≤ qm−1}.
We can extend the definition of nth-root codes to generalized nth-
root codes, by allowing also P ⊂ FQ [X ] with Fqm ⊂ FQ . In
this sense, an irreducible Goppa code Γ(L, g) can be considered
as a generalized nth-root code Ω(q, qm − 1, qmr ,Fqmr ,P), where
P = {g(x)} = { 1

γ−x }
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Goppa codes

Other families of codes

Reed-Muller codes

Hermitian codes
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Further research

We can investigate on

general error locator polynomial for nth-root non proper;

which other class of codes are nth-root;

which representation of nth-root permits to find a sparse
general error locator polynomial.
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