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Let C be an [n, k, d]q cyclic code, with d = 2t + 1 and defining set

Sc=A{in,. in—«}
Let o be a primitive n-th root of unity in Fgm.
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Notation and preliminaries

Definitions

Let C be an [n, k, d]4 cyclic code, with d = 2t + 1 and defining set
Sc =i,y in—k}
Let o be a primitive n-th root of unity in Fgm.
cxX)=c+--+ cr_1x""1  transmitted polynomial

v(x) = v+ -+ v,_1x" ! received polynomial

e(x) = v(x) — ¢(x) error polynomial
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Notation and preliminaries

Definitions

Let C be an [n, k, d]4 cyclic code, with d = 2t + 1 and defining set

SC = {I'l7 ey I.,,,k}.

Let o be a primitive n-th root of unity in Fgm.

cxX)=c+--+ cr_1x""1  transmitted polynomial
v(x) = v+ -+ v,_1x" ! received polynomial

e(x) = v(x) — ¢(x) error polynomial
If the weight of e is uu < t, then

e=(0,...,0,e,,0,...,0,¢;,0,...,0,¢,,0,...,0),
i i M
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h—1 h A

i ly n—=1—1,
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Definitions

Let C be an [n, k, d]4 cyclic code, with d = 2t + 1 and defining set

SC = {I'l7 ey in,k}.

Let o be a primitive n-th root of unity in Fgm.

cxX)=c+--+ ch_1x""1  transmitted polynomial
v(x) = v+ -+ v,_1x" ! received polynomial

e(x) = v(x) — ¢(x) error polynomial
If the weight of e is uu < t, then

e = (07...,076/1,0,...,0,e/i,O,...,O,E/“,O,...,0)7
1 T T
h—1 h Ii e n—=1—l,

oL={/|eg#00</<n—-1}={h,...,l,} setof error positions

@ {¢ |/ €L} setof the error magnitudes
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Notation and preliminaries

Definitions
HvT =H(c" +e")=Hc" + HeT =0+ He" =s" J
R . ot
1 a2 a2 . aln=1i e1 e(a2)
He = —
i a"n‘—k o}"&k . a("_l-]"n—k’ en 1 e(a'}}k)

@ e =0then s=0,
@ otherwise s; = e(af) =3, el =3, e(a)i, j=1,....,n—k.

where {a' | I €L} set of the error locations
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Notation and preliminaries

Definitions
HvT =H(c" +e")=Hc" + HeT =0+ He" =s" J
VA ot
1 a2 a2 . aln=1i e1 e(a2)
He = —
i a"n‘—k o}"&k . OC("_I-]"nfk’ en 1 e(a’?‘r*k)

@ e =0then s=0,
@ otherwise s; = e(af) =3, el =3, e(a)i, j=1,....,n—k.
where {a' | I €L} set of the error locations
o(z) = H(l — za') classical error locator polynomial
leL

Le(z) = H(z —a') plain error locator polynomial
leL
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Decoding cyclic codes: the Cooper philosophy

The problem of decoding (generic) cyclic codes using Grobner basis methods
has been investigated by many authors. We recall:

(]

Brinton-Cooper (1990).

Chen, Reed, Helleseth, Truong (1994).
@ Loustaunau, York, (1997).

@ Caboara, Mora (2002).

@ Augot, Bardet, Faugere, (2003).

They work on variations of an ideal (the syndrome ideal) whose variety
contains the error locations corresponding to any error.
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Decoding cyclic codes: the Cooper philosophy

Let C be a binary BCH code with
S={2i+1,0<i<t}

and let 5= (s1,...,5;: 1) € (Fam)?t be a syndrome vector.
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Decoding cyclic codes: the Cooper philosophy

Let C be a binary BCH code with
S={2i+1,0<i<t}

and let 5= (s1,...,5;: 1) € (Fam)?t be a syndrome vector.

Fc: {f}:ZZjZiilfSQ,‘,l, 1<i<t¢t
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Decoding cyclic codes: the Cooper philosophy

Let C be a binary BCH code with
S={2i+1,0<i<t}

and let 5= (s1,...,5;: 1) € (Fam)?t be a syndrome vector.
t .
Fc: {fi= ZZJ?'fl — i1, 1<i<t}
=1

The plain error locator polynomial is the monic generator g(z;) of the ideal:

t
{ Zgif;'v 8i S ]F2(517 .. 7521“71)[217 cee )Zt] } sz(Sl, cee 7521.'71)[211
i=1
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Decoding cyclic codes: the Cooper philosophy

The problem of decoding (generic) cyclic codes using Grobner basis methods
has been investigated by many authors. We recall:
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Brinton-Cooper (1990).

Chen, Reed, Helleseth, Truong (1994).
@ Loustaunau, York, (1997).

@ Caboara, Mora (2002).

@ Augot, Bardet, Faugere, (2003).

They work on variations of an ideal (the syndrome ideal) whose variety
contains the error locations corresponding to any error.
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Defining the syndrome variety

Let C be an [n, k, d]q cyclic code with defining set {i1,...,ip—k}.
We compute the syndrome and we obtain a system of equation

sj:v(aii):Ze/aif':Ze/(a/)if, j=1....,n—k

leL leL
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Conclusions

Let C be an [n, k, d]q cyclic code with defining set {i1,...,ip—k}.
We compute the syndrome and we obtain a system of equation

sj:v(aii):Ze/aif':Ze/(a/)if, j=1....,n—k

leL leL

variables  representant

X1,...,X, correctable syndromes
z1,...,2+ error locations
Yi,.-.,yt error values
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Defining the syndrome variety

Let C be an [n, k, d]q cyclic code with defining set {i1,...,ip—k}.
We compute the syndrome and we obtain a system of equation

sj= v(aii):Ze/aif' :Ze/(al)’.f, j=1....,n—k

leL leL

variables  representant

X1,...,Xr correctable syndromes
zy,...,2¢ error locations
Yi,.-.,yt error values
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Defining the syndrome variety

Let C be an [n, k, d]q cyclic code with defining set {i1,...,ip—k}.
We compute the syndrome and we obtain a system of equation

sj= v(aii):Ze/aif' :Ze/(al)’.f, j=1....,n—k

leL leL

variables  representant

X1,...,Xr correctable syndromes
z1,...,2+ error locations
Yi,...,Y+ error values
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Defining the syndrome variety

Let C be an [n, k, d]q cyclic code with defining set {i1,...,ip—k}.
We compute the syndrome and we obtain a system of equation

sj= v(aii):Ze/aif' :Zel(al)’.f, j=1....,n—k

leL

variables

leL

representant

X1yewoy Xp

correctable syndromes

4 4

error locations

Yi,-- Yt

error values

t

Zy/zf_xja JESC

I=1
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Syndrome variety

Syndrome variety

We denote by / the ideal

lzj(g) C]Fq[xl""7Xn—kazl""7Zt7y17"'a.yt]’

where
F={fi,hj,xi,\j, 1 € Sc, 1<j <t}
with
t .
fii=> vz —x, (€Sc,1<j<t
j=1
Xi = Xiq _Xi7 /E SC

h; : z-”+1—zj, 1<j<t
A=yt 1<j<t

-

(-

The variety V/(/) is the syndrome variety.
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Syndrome variety

Grobner basis structure

Let Q :=Fg[x1,. .., Xn—k].
Let G be the reduced Grobner basis of / w.r.t. the lex ordering with

X< < Xpp <z < << yp <--- <yt
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Syndrome variety

Grobner basis structure

Let Q :=Fg[x1,. .., Xn—k].

Let G be the reduced Grobner basis of / w.r.t. the lex ordering with
X< " < Xphk <Zp < <3<y << Yt

Let G ={g1,...,8s}, s.t. T(g1) <--- < T(gs)-
For any ¢« <'t, let G, be G N (Q[z,...,z]\ Q[z,...,z+1]) and

VLeN, Gy :={gc G |deg,(g) =1},
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Syndrome variety

Grobner basis structure

Let Q :=Fg[x1,. .., Xn—k].

Let G be the reduced Grobner basis of / w.r.t. the lex ordering with
X< " < Xphk <Zp < <3<y << Yt

Let G ={g1,...,8s} st. T(g1) < < T(gs)
For any ¢« <'t, let G, be G N (Q[z,...,z]\ Q[z,...,z+1]) and

VeeN, Gy:={geG| degzll(g) =1},
so that each G, can be decomposed into blocks of polynomials according
to their degree with respect to the variable z,: G, = UyGy. If g € Gy
o g€z, znllz]\ Uz, 2]
o deg, (g) =/ ie. g = Lp(g)z' + ...+ Tp(g).
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Syndrome variety

Grobner basis structure

Let Q :=Fg[x1,. .., Xn—k].

Let G be the reduced Grobner basis of / w.r.t. the lex ordering with
X< " < Xphk <Zp < <3<y << Yt

Let G ={g1,...,8s} st. T(g1) < < T(gs)
For any ¢« <'t, let G, be G N (Q[z,...,z]\ Q[z,...,z+1]) and

VLeN, Gy :={gc G |deg,(g) =1},

so that each G, can be decomposed into blocks of polynomials according
to their degree with respect to the variable z,: G, = UyGy. If g € Gy

o g€ Q[z,...,z11l[z]\ Qzt, ..., z41];

o deg, (g) =" ie g=1Lp(g)z'+...+ Tp(g).
Moreover, we enumerate each G, as

GL[ = {gz,flv s agLé‘jM}a T(gz,fl) << T(gLZj,j)
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Syndrome variety

Grobner basis structure. (THEOREM)

With the above notation, we have:

@ if £ < then G, = 0;

@ ifl>ithenl=n+1G,={z""~z}
For each g € G,,,

Lp(g)(sl,...,s,,,k,07...,0)7$0 <~ g(sl,...,s,,,k,O,...,O,z#)760.
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Syndrome variety

Grobner basis structure. (THEOREM)

With the above notation, we have:
@ if £ < then Gy =0;
@ if{>ithenl=n+1,G,={z"" -2z}
For each g € G,,,
Lp(g)(s1,...,Sn—k,0,...,0) #0 <= g(s1,...,5.—%,0,...,0,2,) #0.
If the error has weight p, then, for each g € G,,,
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Syndrome variety

Grobner basis structure. (THEOREM)

With the above notation, we have:
@ if £ < then Gy =0;
@ if{>ithenl=n+1,G,={z"" -2z}
For each g € G,,,
Lp(g)(s1,...,Sn—k,0,...,0) #0 <= g(s1,...,5.—%,0,...,0,2,) #0.
If the error has weight p, then, for each g € G,,,
Q if L < pthen g(s1,...,5-x,0,...,0,2) =0;
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Syndrome variety

Grobner basis structure. (THEOREM)

With the above notation, we have:

@ if £ < then Gy =0;

@ if{>ithenl=n+1,G,={z"" -2z}
For each g € G,,,

Lp(g)(s1,...,Sn—k,0,...,0) #0 <= g(s1,...,5.—%,0,...,0,2,) #0.

If the error has weight p, then, for each g € G,,,

Q if L < pthen g(s1,...,5-x,0,...,0,2) =0;

Q ift=yp and Lp(g)(s1,--- 51—k, 0,...,0) # 0 then

0+#g(s1,...,5%,0,...,0,2,) = zl’jLe(zM);
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Syndrome variety

Grobner basis structure. (THEOREM)

With the above notation, we have:
@ if £ < then Gy =0;
@ if{>ithenl=n+1,G,={z"" -2z}
For each g € G,,,
Lp(g)(s1,...,Sn—k,0,...,0) #0 <= g(s1,...,5.—%,0,...,0,2,) #0.
If the error has weight p, then, for each g € G,,,
Q if L < pthen g(s1,...,5-x,0,...,0,2) =0;
Q ift=yp and Lp(g)(s1,--- 51—k, 0,...,0) # 0 then
0+#g(s1,...,5%,0,...,0,2,) = z[jLe(zM);
Q ife=p+1and Lp(g)(st,---,Sn—k,0,...,0) # 0 then
g(st,. . Sn—k,0,...,0,2) =z - (z'Le(2));
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Syndrome variety

Grobner basis structure. (THEOREM)

With the above notation, we have:
@ if £ < then Gy =0;
@ if{>ithenl=n+1,G,={z"" -2z}
For each g € G,,,
Lp(g)(s1,...,Sn—k,0,...,0) #0 <= g(s1,...,5.—%,0,...,0,2,) #0.
If the error has weight p, then, for each g € G,,,
Q if L < pthen g(s1,...,5-x,0,...,0,2) =0;
Q ift=yp and Lp(g)(s1,--- 51—k, 0,...,0) # 0 then
0+#g(s1,...,5%,0,...,0,2,) = z[jLe(zM);
Q ife=p+1and Lp(g)(st,---,Sn—k,0,...,0) # 0 then
g(st,. . Sn—k,0,...,0,2) =z - (z'Le(2));
Q ifve>p+1and Lp(g)(st,---,Sn—k,0,...,0) # 0 then
z,-(z'Le(2)) | g(s1,- - Sn—k,0,...,0,2).
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Syndrome variety

Example

A Computer Algebra System for Polynomial Computations / version 3-0-4
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Nov 2007
FB Mathematik der Universitaet, D-67653 Kaiserslautern \

>ring R=(2),(z_l,z_2,z 3,x_5,x_3.x_1),lp;
>ideal I=z_l4z_2+47z_3+x_1, z_1"3+4z_2"3+z_3"3+x_3,z_1"5+z_2"5+z_3"5+x_5,
z_1M6+z_1, 7z 2M6+z_2, z_3"16+z_3, x_1M6+x_1, x_376+x_3, x_5M6+x_5;
> option(redSB);
> timer=1;
> ideal J=groebner(l);
/lused time: 0.70 sec
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>

J[1]=x_1"6+x_1

J[2]=x_3"16+x_3
J[3]=x_5*x_3MO+x_5%x_3M8*X_17M0+x_5*X_3N5+X_5*X_3MFX_1M34+X_5¥x_3MN2#X_1N9+x_S*X_3*X_1M24+x_S+x_
3A0%*X_1AS+x 3/ _ 1M 14+x_3A5¥*X_1A5+x_3M#x_118+x_3/2%*_1M4+x_3*x_1"2+x_17S
J[4]=x_5"3+x_5"2%X_1M5+x_5*X_1MO0+x_3MO0+x_3/8%X_176+x_3/5+x_3/4*x_1/3+x_3/2%x_179+x_3*x_1"M2+x
_1715

J[5]=z_3"3%x_3+z_3"3*x_1"3+z_3/2%x_3*x_l+z_3"2%x_1M+z_3*x 5+z_3%x_3*X_1"2+X_S*X_1+x_3"2+x_3%x_
1"3+x_176
J[6]=z_3"3*x_5+z_3"3*x_1"5+z_3"2%x_5%*x_l+z_3"2*x_176+z_3*x 5 2*x_3"9+7_3*x_5/2%x_3"8*x_1"3+z_3*
X_5M2%x_3M4z_3*x_5M2%_3¥x_179+z2_3%x_5*x_1"2+z_3%x_379*x_170+z_3%x_3/8*x_1M34z_3*x_3M*x_171
0+z_3%x_3%x_1M+z_3%X_1NT+x_5M2%x_3M9%*x_14x_572%x_3/M8#X_1M+x_5M2%x_3M#x _1+x_5/2%x_3*x_1M0+x
_5%x_3+x_379*Fx_IM14+x_3/8*x_1M4+x_3M4*x_1111

J[7]=z_3"16+2_3

J[8]=2_2/2%x_3+42_2™M2%x 1"3+z_2%z_3*x_3+z_2%z_3*%_1"3+z_2%x_3*x_1+z_2%x_1M+z_372"%_3+z_3"2%x_I"
3+z_3%x_3*x_1+4z_3*x_1M+x_5+x_3*x_1"2

J[9]=z_272%x_5+z_2"2*x 1"5+4z_2%z_3*X_S+z_2%z_3*_1"S+z_2*x_5*x_l1+z_2%*x_176+z_3"2%_S5+z_3"2*x_I"
5+7_3%x_5*X_14+2_3*X_17M6+x_5/M2%X_3MN9+x_S5A2Ex_3M8*X_1/3+x_5M2%*x_3M+x_5M2%X_3*X_1M9+x_5%x_1/2+4x_
379%x_1M0+x_3/8%*x_17M3+x_37M*x_1MO0+x_3*x_1M+x_177

J[10]=z_2/2%z_3+2_2/2%X 14+z_2%z_3"2+7_2%x_1"2+z_3"2*x 1+z_3*x_1"2+x_3+x_1"3

J[11]=z_2"6+2_2

J[12]=z_1+4z_2+z_3+x_1

Conclusions
0000000
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Syndrome variety

Example

J[1]=x_1*16+x_1

J[2]=x_3"16+x_3

J[3]=x_5*x_3M0+x_5%x_3"M8*X_1M6+x_5%X_3N5+X_5*x_3M*X_1M3+x_5¥x_32#x_179+x_5#x_3*X_1M2+X_S+x_

3M0*X_1AS+x 3/ _ I T4+X_3N5H*X_IAS+x_3MFX_1A8+x_3/2* _1M4+x_3*X_172+x_175

J[4]=X_573+x_5/2%X_1N5+x_S*X_1MO0+xX_3M0+x_3/N8*X_17M6+x_3N5+x_3M*x_173+x_3/2*x_119+x_3%*x_1M2+x

_1715

J[5]=2_3"3%x_3+z_3"3%x_1"3+z_3"2%*x_3%x_1+4z_3"2%x_1M+z_3%*Xx S5+z_3%x_3*Xx_1"2+4x_5%*x_1+x_3"2+x_3*
X_I"3+x_176

J[6]=z_3"3%x_5+z_3"3*x_1"5+2_3"2%x_5%X_l+z_3"2%x_1"6+z_3*x 5"2*X_3"9+7z_3*x_5/2%x_3/8*x_1"3+z_3*
X_S5N2%X_3M+z_3%x_5M2%X_3*X_17"94z_3%x_5%_1"2+z_3%x_379¥*x_1"M0+z_3*x_3/8*x_1"3+z_3%x_3/4*
X_1MO+z_3%x_3*x_1M4z_3*X_INT+X_S5MN2H#X 3N X_14+x_S5M2%x _3M8HX_1M+x_S5M2%*x_3MFX_14x_5MN2%x_3
FX_IMO+X_5*X_3+x_379*x_ 1M 1+x_3/8*x_1M4+x_3/M#x_1M1

J[7]=z_3M6+2_3

J[8]=z_2"2%x_3+7z_2"2*x 1"3+z_2%z_3*x_3+z_2%z_3*%R_1"3+z_2%*x_3*x_1+z_2*x_1"M+z_3"2'x_3+z_3/2*
X_173+z_3%x_3*x_l+4z_3%x_1M+x_5+x_3*%_1"2

J[9]=z2_272%x_5+z_2"2*x_1"\5+z_2%z_3*x_5+z_2%z_3*%R_1"5+z_2%x_5*x_l+4z_2*x_1"6+z_3"2"_5+z_3/2*
X_INS5+7_3%x_5%X_1472_3*X_1"6+X_S5"2*X_3MN9+x_5/2%x_3M8*X_1"3+x_522Fx_3M4x_5M2%%_3*x_179+x_5
#X_1A24x 379 _1MO0+x_378*Xx_1M3+x_3Mx_1MO0+x_3*x_1M+x_177

J[10]=z_2"2%z_3+47_2"2%x 1+z_2%z_3"2+z_2%x_1/"2+z_3"2%*x 1+z_3*x_1"2+x_3+x_I1"3

J[11]=z_2"6+z_2

J[12]=z_1+4z_2+z_3+x_1
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Syndrome variety

Example

2 2 4 2 2
83,31 = Zg(x;; + Xf) + 23X3x1 + 23X + 23X5 + 23X3X] + X5x1 + X3 + X3X13 + X16

3 5 2 2 6 29 2.8 3 2 4 2 9 2 9 10 8 13
8332 = 13(x5 + Xl) + 23Xx5x1 + 23X) + Z3X5 X3 + Z3X5 X3 X] + Z3X5 X3 + Z3X5 X3X] + Z3X6X] + Z3X3xX] + Z3X3x; +

23x§x110 + Z3><3><il —+ Z3X17 —+ xgxgxl —+ xgxgxf + xgxgxl + X§X3X110 + X5x3 + xgxln —+ x:?xl” —+ x;xln

£3,16,1 = Ziﬁ +2z3

82,21 = Z%(X3 =+ x13) + zpz3x3 + 2213xf + z2x3x1 + zzxf =+ z§><3 =+ z32xf + z3x3x1 + Z3Xf + x5 + X3X12

8,22 = Z%(X5 + X15) + zpz3x5 + zgz3x15 + zox5x1 + zp(iS + 232)(5 + z;xf + z3x5x1 + 23)<16 + ngg + x52X38Xf + X§X§+
XSZX3xf + X5X12 + x39x110 + x§x113 + xgxllo + xg,xf + XI

8,23 = Z%(Z:; +x1) + 22232 + ZQX12 + zgxl + 23x12 + x3 + xf

82,16,1 = Ziﬁ +22

81,11 =21+ 2 +z3+x

G3 ={G33. G316} G33=1{8331,8332} G316 = {&3,16,1}
G =1{G22,Gr16} Goo={8221,822,823}, G216 = {82,161}
G = {Gl,l} G1,1 = {g1,1,1}

%
S
SIS

1

W SUzy
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A decoding algorithm

Decoding algorithm

Input p:=1t, g:=1,
Repeat
j:=0
Repeat j .= +1
Until Lp(g,,;)(s,0) #0orj > j,,
if j > j,, then p:= u —1 else
if Tp(g.)(s,0)=0do pu:=p—1
else g(z) := gu,i(s, 0, z);
Until g #1or =0
Output p, x#g(x™1)

Table: Decoding algorithm
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A decoding algorithm

Remark

For any correctable syndrome s, there are some points in V(/) that
determine the error locations and the error values

(le--7Zu707-~707)/17---a)’pa}/ly-'-a)’t—u%
t—p

where y; is an arbitrary element in Fgq for any ;.

But in V(/) there are also other points that do not correspond directly to
error vectors. For example, if 4 <t —2

(217"'72#7272707"'707y17"'7ypu7YI7'"7?1‘—/1)7
t—(p+2)

with z any n-th root of unity and the other components as above.
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General error locator polynomial

Definition

Let C be an [n, k, d]q linear code and t its correction capability. Let d > 3
and (n,q) = 1. Let « be a primitive n-th root of unity in Fgm.
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General error locator polynomial

Definition

Let C be an [n, k, d]q linear code and t its correction capability. Let d > 3
and (n,q) = 1. Let « be a primitive n-th root of unity in Fgm.

Let £ be a polynomial in Fg[S, z], where S = (s,

..ySp—k). Then L is a
general error locator polynomial of C if

Q L(S,z) =zt +a;_ 12871+ - + ap, with aj e Fg[S],0<j<t—1,
that is, £ is a monic polynomial with degree t with respect to the
variable z and its coefficients are in Fg[S];
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General error locator polynomial

Definition

Let C be an [n, k, d]q linear code and t its correction capability. Let d > 3
and (n,q) = 1. Let « be a primitive n-th root of unity in Fgm.

Let £ be a polynomial in Fg[S, z|, where S = (s1,...,5,—«). Then L is a
general error locator polynomial of C if

O L(S,2) =zt + a1zt + -+ ap, with a; € Fy[S], 0<j <t -1,
that is, £ is a monic polynomial with degree t with respect to the
variable z and its coefficients are in Fg[S];

@ given a correctable syndrome s = (51,...5, ) € (Fgm)" kK,
corresponding to a vector error of weight 1 < t and error positions
{h,..., .}, if we evaluate the S variables in s, then the roots of

L(s, z) are exactly {a”,...,a/,0,...,0}.
——
t—p




General error locator polynomial
°

General error locator polynomial

Definition

Let C be an [n, k, d]q linear code and t its correction capability. Let d > 3
and (n,q) = 1. Let « be a primitive n-th root of unity in Fgm.

Let £ be a polynomial in Fg[S, z|, where S = (s1,...,5,—«). Then L is a
general error locator polynomial of C if
O L(S,2) =zt + a1zt + -+ ap, with a; € Fy[S], 0<j <t -1,
that is, £ is a monic polynomial with degree t with respect to the
variable z and its coefficients are in Fg[S];

@ given a correctable syndrome s = (51,...5,-«) € (qu)”_k,
corresponding to a vector error of weight 1 < t and error positions

{h,..., .}, if we evaluate the S variables in s, then the roots of
L(s, z) are exactly {at,... %, 0,... 0}
——

t—p
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Properties of stratified ideals

Stratified ideals
Let K be a field and J C K8, A, T] be a zero-dimensional radical ideal with

S:(Sl,...,SH), A:(al,...,a/_), ‘T:(tl,...,tK).
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Properties of stratified ideals

Stratified ideals
Let K be a field and J C K8, A, T] be a zero-dimensional radical ideal with

8:(51,...,SH), A:(al,...,a/_), ‘T:(tl,...,tK).
We fix a term ordering > on K[8, A, 7], with § < A < T, such that

a; >ax > .- >ag




General error
©®0000

locator polynomial

folo

Properties of stratified ideals

Stratified ideals

Let K be a field and J C K8, A, T] be a zero-dimensional radical ideal with

5:(51,...,SH), A:(al,...,a/_), ‘T:(tl,...,tK).
We fix a term ordering > on K[8, A, 7], with § < A < T, such that

a; >ax > .- >ag

We use the usual notation for the elimination ideals:

Js = JNKJS]

Jsa, = JNK[S,a]

J&A = JS,aL,...,al =Jn K[S, AL, oo uy 31] =JnN K[S,.A]
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Properties of stratified ideals

Stratified ideals

ZJ-L ={(51,.--,5n) € V(Js) | 3 exactly j distinct values {é(Ll), . .,5({)},

sit. (51,...,5n,30) € V(Us.a ), 1 < i <}

ZJ'-’_l ={(51,...,5n,3c,...,3n) € V(Js,a,,..a,) | T exactly j distinct values

{5571_)1, ceey 5%11}, s.t. (§1, ...y,SN,ALy ..., ah, 55,21) S V(JS,aL,...,a;,,l)a
1< S_j}
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Properties of stratified ideals

Stratified ideals

ZJ-L ={(51,.--,5n) € V(Js) | 3 exactly j distinct values {é(Ll), . .,é(ij)},
st (51,00, 58,307) € V(Js.a), 1 < i <)

Zji-’_l ={(51,...,5n,3c,...,3n) € V(Js,a,,..a,) | T exactly j distinct values
{5571_)1, ceey 55{11 ,s.t. (51, ...y,SN,ALy ..., ah, 55,21) S V(J§73L’___,ah71),
1<i<j)

Then it holds:

o V(Js) =Pt

© V(Jsay..ay) =X VT 2<h<L

For any arbitrary zero-dimensional ideal J nothing can be said about A(h), except
that A(h) > 1 forany 2 < h < L.
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Properties of stratified ideals

Stratified ideals

We say that J is stratified w.r.t. the A variable if:

O \(h)=h, 1< h<L, (the number of distinct extensions is at most h
for any point in V(Js,, . a,)) and

2] Zjh #0,1<h<L, 1<j<h (thereis at least a point with one
extensions, ..., up to A(h) = h).

The definition of stratified ideals depends on the choice of the A variables.




Let $ = {s;}, A = {a1,a2,a3} (L=13) and T = {t;} s.t. a; > ap > as.

(O < o«

it
v
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Properties of stratified ideals

Stratified ideals. Example

Let 8 = {s1}, A ={a1,az,a3} (L=3) and T = {t1} s.t. a1 > ap > a3.

Let J = j(Z) C (C[sl,a3,a2,a1,t1] with Z = {(1,2,1,0,0),(1,2,2,0,0),
(1,4,0,0,0), (1,6,0,0,0), (2,5,0,0,0), (3,1,0,0,0), (3,3,0,0,0), (5,2,0,0,0)}.
Then:

V(Js) = {1,2,3,5}
V(Js,a3) = {(1,2), (1,4), (1,6), (2,5), (3, 1), (3,3), (5, 2)}
V(Js,a3.20) = {(1,2,1),(1,2,2)(1,4,0),(1,6,0), (2,5,0), (3,1,0), (3,3,0), (5,2,0)}
V(s a3,39,a1) = {(1,2,1,0), (1,2,2,0)(1,4,0,0), (1,6,0,0), (2,5,0,0), (3,1,0,0), (3,3,0,0), (5,2,0,0)}
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Properties of stratified ideals

Stratified ideals. Example

Let 8 = {s1}, A ={a1,az,a3} (L=3) and T = {t1} s.t. a1 > ap > a3.

Let J = j(Z) C (C[sl,a3,a2,a1,t1] with Z = {(1,2,1,0,0),(1,2,2,0,0),
(1,4,0,0,0), (1,6,0,0,0), (2,5,0,0,0), (3,1,0,0,0), (3,3,0,0,0), (5,2,0,0,0)}.
Then:

V(Js) = {1,2,3,5}
V(Js,a3) = {(1,2), (1,4), (1,6), (2,5), (3, 1), (3,3), (5, 2)}
V(Js,a3.20) = {(1,2,1),(1,2,2)(1,4,0),(1,6,0), (2,5,0), (3,1,0), (3,3,0), (5,2,0)}
V(s a3,39,a1) = {(1,2,1,0), (1,2,2,0)(1,4,0,0), (1,6,0,0), (2,5,0,0), (3,1,0,0), (3,3,0,0), (5,2,0,0)}

Let us consider the projection 7 : V(Js »,) — V(Js). Then:
Tl =1, 7 ({2 =1, = ({3 =2, [= ({1} =3
o Y= {25, 3= {3}, X3 = {1} and Y2 =0, i>3.




<

[m]

3

a3
5 e
SE .
e
SE .
2L e .
- .
4 | 4 | 4 |
1 2 3 4 5 [ 51
Figure: V(Js,,) in a stratified case
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Properties of stratified ideals

Structure theorem

Let G be a reduced Grébner basis of J w.r.t. >. The elements of
GN(K[S,a,...,a1] \ K[8]) can be collected into non-empty blocks {G;}1<,<1
and each {G;} can be decomposed into blocks of polynomials according to their
degree with respect to the variable a;:

G; = Uy Gjy.
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Properties of stratified ideals

Structure theorem

Let G be a reduced Grobner basis of J w.r.t. >. The elements of
GN(K[S,a,...,a1] \ K[8]) can be collected into non-empty blocks {G;}1<,<1

and each {G;} can be decomposed into blocks of polynomials according to their
degree with respect to the variable a;:

G = UG-
Proposition

Let J be a stratified ideal w.r.t. the A variable. Let G be a reduced
Grobner basis of J w.r.t. >. Then
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Properties of stratified ideals

Structure theorem

Let G be a reduced Grobner basis of J w.r.t. >. The elements of
GN(K[S,a,...,a1] \ K[8]) can be collected into non-empty blocks {G;}1<,<1

and each {G;} can be decomposed into blocks of polynomials according to their
degree with respect to the variable a;:

G = UG-
Proposition

Let J be a stratified ideal w.r.t. the A variable. Let G be a reduced
Grobner basis of J w.r.t. >. Then

° G;zl_lgzlG;gandG,-g#@,1§i§tand1§5§i;
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Properties of stratified ideals

Structure theorem

Let G be a reduced Grébner basis of J w.r.t. >. The elements of
GN(K[S,a,...,a1] \ K[8]) can be collected into non-empty blocks {G;}1<,<1
and each {G;} can be decomposed into blocks of polynomials according to their
degree with respect to the variable a;:

G = UG-
Proposition

Let J be a stratified ideal w.r.t. the A variable. Let G be a reduced
Grobner basis of J w.r.t. >. Then

° G;zl_lgzlG,-(gandG,-g#@,1§i§tand1§5§i;

e Gi=1{gin}, 1 <i<L, ie exactly one polynomial exists with degree
i w.r.t. the variable a; in G;;
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Properties of stratified ideals

Structure theorem

Let G be a reduced Grébner basis of J w.r.t. >. The elements of
GN(K[S,a,...,a1] \ K[8]) can be collected into non-empty blocks {G;}1<,<1
and each {G;} can be decomposed into blocks of polynomials according to their
degree with respect to the variable a;:

G = UG-
Proposition

Let J be a stratified ideal w.r.t. the A variable. Let G be a reduced
Grobner basis of J w.r.t. >. Then

° G;zl_lgzlG,-(gandG,-g#@,1§i§tand1§5§i;

e Gi=1{gin}, 1 <i<L, ie exactly one polynomial exists with degree
i w.r.t. the variable a; in G;;

o T(g,','l) = a;




We use the variables (x1,...,x,—«), (z1,...,2) and (y1,...,y:) as before.

«O>r «Fr <

it
v
it
v
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A new syndrome variety

Defining a new syndrome variety

We use the variables (x1,...,x,—«), (z1,...,2) and (y1,...,y:) as before.

Definition

Let n € N be an integer. We denote by p(n, z/, zj) € Fg[z, ..., z] the polynomial:

z,"—z7" .
— 1< /<<t

P(n, 2/727) = z— 7 )
i
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A new syndrome variety

Defining a new syndrome variety

We use the variables (x1,...,x,—«), (z1,...,2) and (y1,...,y:) as before.
Definition

Let n € N be an integer. We denote by p(n, z/, zj) € Fg[z, ..., z] the polynomial:

z,"—z7" .
p(n,z,z)=—", 1<I</<t.
Z] — Zj

We denote by I’ the ideal J(F') C Fylx1, ..., Xn—k, Z1s- - - Zts Y1, - - -5 Ve,
where  F' = {fi,xi, hj, \j,m, |1 <j<t,i€Sc, 1 <1 <<t} with

t
fii= 2"z — xi,
j=1
, Xi :x,qm — X
7= hJ :zjnJrl_sz
No=yit—1
M, 1=z~ z1-p(n, 7, 21)

V(') is a new syndrome variety.



A new syndrome variety

General error locator polynomial for cyclic codes

These polynomials remove all the spuriuos solutions

Let G be the reduced Grobner basis of I’ w.r.t. the lex ordering with
X< <Xk <z << zZg <y < < Y

Theorem

Let C be an [n, k,d]q cyclic code. Let I" and G be defined as above. Then:

o ideal I’ is a stratified ideal

@ in G there exists a unique polynomial of type

g:zf+at,1zt_1+~--+ao, a,'EIFq[X].

¢

,

R SUzp,
4 [g».

B D7

SILvis
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A new syndrome variety

General error locator polynomial for cyclic codes

Let g be the unique polynomial with degree t w.r.t. variable z; in G;:

t
t t—/
g =2z + E a1z,
I=1
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A new syndrome variety

General error locator polynomial for cyclic codes

Let g be the unique polynomial with degree t w.r.t. variable z; in G;:

t
t t—/
g =2z + E a1z,
I=1

@ there are exactly p errors;
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A new syndrome variety

General error locator polynomial for cyclic codes

Let g be the unique polynomial with degree t w.r.t. variable z; in G;:

t
t t—/
g =2z + E a1z,
I=1

@ there are exactly p errors;
@ a;_y(s) =0for / > pand a;_,(s) #0;
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A new syndrome variety

General error locator polynomial for cyclic codes

Let g be the unique polynomial with degree t w.r.t. variable z; in G;:

t
t t—/
g =2z + E a1z,
I=1

@ there are exactly p errors;
@ a;_y(s) =0for / > pand a;_,(s) #0;
o g(s,zt) = 271 (Le(2));
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A new syndrome variety

General error locator polynomial for cyclic codes

Let g be the unique polynomial with degree t w.r.t. variable z; in G;:

t
t t—/
g =2z + E a1z,
I=1

@ there are exactly p errors;
@ a;_y(s) =0for / > pand a;_,(s) #0;
° g(s,z) = 27" (Le(2));

and imply that o(z) = z¢g(s,z71).
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A new syndrome variety

General error locator polynomial for cyclic codes

Let g be the unique polynomial with degree t w.r.t. variable z; in G;:

t
t t—/
g =2z + E a1z,
I=1

@ there are exactly p errors;
@ a;_y(s) =0for / > pand a;_,(s) #0;
o g(s,zt) = 271 (Le(2));
and imply that o(z) = z#g(s,z71). This means that g is a monic
polynomial in Q[z] which satisfies the following property:
given a syndrome vector s = (s1,...,5,—) € (Fgn)"~¥ corresponding to an
error with weight 1 < t, then its t roots are the yu error locations plus zero
counted with multiplicity t — p,

and is a general error locator polynomial of C.
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A new decoding algorithm

Decoding algorithm

Once we have computed a general error locator polynomial for the code C,
the decoding algorithm is straightforward:

Input s=(s1,...,5,—«)
n=rt

While a;_,(s1,...,5—k) =0 do
wi=pn—1

Output i, Lo(2)

Table: Decoding algorithm
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A new decoding algorithm

Decoding algorithm

The classical approach has the following problem:

one should choose a polynomial in the Grobner basis, specialize it at the received
syndrome and then find its roots. The point is that it is not possible to know in
advance which polynomial has to be chosen and, as soon as the code parameters
are not trivial, there might be many candidate.

An improved was proposed by Caboara and Mora.

We enlarged the syndrome variety and we have removed exactly the “spurious
solutions”. The new ideal turns out to be stratified and hence to contain the
gelp, which is the only polynomial that needs to be specialized.
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A new decoding algorithm

Example
SINGULAR /
A Computer Algebra System for Polynomial Computations / version 3-0-4
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \' Nov 2007

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

>ring R=(2),(z_1,z_2,z_3,x_5,x_3,x_1),lp;

> option(redSB);

> proc p (n,b,c) {

. poly tmp; tmp=0; int i;

. for (i=0;i<n;i++) {

. tmp=tmp+b i*cN(n-1-i); };

. return(tmp); };

>ideal I=z_1+z_2+z_3+x_1 z_1"3+z_2"3+z_3"3+x_3,z_1"5+z_2"5+z_3"5+x_5,
z_1M6+z_1, z_2M6+7_2,7_3M6+z_3, x_1M6+x_1, x_376+x_3, x_5M6+x_5,
z_1*z_2%p(15,z_1,z_2),z_1*z_3*p(15,z_1,z_3),z_2%z_3*p(15,z_2,z_3);

> timer=1;

> ideal J=groebner(I);

/lused time: 1.21 sec
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A new decoding algorithm
Example

J[1]=x_1M16+x_1
J[2]=x_3"6+x_3
T[3]=X_5*X_3M0-+x_5%X_3A8*X_1AG+X_F*X_3N5+X_5*x_3MEX_IA3+x_5*xX_3MZFX_1M9+x_5%x_3*x_1M2+x_5+

X_3MOFX_IAS+X_3A8HFX I +X_3ASHX_IAS+x_3M*X_IA8+x_3M2*X_1M4+x_3*x_1"2+x_I5
J[4]=X_5A34X_SA2X_1A5+X_5*X _I MO+X_3A10+X_3A8%x_1A6+x_3A5+x_ 3M*x_1A3+x_3A2*x_179+x_3*x_1A12+x_IA15
JI51=2_3(x_3M5*x_1A5+x_37S5+x_1715+1)
J[6]=2_3"2(x_3MS+x_3M4*X_1734+x_3M3*X_1M64+x_3M2¥X_17N94+x_3M1FX_1M24+x_3MO*X_1M5+x_379*x_113+

X_3MHEX_1N64+X_3NT#X_119+X_3M6* X _1M2+x_375%X_1M5+x_3M*X_1A34+x_33*x_176+x 3/2#X_119+x_3*x_1712+
X_IM5+1) +2_3(x_3M5*x_14+x_3MA*FX_1M4x_3M3*X_IAT+x_3M2%#x_1MO0+x_3M X _1M3+x_3M0*x_1+
X_3MO#x_1M4x_3M8¥X_INT+X 3ATHX_IMO+X_3M6FX_IM34+x_3N5*X_1+x_3MFx_17M4+x_383*x_1MT+x_372¥x_170+

X_3*x_1A13
J[71=2_3"3+2_3"2%x_1+2_3(x_5*X_3"9+x_5%X_3/8*X_1"3+xX_5*X_3M+x_5X_3%x_1"9+x_3M5%x_172+x_3MN4*x_1"5+

X_3M3#x_1M84+xX_3M2#X 1M 1+x_3MT*X_1M4+x_3M0*X_1/24+x_3A7#X_ 1M T+X_386*X_17M14+x_385*x_172+

X_3M3#X_1M8+x_3M2HX _IMT4X_1/2)+x_5*Xx_3"9%x_14x_5*x_3"8*x_1M+x_5%x_3M*x_1+x_5*x_3*x_170+
X_3MS5*X_1A3+x_3MA*X_17M64+x_3M3%*X_1M9+x_3M2#x_1M2+x_3MT#x_1MS+x_3M0*x_173+x_3/7#x_1"M2+
X_3M6*X_1MS5+x_3M5%x_1734+x_3/3*x_179+x_3/2*x_1M2+x_3
J[81=2_2(x_3M5*x_1A5+x_37S5+x_1715+1)
J[9]=z_2(z_3%*x_3M5+z_3%x_3M4*x_1"3+z_3%*x_3M3*x_1"6+z_3*x_3M2¥x_1"9+z_3%x_3 M 1*x_1"12+z_3*x_370*
X_17M5+z_2%z_3%x_379%*x_173+z_3%x_3/8*x_176+z_3%*x 3NT*X_1"9+z_3*x _376*x_1"M2+z_3*x_3"5%*x_17M5+
7_3%X_3MEX_1M3+%7_3%_3M3%*X_1M6+z_2%7_3%x_3M2*x_17"9+z_3%*x_3*x_1"M2+4z_3*x_1"15+z_3)
J[10]=z_2"2+z_2(z_3+x_1)+z_3"2+7z_3*x_1+x 5%x_379+x_5%x_3"8*x_1"3+x_5%*x_3M+x_5*x_3*x_1"9+x_3"5*x_1"2+
X_3MAFX_IAS+X_3M3*FX_1A8+X 32X _IMT4+x_3MT#X_1M44+x_3MO0*X_1124x_3AT*X 1M 14+x_376*x_1 14+
X_3ASHEX_1M24x _3MFFX_IM8+X_3M2Hx 1M 14+x_112
J[11]=z_1+z_2+z_3+x_1
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A new decoding algorithm
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JI=x_1M6+x_1
J[2]=x_3M6+x_3
J[3]=X_5%X_3MO+x_5*X_3MN8*X_1M0+X_5¥X_3N5+X_5¥K_3MFX_IN34+xX_5*X_3N2X_1M94+x_S5FX_I*X_IM24x_5+
X_3MO*X_1A5+X_3M8*x_1M 14x_3A5%x_1A5+x_3M*x_IA8+x_3A2%x_IAld+x_3*x_1"2+x_175
J[4]=x_5M34+x_5M2#X_IAS+x_5¥X_1MO4+x_3M0+x_3/8*X_146+x_3"54+x_3M*X_1"3+x_3/2¥x_179+x_3*x_1"M2+x_1715
JI51=2_3(x_3M5*x_1M5+x_3MS5+x_1A15+1)
J[6]=2_3"2(x_3M5+x_3M4*X_113+x_3M3#x_17M64+x_3M2*x_119+x_3M1*x_1M24+x_37M0*x_17M5+x_3"9%*x_113+
X_3M8HFX_1M04+X_3NT*X_1M94+x 3M6*X _1M2+x_3A5*X_1M54+x_3M*FX_1734x_3M3*X_176+x 32#X_119+x_3*x_1 2+
X_IMS5+1) +2_3(x_3MS5*x_14+x_3MA#FX_1M4x_3M3#x_IAT+x_3M2#X_1MO0+x_3MTHFX_1M3+x_3M0*x_1+
X_3MNO#x_IM4X_3M8FX_INT+X 3ATHX_IMO+X_3M6FX_IM34+x_3N5*X_1+x_3MFx_17M4+x 3M3#x_1MT+x_372¥x_1M0+
X_3*x_1713
J[71=2_3"3+2_3"2%x_1+2_3(x_5*X_3"9+x_5%x_3/8*X_1"3+xX_5*X_3M+x_5Xx_3%x_1"9+x_3M5%x_172+x_3MN4*x_1"5+
X_3M3HFX_IABHX_3M2#X 1M T4+X_3MTHFX_IM44+X_3MO*X_1A24X 37X _IAMT+X_3MN6™ X 1M 14+x_3/5%x_172+
X_3M3*X_1M8+x_3M2HX _IMT4+X_1/2)+x_5Fx_39%x_14X_5%x_3"8#x_1M+x_5%x_3M*x_14+x_5%x_3*x_1"MO0+
X_3MS*X_IA3+x_3MAFX_17M64+x_3M3%X_1M9+x_3M2#x 1M 2+x_3MT#x_1MS+x_3M0*x_173+x_3/7#x_1"M2+
X_3M6*X_1MS+x_3M5#x_1734+x_3/3*x_179+4x_3/2%x_1M2+x_3
J[8]1=2_2(x_3M5*x_1M5+x_3MS5+x_1715+1)
J[9]=z_2(z_3%*x_3MN5+z_3%x_3M4*x_1"3+z_3%x_3M3*x_1"6+z_3*x_3M2¥x_1"9+z_3%x_3 M 1*x_1"12+z_3%x_3/0*
X_IM5+z_2%z_3%x_379*x_113+47_3*x 3/8*X_17M0+2_3*X 3NT*X_179+7_3%X 376*x_1M2+z_3*x_3"5*x_ 115+
7_3%X_3MFX_1N3+%7_3%x _3N3*X_1N0+z_2%7_3%*X_3MN2*X_179+z_3*x_3*X_1"M2+z_3*x_1715+2_3)
J[10]=z_2"2+z_2(z_3+x_1)4+z_3"2+7_3*x_1+x 5%x_37N9+x_5%x_3"8*x_1"3+x_5%x_3M+x_5%x_3F*x_1"9+x_3"5*x_1"2+
X_3MAEX_IAS+HX_3M3FX_1A8+X_3M2HEX_IMT4+X_3MT#X_1M44+x_3MO0*X_17424x_3AT*X_IM14+x_376*x_1M 4+
X_3NSFX_IA24X_3AFEX_1M84+x_ 32 1M T4+x_172
J[11]=z_14z_2+z_3+x_1




Introduction General error locator polynomial
000000000 0000000008

A new decoding algorithm
Example

1515 , 15 15
83,1,1 =230G° %" +x3° +x° +1)

14 3 13 6 12 9 11 12 10 15

2, 1 7 12
83,2,1 :23()(35 +X37x] +X37x) £ x37x] +x37 X7 + X377 +X§x13 +x38x16 +x3)<19 +x36x1

2 12 1 1! 14 4 13 7 12 1 11 1
x;xf + x3x19 + x3x;” + X15 +1)+ 23(x35x1 +Xx3 %) + x33x1 + x3 x10 + x3 x13+

x‘,}oxl + xgxf + X38X17 —+ x;xllo =+ x36x113 + xgxl + xgxf + x33x17 + ngllo =+ X3x113

3 2 9 8 3 4 9 15 2 14 5 13 .8 12 11
83,3,1 =23 —+ 23X1 + 23(><5x3 +x5><3x1 +X5x3 —+ X5X3X) —+ X3~ X1 + X3 X1 + X37 X + X3 X1

10 2 7 11 6 14 2 11

5 2 3 8 2 9 8 4 4 10
X3 X1 +x3xl +x3x1 +x3x1 +X3X1 +X3X1 +x1) +x5x3><1 +x5x3xl +x5x3x1 +X5X3X1 +

1 12 12 11 1 1 7 12 1 2 12
x33x19 +x37x17 +x3 xls +x30x13 + X3 X1 +x36x15 +x§x13 +x33x(f +x3x77 +x3
15 15 15 15
g2,1,1 =22067" +3° + 7 +1)

1 14 1 12 112 101
82,12 =22(233° + z33° 5 + 2940 + 23357 + 233707 + 2306 + 223 +

7 12 1! 4 2 12 1!
23)(38)(15 + Z3X3X19 + Z3X§x1 + z3x§)(15 + z3x3x13 + Z3X33X16 + 2223x3)<f + z3x3x1" + Z3X15 + z3)

15 2 14 5

5 15

Conclusions
0000000

4
+x3x; + x3)<13+

11 14
+x37x +

13 8

2 2 9 8.3 4 9
&,2,1 =25 + z(z3 + x1) + 23 + 23x1 + X5X3 + X5XgX] + X5X3 + X5x3X] + X37X] + X3 X] + X37x +

12 11 11 14 10 2 11 14 2 2 11 2
X37x)" + x37X] +)<30x1 +X§X1 +x§x1 +x§’x1 +x§xf+x3x1 + X1

81,11 =211 +22+z3+x1

153, 14 6
37X+ x3oxq+

Gs ={G33,G32,G31} Gzz={g331}, G0 ={g321},G31=1{g311}
Go=1{G22,Go1} Goo=A{g21},61=1{11,812}

G = {Gl,l} Gl,l = {gl,l,l}

WA,
S
5 D%
2 z
ALY YR



15 2 14 5 13 8 12 11 11 14

83,3,1 =zg +z§x1 +Z3(X5X§ +X5X§X13 +X5X34 +X5X3x19 +x37x] +x37x) +X37x) X3 X7 + x3Tx +

10 2 711 6 14 2 8 2 11 2 8 4 4 1 15 3 14
X3 X] + X3x;T + X3Xxq +x§’xl +x§x1 + x3xq +X1) +X5X§X1 + X5x3X; + X5x3X1 +X5X3X10 +X35X1 +x3 X16+

13 9 12 12 11 15 10 .3 7 12 6 15 53 3.9 2 12
X37 X +x3 X1 +x3 X1 +x3 X1 -{—x3x1 -{—x3)<1 -{—x:,x1 -{—x3x1 -}—x:,x1 + x3
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A new decoding algorithm

Example

3 2 9 8 3 4 9 15 2 14 5 13 .8 12 11 11 14
83,3,1 =23 —+ 23X1 + 23(><5x3 +x5><3x1 + X5X3 —+ X5X3X) —+ X3~ X1 + X3 X] + X37 X + X3 Xq + X3 Xq +

10 2 711 6 14 5 2 3.8 2 11 2 9 8 4 4 10 15 3 14 6
X3 X1 +X3X1 +x3x1 +x3><1 +X3X1 +X3x1 +><1) +x5><3x1 +><5x3><1 +x5><3x1 +x5><3x1 +><3 X1 +><3 ><1+
1 12 12 11 1 1 7 12 1 2 12

x33x19 +x37x17 +x3 X15 +)<30xi11 + X3 X1 +x§x15 +x35xf +X§X19 +x3x77 +x3

1. We suppose the ¢ = (0,0,...,0) is the transmitted word.

Let v=(1,0,1,1,0,...,0) be the received vector, then ;= 3 and

— o3 10 10

X1 X3 =« X5 = Qv
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A new decoding algorithm
Example

3 2 9 8 3 4 9 15 2 14 5 13 .8 12 11 11 14

83,3,1 =23 —+ 23X1 + 23(><5x3 +x5><3x1 + X5X3 —+ X5X3X) —+ X3~ X1 + X3 X] + X37 X + X3 Xq + X3 Xq +
10 2 711 6 14 5 2 3.8 2 11 2 9 8 4 4 10 15 3 14 6
X3 X1 +X3X1 +x3x1 +x3><1 +X3X1 +X3x1 +x1)+x5x3x1 +><5x3><1 +x5><3x1 +x5><3x1 +><3 X1 +><3 ><1+

1 12 12 11 1 1 7 12 1 2 12
x33x19 +x37x17 +x3 X15 +)<30xi11 + X3 X1 +x§x15 +x35xf +X§X19 +x3x77 +x3

1. We suppose the ¢ = (0,0,...,0) is the transmitted word.
Let v=(1,0,1,1,0,...,0) be the received vector, then ;= 3 and
X1 = a13 X3 = alO X5 = alO
> subst(subst(subst(g,x_1,a"13),x_3,a"10),x_5,a"10);
z_3"3+aM3*z_3"2+a"9%z_3+a’\S
> poly gs=z_3"3+ar13*z_3"2+a"9*z_3+a’5;
> subst(gs,z_3,1);
0
> subst(gs,z_3,a);
an3
> subst(gs,z_3,a"2);
0
> subst(gs,z_3,a"3);
0
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Example

2. We suppose the ¢ = (0,0,...,0) is the transmitted word.
Let v=(1,0,0,1,0,...,0) be the received vector, then ;=2 and
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A new decoding algorithm

Example

2. We suppose the ¢ = (0,0,...,0) is the transmitted word.
Let v=(1,0,0,1,0,...,0) be the received vector, then ;=2 and

xi=a" x3=a’ x=0
> subst(subst(subst(g,x_1,a"14),x_3,a"7),x_5,0);
z_3"3+ar4*z_3"2+a’3*%z_3
> poly gs=z_3"2+a"U*z_3+a’3;
> subst(gs,z_3,1);
0
> subst(gs,z_3,a);
a™3
> subst(gs,z_3,a"2);
a4
> subst(gs,z_3,a"3);
0
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A new decoding algorithm

Example

3. We suppose the ¢ = (0,0,...,0) is the transmitted word.
Let v=(0,1,0,0,0,...,0) be the received vector, then ;=1 and

X1 =« X3:0¢3 X5:Oé5
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A new decoding algorithm

Example

3. We suppose the ¢ = (0,0,...,0) is the transmitted word.
Let v=(0,1,0,0,0,...,0) be the received vector, then ;=1 and

X1 =« X3:0¢3 X5:Oé5

> subst(subst(subst(g,x_1,a),x_3,a"3),x_5,25);
z_3"3+a*z_ 372
> poly gs=z_3+a;
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We note that the definition of general error locator polynomial are for

generic linear code, so general error locator polynomials can be used to
decode any linear code, if it possesses them.
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General error locator polynomial for linear codes

We note that the definition of general error locator polynomial are for

generic linear code, so general error locator polynomials can be used to
decode any linear code, if it possesses them.
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General error locator polynomial for linear codes

Remarkl

We note that the definition of general error locator polynomial are for

generic linear code, so general error locator polynomials can be used to
decode any linear code, if it possesses them.

It is important to note that even if in some special cases the decoding with

the general error locator polynomial is very fast, this nice behavior cannot
be generalized to all linear codes.
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General error locator polynomial for linear codes

Remarkl

We note that the definition of general error locator polynomial are for
generic linear code, so general error locator polynomials can be used to
decode any linear code, if it possesses them.

It is important to note that even if in some special cases the decoding with

the general error locator polynomial is very fast, this nice behavior cannot
be generalized to all linear codes.

N. Bruck and M. Naor, The hardness of decoding linear codes with
preprocessing, |EEE Trans. Inform. Theory 36 (1990), 381 — 385.
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Correcting erasures via the syndrome variety

Remark?2

Let C be an [n, k, d], cyclic code with defining set S¢ = {i,...,in—x}. Let 7 be
to the number of errors, v be the number of erasures s.t. 27 + v < d.
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Correcting erasures via the syndrome variety

Remark?2

Let C be an [n, k, d], cyclic code with defining set S¢ = {i,...,in—x}. Let 7 be
to the number of errors, v be the number of erasures s.t. 27 + v < d.

We denote by {a/ | 1 </ < 7} the set of the error locations and by {a/ | 1 < h <
v} the set of the erasure locations.
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Correcting erasures via the syndrome variety

Remark?2

Let C be an [n, k, d], cyclic code with defining set S¢ = {i,...,in—x}. Let 7 be
to the number of errors, v be the number of erasures s.t. 27 +v < d.

We denote by {a/ | 1 < | < 7} the set of the error locations and by {a/ | 1 < h <
v} the set of the erasure locations.

T

D a(a) +) a(e) —s, i€ S,
h=1

=1

where {a'},{a;} and {c,} are unknown and {s;},{a"} are known.
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Correcting erasures via the syndrome variety

Remark?2

Let C be an [n, k, d], cyclic code with defining set S¢ = {i,...,in—x}. Let 7 be
to the number of errors, v be the number of erasures s.t. 27 + v < d.

We denote by {a/ | 1 < | < 7} the set of the error locations and by {a/ | 1 < h <
v} the set of the erasure locations.

T

D a(a) +) a(e) —s, i€ S,
h=1

=1

where {a'},{a;} and {c,} are unknown and {s;},{a"} are known.

variables representant
X1,...,Xn_k correctable syndromes
215y 2Zr error locations

Vigeoos Vo error values

Wiy ..o, Wy erasure locations

Upy ..o, Uy erasure values
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Remark?2

Let C be an [n, k, d], cyclic code with defining set S¢ = {i,...,in—x}. Let 7 be
to the number of errors, v be the number of erasures s.t. 27 + v < d.

We denote by {a/ | 1 < | < 7} the set of the error locations and by {a/ | 1 < h <
v} the set of the erasure locations.

T

D a(a) +) a(e) —s, i€ S,
h=1

=1

where {a'},{a;} and {c,} are unknown and {s;},{a"} are known.

variables representant
X1,...,Xp—k correctable syndromes
Zyy ey Zr error locations

Vigeoos Vo error values

Wiy ..o, Wy erasure locations

Upy ..o, Uy erasure values
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Remark?2

Let C be an [n, k, d], cyclic code with defining set S¢ = {i,...,in—x}. Let 7 be
to the number of errors, v be the number of erasures s.t. 27 + v < d.

We denote by {a/ | 1 < | < 7} the set of the error locations and by {a/ | 1 < h <
v} the set of the erasure locations.

T

D a(a) +) a(e) —s, i€ S,
h=1

=1

where {a'},{a;} and {c,} are unknown and {s;},{a"} are known.

variables representant
X1,...,Xp—k correctable syndromes
215y 2Zr error locations

Vigeoos Vo error values

Wi, ..., W, erasure locations

Upy ..o, Uy erasure values
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Remark?2

Let C be an [n, k, d], cyclic code with defining set S¢ = {i,...,in—x}. Let 7 be
to the number of errors, v be the number of erasures s.t. 27 + v < d.

We denote by {a/ | 1 < | < 7} the set of the error locations and by {a/ | 1 < h <
v} the set of the erasure locations.

T

D a(a) +) a(e) —s, i€ S,
h=1

=1

where {a'},{a;} and {c,} are unknown and {s;},{a"} are known.

variables representant
X1,...,Xp—k correctable syndromes
215y 2Zr error locations

Vigeoos Vo error values

Wiy ..o, Wy erasure locations

Upy .oy Uy erasure values
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Correcting erasures via the syndrome variety

Remark?2

We rewrite previous equations in terms of X, Y, Z W and U, as:
T [ 1% [
Fv= {{X_ivz +X uwj — Xi}iESC'

{z/n+:l —Z1}i=1,. 7 {quil DRI
{uzm_ Up}h=1,....5 Wy = L=t s
{x" — xi}iesc, {p(n, Wi, wi)}netipi=1,...0

{zip(n, zi, wh) Yi=1,...rh=1,vs {212kP(0, 21, 2k) Y1tk k=1, 7 )
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Remark?2
We rewrite previous equations in terms of X, Y, Z W and U, as:

Frv = {{Zl;l vizi + g upwj, — Xi};esc'

{z* — 2} 1 o, {y/qfl —1}=1, o r,
{Uzm— Unth=1,.. v {wf —1}p=1, 0s
{x7 —xi}tiesc, {p(n, wh, wi) thzisp,i=1,...v,

{zip(n, zi, wh) Yi=1,...rh=1,vs {212kP(0, 21, 2k) Y1tk k=1, 7 )

Ideal / = J(F™") depends only on code C and on v.

Lemma
Ideal | is stratified. J
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Correcting erasures via the syndrome variety

Remark?2

We rewrite previous equations in terms of X, Y, Z W and U, as:
T [ 1% [
I = {SnE + X unw = %}

{z/'hL:l —Z1}i=1,. 7 {qu71 — b=t
{uZm_ Un}h=1,....vs {wi = Liha,w,
{x" — xi}iesc, {p(n, Wi, wi)}netipi=1,...0

{zip(n, z;, wh) }i=1,.. rh=1,s {2iZkP(N, 21, 2k) Y1k g k=1, }
Ideal / = J(F™") depends only on code C and on v.

Lemma
Ideal | is stratified.

Let G be the reduced Grobner basis of | w.r.t. >.

In G there is a unique polynomial of type

g=2zl +a, 127 14+ tag, a €F[X, W]

Moreover g is an extended general error locator polynomial.




It is possible to extend Cooper's ideas to decode affine—variety codes. @9

«O>r «Fr <

it
v
it
v
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Multidimensional general error locator polynomials

Remark3

It is possible to extend Cooper's ideas to decode affine—variety codes.
Let m>1and | CFy[X] =Fy[xi, ..., xm] be an ideal such that

EjIX] = {x] — x1,x3 —x0,. .., X% — xm} C I
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Multidimensional general error locator polynomials

Remark3

It is possible to extend Cooper's ideas to decode affine—variety codes.
Let m>1and | CFy[X] =Fy[xi, ..., xm] be an ideal such that
EjIX] = {x] — x1,x3 —x0,. .., X% — xm} C I

Let Py1, Ps,..., P, be the points of the variety defined by /.
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Multidimensional general error locator polynomials

Remark3

It is possible to extend Cooper's ideas to decode affine—variety codes.
Let m>1and | CFy[X] =Fy[xi, ..., xm] be an ideal such that

EjIX] = {x] — x1,x3 —x0,. .., X% — xm} C I
Let Py1, Ps,..., P, be the points of the variety defined by /.

There is an isomorphism of Fy-vector spaces (an evaluation)

¢: R=Fq[x1,....,xm]/I — (Fg)"
o f —  (f(P1),...,f(Pp)).
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Multidimensional general error locator polynomials

Remark3

It is possible to extend Cooper's ideas to decode affine—variety codes.
Let m>1and | CFy[X] =Fy[xi, ..., xm] be an ideal such that

Eq[X] = {x{ — x1,x3 — X2, ..., X, — Xm} C I.
Let Py1, Ps,..., P, be the points of the variety defined by /.

There is an isomorphism of Fy-vector spaces (an evaluation)

¢: R=Fq[x1,....,xm]/I — (Fg)"

o : f — (F(P1),...,f(Py))-
Let L be a linear subspace of R over Fy of dimension r.
Definition

The affine-variety code C(/, L) is the image ¢(L), and the affine-variety
code C*(/, L) is its dual code.




Introduction

General error locator polynomial
000000000

0000000000
Multidimensional general error locator polynomials

Remark3

If by,..., b, is a linear basis for L over IFy, then the matrix

bi(P1) bi(P2) ... bi(Pn)

bi(P) bi(Ps) ... by(P)

is a generator matrix for C(/, L) and a parity-check matrix for C1(/,L).

Conclusions
00®0000
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Multidimensional general error locator polynomials

Remark3

If by,..., b, is a linear basis for L over IFy, then the matrix

b(P) bu(P) ... bi(P)
bi(P) bi(Ps) ... by(P)

is a generator matrix for C(/, L) and a parity-check matrix for C1(/,L).

Theorem (F-L,1998)

Every linear code may be represented as an affine-variety code
(both as C(I,L) and as C+(I’,L")).




rror locator polynomial Conclusions
00 00®0000

Multidimensional general error locator polynomials

Remark3

If by,..., b, is a linear basis for L over IFy, then the matrix
bi(P1) bi(P2) ... bi(Pn)
b.(P1) b(P2) ... b(Py)

is a generator matrix for C(/, L) and a parity-check matrix for C1(/,L).

Theorem (F-L,1998)

Every linear code may be represented as an affine-variety code
(both as C(I,L) and as C+(I’,L")).

Let C = C*(/, L) be an affine variety code with dimension r = n — k, distance d
and parity-check matrix H.




@ Letc= (Cos- -5 Cn1),

v=(v0,. ., Vn 1)

<O <Fr o«

and

e = (eo""7en_1)_
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Remark3

Let c = (co,---,¢n-1), v=1(vo,...,Va—1) and e = (ep,.

From HvT = HeT = s, we get

n t
si=Y vibi(P) =) ebi(P), 1<i<r,
Jj=1 j=1

where t is the correction capability of the code.
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Let c = (co,-.-,¢n-1), v=(vo,...,Va—1) and e=(ey,...,€n-1).

From HvT = HeT = s, we get

n t
si= Y vibi(P) =Y eb(P), 1<i<r,
j=1 j=1
where t is the correction capability of the code.

e S=(s1,...,s,) for the syndromes

© Zi=(zt1,---,2tm)s ---» Z1 = (211, ..., 21,m) for the error locations
o £ =(eq,...,e) for the error values.
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Remark3

By changing the classical ideal for decoding affine—variety codes, previously
suggested by Fitzgerald-Lax (1998), it is possible to prove the existence of
multi-dimensional general error locator polynomials for any affine-code.
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Remark3

By changing the classical ideal for decoding affine—variety codes, previously
suggested by Fitzgerald-Lax (1998), it is possible to prove the existence of
multi-dimensional general error locator polynomials for any affine-code.

Multidimensional general error locator polynomials are the multidimen-
sional analogue of general error locator polynomials. Once the syndromes
are received, they permit direct computations of the error locations by simply
evaluating some polynomials in the received syndrome.
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Let C1(/, L) be an affine variety code, we denote by 1S the ideal in
Folst,...,sr Xi,..., Xe,e1,..., 6] s.t.

C,t t 1
Iof = < { _eibi(xi,...,X —s-} {e-q — 1}
* ijl j I( 1, s Jm) i 1<icr L5 1<j<t’

{gn(xjt, - - s Xjm) br<h<, {Xﬂ = Xji
<<t

{)9’)9'H1§/§m((xﬂ — ;)97 — 1)} i
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Conclusions
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Let C1(/, L) be an affine variety code, we denote by 1S the ideal in
Folst,...,sr Xi,..., Xe,e1,..., 6] s.t.

C,t t 1
Iof = < { - ebi(xi,...,x; —s-} {e-q — 1}
* 2171 j I( 1, ) Jm) i 1<icr L5 1<j<t’

{gn(xjt, - - s Xjm) br<h<, {Xﬂ = Xji
<<t

{><j/Xj/H1§/gm((>9'/ — ;)97 -

1<<t,
1<I<m

1) 1<j<j<t
i<I<m

Theorem

@ multidimensional general error locator polynomials exist for any
affine-variety code;
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Multidimensional general error locator polynomials

Remark3
Let CL(I, L) be an affine variety code, we denote by /*C’t the ideal in
Folst,...,sr Xi,..., Xe,e1,..., 6] s.t.
C,t t K. . e q-1
= < {Zf:1 &b, - Xjm) S'}1§i§r’{ef 1}19'9’
{gh(ij oo 7ij)}1§h_§1, 5 {Xﬂ — Xj 1<<t,
1<j<t 1<I<m
{>9/><;,H1§,§m((>g/ — )77 - 1)}1<j<]'<t>
i<I<m
Theorem

@ multidimensional general error locator polynomials exist for any
affine-variety code;

@ they can be easily found in a suitable Grobner basis of I*C’t
(they are the polynomials with leading terms of type x,.t" ).
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Remark4
The efficiency of the algorithm depends on two factors:

@ The computation of the associated Grobner basis can be quite beyond
present means already for medium-size codes;
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present means already for medium-size codes;

@ Even if we compute a general error locator, it could be so dense that
its use would be impractical.
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Remark4

The efficiency of the algorithm depends on two factors:

@ The computation of the associated Grobner basis can be quite beyond
present means already for medium-size codes;

@ Even if we compute a general error locator, it could be so dense that
its use would be impractical.

Sparsity: it is possible to obtain a sparse representation of the general er-
ror polynomial for same special classes of cylic codes. This can be done
by studying the associated syndrome variety and defining set of the code.
Moreover in these cases it is possible to obtain a general error locator with-
out computing a Grobner basis, but simply using the structure of the c%dec
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Remark4
The efficiency of the algorithm depends on two factors:

@ The computation of the associated Grobner basis can be quite beyond
present means already for medium-size codes;

@ Even if we compute a general error locator, it could be so dense that
its use would be impractical.

Sparsity: it is possible to obtain a sparse representation of the general er-
ror polynomial for same special classes of cylic codes. This can be done
by studying the associated syndrome variety and defining set of the code.
Moreover in these cases it is possible to obtain a general error locator with-
out computing a Grobner basis, but simply using the structure of the c%gg
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Remark4
The efficiency of the algorithm depends on two factors:

@ The computation of the associated Grobner basis can be quite beyond
present means already for medium-size codes;

@ Even if we compute a general error locator, it could be so dense that
its use would be impractical.

These two apparently different problems may have one common solution:

to identify our polynomials without computing any Grobner basis, but
using the “structure of the code”.
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Example

Example: Let us consider the Hermitian code C defined previously:
y2+y=x> overF,

with monomials L = {1, x,y,x?,xy}. C can correct up to t = 2 errors.
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Example

Example: Let us consider the Hermitian code C defined previously:
y2+y=x> overF,

with monomials L = {1, x,y,x?,xy}. C can correct up to t = 2 errors.
Let us consider the lex term-ordering with
e>e>y>X2>y1>X1>5>5>58>5>8
and the ideal
1S C Falsi, 52,53, 5, 5, X1, Y1, X2, 2, €1, €2].
The multidimensional general error locator polynomials for C:
Lei= xi° +xi(sisi + 51535, 4 sass + 257) +
55253 + S5535 + 5553352 + sfs§5251 + 535352512 + 5552 + 54s§sl2 + 545§sf +
545351 + 54sf + 53352251 + 532522512 + 535225% + 53522 + 5351
Lco= Y12 +y1+
xlsf@sf + xls4s32$13 + X154532 + X153522513 + X1S3522 + 553 +

22 32 3.2 3 32 3 2 2.2 2
55545352 + 555453 + S55355 + S45351 + 5353557 + 545351 + S4S5551 +

3 3 3.3 3.3 23 2 2
54535251 + S453525] + 545251 + S3S) + 5351 + 535,51 + S351 + S35
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Example

However these polynomials are by far not random and some direct
manipulations shows that actual

”'QC,ll/ = X12 + X1(SZ$1 + 54522sis + 54522 + 52512 + 55253) +
51%52 + 52251 +sa/s1

"Led' = yiPty1+x
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