INTRODUCTION TO GRÖBNER BASES

Patrick Fitzpatrick

University College Cork Ireland

S³Cm, 2–11 July 2008

Let $R = \mathbb{K}[x_1, \dots, x_n]$ where \mathbb{K} is a field. An **ideal** *I* in *R* is a subset such that

- 0 ∈ I
- $\forall f, g \in I$ we have that $f g \in I$.
- $\forall f \in I, \forall a \in R$ we have that $af \in I$.

Let $R = \mathbb{K}[x_1, \dots, x_n]$ where \mathbb{K} is a field. An **ideal** *I* in *R* is a subset such that

- 0 ∈ I
- $\forall f, g \in I$ we have that $f g \in I$.
- $\forall f \in I, \forall a \in R$ we have that $af \in I$.

Basic Property of R

Any ideal *I* of *R* is finitely generated, i.e., there exist $f_1, \ldots, f_r \in R$ such that

$$I = \langle f_1, \ldots, f_r \rangle = \{ \sum_{i=1}^r h_i f_i \mid h_i \in \mathbf{R} \}.$$

Problem 1: Ideal Membership

Given a polynomial *f* in *R* determine whether *f* is in *I* or not.

Problem 1: Ideal Membership

Given a polynomial *f* in *R* determine whether *f* is in *I* or not.

Problem 2

If $f \in I$, determine polynomials $u_1, \ldots, u_r \in R$ such that $u_1f_1 + \cdots + u_rf_r = f$.

Problem 1: Ideal Membership

Given a polynomial *f* in *R* determine whether *f* is in *I* or not.

Problem 2

If $f \in I$, determine polynomials $u_1, \ldots, u_r \in R$ such that $u_1f_1 + \cdots + u_rf_r = f$.

Problem 3

Determine a basis of R/I as \mathbb{K} -vector space.

Easy Case

If $R = \mathbb{K}[x]$ then R is a **principal ideal domain** (PID), which means that $I = \langle f_1, \ldots, f_r \rangle = \langle g = gcd(f_1, \ldots, f_r) \rangle$. Thus, to solve the ideal membership problem for given $f \in I$ we just divide f by g. If the remainder is 0 then $f \in I$ otherwise $f \notin I$.

Easy Case

If $R = \mathbb{K}[x]$ then R is a **principal ideal domain** (PID), which means that $I = \langle f_1, \ldots, f_r \rangle = \langle g = gcd(f_1, \ldots, f_r) \rangle$. Thus, to solve the ideal membership problem for given $f \in I$ we just divide f by g. If the remainder is 0 then $f \in I$ otherwise $f \notin I$.

General Case

R is not a PID. Consider $I = \langle xy - x, y + 1 \rangle$ and f = xy. It's not clear how to do "division" but naively dividing *f* first by xy - x leaves remainder *x* and dividing it first by y + 1 we obtain remainder -x. But note that

$$f = \frac{1}{2}(xy - x) + \frac{x}{2}(y + 1).$$

In the previous example there are two things not clear a priori:

- Why should we write xy x rather than -x + xy?
- How can we "divide" polynomials in several variables?

In the previous example there are two things not clear a priori:

- Why should we write xy x rather than -x + xy?
- How can we "divide" polynomials in several variables?

For the first question we need to introduce the notion of **term** order in the set of **terms** $\mathbb{T}^n = \{\mathbf{x}^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid \alpha \in \mathbb{Z}_{>0}^n\}.$

A term order < in \mathbb{T}^n is a total order satisfying:

- **1.** $1 < \mathbf{x}^{\alpha}$ for every $\mathbf{x}^{\alpha} \in \mathbb{T}^{n}$
- **2.** If $\mathbf{x}^{\alpha} < \mathbf{x}^{\beta}$ then $\mathbf{x}^{\alpha}\mathbf{x}^{\gamma} < \mathbf{x}^{\beta}\mathbf{x}^{\gamma}$ for every $\mathbf{x}^{\gamma} \in \mathbb{T}^{n}$.

Lexicographical order

$$\mathbf{x}^{\alpha} <_{lex} \mathbf{x}^{\beta} :\Leftrightarrow \exists 1 \leq i \leq n : \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$$

Lexicographical order

$$\mathbf{x}^{\alpha} <_{lex} \mathbf{x}^{\beta} :\Leftrightarrow \exists 1 \leq i \leq n : \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$$

Degree lexicographical order

$$\mathbf{x}^{\alpha} <_{deglex} \mathbf{x}^{\beta} :\Leftrightarrow \deg \mathbf{x}^{\alpha} < \deg \mathbf{x}^{\beta} \text{ or } \deg \mathbf{x}^{\alpha} = \deg \mathbf{x}^{\beta} \text{ and}$$

 $\exists 1 \leq i \leq n : \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$

Lexicographical order

$$\mathbf{x}^{\alpha} <_{lex} \mathbf{x}^{\beta} :\Leftrightarrow \exists 1 \leq i \leq n : \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$$

Degree lexicographical order

$$\mathbf{x}^{\alpha} <_{deglex} \mathbf{x}^{\beta} :\Leftrightarrow \deg \mathbf{x}^{\alpha} < \deg \mathbf{x}^{\beta} \text{ or } \deg \mathbf{x}^{\alpha} = \deg \mathbf{x}^{\beta} \text{ and}$$

 $\exists 1 \leq i \leq n : \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$

Degree reverse lexicographical order

 $\mathbf{X}^{\alpha} <_{degrevlex} \mathbf{X}^{\beta} :\Leftrightarrow \deg \mathbf{x}^{\alpha} < \deg \mathbf{x}^{\beta} \text{ or } \deg \mathbf{x}^{\alpha} = \deg \mathbf{x}^{\beta} \text{ and} \\ \exists 1 \leq i \leq n : \alpha_n = \beta_n, \dots, \alpha_{i+i} = \beta_{i+1}, \alpha_i > \beta_i.$

Let < be a term order and $f \in R$, $f \neq 0$. We may write f uniquely in the form

$$f = a_{\alpha} \mathbf{x}^{\alpha} + a_{\beta} \mathbf{x}^{\beta} + \dots + a_{\gamma} \mathbf{x}^{\gamma}, \ \alpha > \beta > \dots > \gamma.$$

then we denote,

1.
$$lt_{<}(f) = \mathbf{x}^{\alpha}$$
 = the leading term of f.

- **2.** $Im_{<}(f) = a_{\alpha} \mathbf{x}^{\alpha}$ = the leading monomial of f.
- **3.** $lc_{<}(f) = a_{\alpha}$ = the leading coefficient of f.

Notice that these definitions depend on the particular order <.

Given any order > in \mathbb{T}^n and an (ordered) sequence of polynomials $f_1, \ldots, f_s \in R$, we may write every $f \in R$ as

$$f = u_1 f_1 + \ldots + u_s f_s + r$$

where $u_i, r \in R$ and r is either zero or a linear combination of terms none of which is divisible by any element of $\{It_{<}(f_i)\}_{i=1}^{s}$.

Given any order > in \mathbb{T}^n and an (ordered) sequence of polynomials $f_1, \ldots, f_s \in R$, we may write every $f \in R$ as

 $f = u_1 f_1 + \ldots + u_s f_s + r$

where $u_i, r \in R$ and r is either zero or a linear combination of terms none of which is divisible by any element of $\{It_{\leq}(f_i)\}_{i=1}^{s}$.

As we saw earlier the remainder may depend on the order of the polynomials in the sequence i.e. the order in which the divisions are carried out. Also, $r \neq 0$ does not necessarily mean that $f \notin \langle f_1, \ldots, f_s \rangle$ (we would like this to be the case).

Given a term order < and an ideal *I* in *R*, we say that $\{g_1, \ldots, g_s\} \subset R$ is a **Gröbner basis** of *I* with respect to < if

$$\langle lt_{<}(g_1),\ldots,lt_{<}(g_s)\rangle = \langle lt_{<}(l)\rangle$$

where $lt_{<}(I) = \{lt_{<}(f) \mid f \in I\}$. In other words *G* is a Gröbner basis of *I* if for each $f \in I$ there is a $g \in G$ such that lt(g) divides lt(f).

Given a term order < and an ideal *I* in *R*, we say that $\{g_1, \ldots, g_s\} \subset R$ is a **Gröbner basis** of *I* with respect to < if

 $\langle \mathit{lt}_{<}(g_1),\ldots,\mathit{lt}_{<}(g_s)\rangle = \langle \mathit{lt}_{<}(\mathit{I})\rangle$

where $lt_{<}(I) = \{lt_{<}(f) \mid f \in I\}$. In other words *G* is a Gröbner basis of *I* if for each $f \in I$ there is a $g \in G$ such that lt(g) divides lt(f).

A Gröbner basis exists with respect to any term order. Each Gröbner basis of *I* is a generating set of *I*.

Answer to Problems 1 and 2

If $G = \{g_1, \ldots, g_s\}$ is a Gröbner basis of the ideal $I \subset R$ then the remainder on division of $f \in R$ by *G* is unique (independent of the order in which the divisions are carried out) and it is zero if and only if $f \in I$. We denote the remainder by $\overline{f}^G = r$.

Answer to Problems 1 and 2

If $G = \{g_1, \ldots, g_s\}$ is a Gröbner basis of the ideal $I \subset R$ then the remainder on division of $f \in R$ by *G* is unique (independent of the order in which the divisions are carried out) and it is zero if and only if $f \in I$. We denote the remainder by $\overline{f}^G = r$.

Answer to Problem 3

f may be written in a unique way as,

$$f = g + r$$
,

where $g \in I$ and no term of *r* is divisible by any term of $lt_{<}(g_i)$, $1 \leq i \leq s$. The set of terms each of which is less than every element of $lt_{<}(g_i)$ thus forms a basis of R/I as \mathbb{K} -vector space.

The main tool for computing Gröbner Bases are the *S*-polynomials.

For any two non-zero polynomials $f, g \in R$ and a monomial order <, the *S*-polynomial of *f* and *g* is,

$$S(f,g) = \frac{\mathbf{x}^{\gamma}}{lm_{<}(f)}f - \frac{\mathbf{x}^{\gamma}}{lm_{<}(g)}g$$

where $\mathbf{x}^{\gamma} = lcm\{lt_{<}(f), lt_{<}(g)\}.$

The main tool for computing Gröbner Bases are the *S*-polynomials.

For any two non-zero polynomials $f, g \in R$ and a monomial order <, the *S*-polynomial of *f* and *g* is,

$$S(f,g) = rac{\mathbf{x}^{\gamma}}{Im_{<}(f)}f - rac{\mathbf{x}^{\gamma}}{Im_{<}(g)}g$$

where $\mathbf{x}^{\gamma} = lcm\{lt_{<}(f), lt_{<}(g)\}.$

Buchberger's Theorem

 $\textit{G} = \{\textit{g}_1, \ldots, \textit{g}_{\textit{s}}\}$ is a Gröbner basis of I with respect to < if and only if

$$\overline{S(g_i,g_j)}^G = 0, 1 \leq i,j \leq s, i \neq j.$$

Input: $I = \langle F \rangle := \langle \{f_1, \dots, f_s\} \rangle$ and a term order <. **Output**: *G* a Gröbner basis of *I* with respect to <.

1.
$$G = F, G' = \{\}.$$

2. while $G \neq G'$ do

3.
$$G' = G$$

4. for each pair $\{p,q\} \subset G'$ do

5.
$$r = S(p, q)$$
 reduced by G'

- 6. if $r \neq 0$ then
- **7.** $G = G \cup \{r\}$
- 8. end if
- 9. end for
- 10. end while

Minimal Gröbner bases

A Gröbner basis G is minimal if

1.
$$\forall \ g \in G, \ lc_{<}(g) = 1.$$

2. $\forall g \in G, lt_{<}(g) \notin \langle lt_{<}(G \setminus \{g\}) \rangle.$

Minimal Gröbner bases

A Gröbner basis G is minimal if

1.
$$\forall \ g \in G, \ lc_{<}(g) = 1.$$

2. $\forall g \in G, lt_{<}(g) \notin \langle lt_{<}(G \setminus \{g\}) \rangle.$

Reduced Gröbner bases

A Gröbner basis G is reduced if

1.
$$\forall$$
 g ∈ *G*, *lc*_<(*g*) = 1.

2. $\forall g \in G$, no term of g is in $\langle It_{<}(G \setminus \{g\}) \rangle$.

Minimal Gröbner bases

A Gröbner basis G is minimal if

1.
$$\forall \ g \in G, \ lc_{<}(g) = 1.$$

2. $\forall g \in G, lt_{<}(g) \notin \langle lt_{<}(G \setminus \{g\}) \rangle.$

Reduced Gröbner bases

A Gröbner basis G is reduced if

1.
$$\forall$$
 g ∈ *G*, *lc*_<(*g*) = 1.

2. $\forall g \in G$, no term of g is in $\langle It_{<}(G \setminus \{g\}) \rangle$.

Theorem

For any term order there exists a unique reduced Gröbner basis.

Let $A = \mathbb{K}[x_1, \ldots, x_n]^s = R^s$ so elements of A are vectors of polynomials with vector addition and subtraction and multiplication by scalars $f(x) \in R$. A **submodule** M in A is a subset such that

- $0 \in M$.
- $\forall f, g \in M$ we have that $f g \in M$.
- $\forall f \in M, \forall a \in R$ we have that $af \in M$.

Each submodule of A is finitely generated.

Let $A = \mathbb{K}[x_1, \ldots, x_n]^s = R^s$ so elements of A are vectors of polynomials with vector addition and subtraction and multiplication by scalars $f(x) \in R$. A **submodule** M in A is a subset such that

- $0 \in M$.
- $\forall f, g \in M$ we have that $f g \in M$.
- $\forall f \in M, \forall a \in R$ we have that $af \in M$.

Each submodule of A is finitely generated.

Define terms in *A* as $X\mathbf{e}_i$ where *X* is a term in *R* and \mathbf{e}_i is a standard basis vector. Typical term order is *position over term* (*POT*) order. We start with a term order < in *R* and then define $<_{POT}$ by: $X\mathbf{e}_i <_{POT} Y\mathbf{e}_j$ if i < j or if i = j and X < Y.

Define $lcm(X\mathbf{e}_i, Y\mathbf{e}_j) = 0$ if $i \neq j$ and $lcm(X, Y)\mathbf{e}_i$ if i = j. Then can construct Gröbner bases as usual.