INTRODUCTION TO GRÖBNER BASES

Patrick Fitzpatrick

University College Cork
Ireland
$S^{3} \mathrm{Cm}, 2-11$ July 2008

Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ where \mathbb{K} is a field.
An ideal $/$ in R is a subset such that

- $0 \in I$
- $\forall f, g \in I$ we have that $f-g \in I$.
- $\forall f \in I, \forall a \in R$ we have that $a f \in I$.

Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ where \mathbb{K} is a field.
An ideal $/$ in R is a subset such that

- $0 \in I$
- $\forall f, g \in I$ we have that $f-g \in I$.
- $\forall f \in I, \forall a \in R$ we have that $a f \in I$.

Basic Property of R

Any ideal $/$ of R is finitely generated, i.e., there exist $f_{1}, \ldots, f_{r} \in R$ such that

$$
I=\left\langle f_{1}, \ldots, f_{r}\right\rangle=\left\{\sum_{i=1}^{r} h_{i} f_{i} \mid h_{i} \in R\right\} .
$$

Motivating Problems

Problem 1: Ideal Membership

Given a polynomial f in R determine whether f is in I or not.

Motivating Problems

Problem 1: Ideal Membership

Given a polynomial f in R determine whether f is in / or not.

Problem 2

If $f \in I$, determine polynomials $u_{1}, \ldots, u_{r} \in R$ such that $u_{1} f_{1}+\cdots+u_{r} f_{r}=f$.

Motivating Problems

Problem 1: Ideal Membership

Given a polynomial f in R determine whether f is in I or not.

Problem 2

If $f \in I$, determine polynomials $u_{1}, \ldots, u_{r} \in R$ such that $u_{1} f_{1}+\cdots+u_{r} f_{r}=f$.

Problem 3

Determine a basis of R / I as \mathbb{K}-vector space.

Easy Case

If $R=\mathbb{K}[x]$ then R is a principal ideal domain (PID), which means that $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle=\left\langle g=\operatorname{gcd}\left(f_{1}, \ldots, f_{r}\right)\right\rangle$. Thus, to solve the ideal membership problem for given $f \in I$ we just divide f by g. If the remainder is 0 then $f \in I$ otherwise $f \notin I$.

Easy Case

If $R=\mathbb{K}[x]$ then R is a principal ideal domain (PID), which means that $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle=\left\langle g=\operatorname{gcd}\left(f_{1}, \ldots, f_{r}\right)\right\rangle$. Thus, to solve the ideal membership problem for given $f \in I$ we just divide f by g. If the remainder is 0 then $f \in I$ otherwise $f \notin I$.

General Case

R is not a PID. Consider $I=\langle x y-x, y+1\rangle$ and $f=x y$. It's not clear how to do "division" but naively dividing f first by $x y-x$ leaves remainder x and dividing it first by $y+1$ we obtain remainder $-x$. But note that

$$
f=\frac{1}{2}(x y-x)+\frac{x}{2}(y+1)
$$

In the previous example there are two things not clear a priori:

- Why should we write $x y-x$ rather than $-x+x y$?
- How can we "divide" polynomials in several variables?

In the previous example there are two things not clear a priori:

- Why should we write $x y-x$ rather than $-x+x y$?
- How can we "divide" polynomials in several variables?

For the first question we need to introduce the notion of term order in the set of terms $\mathbb{T}^{n}=\left\{\mathbf{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha \in \mathbb{Z}_{\geq 0}^{n}\right\}$.

A term order $<$ in \mathbb{T}^{n} is a total order satisfying:

1. $1<\mathbf{x}^{\alpha}$ for every $\mathbf{x}^{\alpha} \in \mathbb{T}^{n}$
2. If $\mathbf{x}^{\alpha}<\mathbf{x}^{\beta}$ then $\mathbf{x}^{\alpha} \mathbf{x}^{\gamma}<\mathbf{x}^{\beta} \mathbf{x}^{\gamma}$ for every $\mathbf{x}^{\gamma} \in \mathbb{T}^{n}$.

Most important orders

We define the (total) degree deg (\mathbf{x}^{α}) of the term \mathbf{x}^{α} as the sum $\alpha_{1}+\cdots+\alpha_{n}$.

Most important orders

We define the (total) degree deg (\mathbf{x}^{α}) of the term \mathbf{x}^{α} as the sum $\alpha_{1}+\cdots+\alpha_{n}$.

Lexicographical order
$\mathbf{x}^{\alpha}<_{\text {lex }} \mathbf{x}^{\beta}: \Leftrightarrow \exists 1 \leq i \leq n: \alpha_{1}=\beta_{1}, \ldots, \alpha_{i-1}=\beta_{i-1}, \alpha_{i}<\beta_{i}$.

Most important orders

We define the (total) degree deg (\mathbf{x}^{α}) of the term \mathbf{x}^{α} as the sum $\alpha_{1}+\cdots+\alpha_{n}$.

Lexicographical order

$$
\mathbf{x}^{\alpha}<_{\operatorname{lex}} \mathbf{x}^{\beta}: \Leftrightarrow \exists 1 \leq i \leq n: \alpha_{1}=\beta_{1}, \ldots, \alpha_{i-1}=\beta_{i-1}, \alpha_{i}<\beta_{i} .
$$

Degree lexicographical order

$\mathbf{x}^{\alpha}<_{\text {deglex }} \mathbf{x}^{\beta}: \Leftrightarrow \operatorname{deg} \mathbf{x}^{\alpha}<\operatorname{deg} \mathbf{x}^{\beta}$ or $\operatorname{deg} \mathbf{x}^{\alpha}=\operatorname{deg} \mathbf{x}^{\beta}$ and
$\exists 1 \leq i \leq n: \alpha_{1}=\beta_{1}, \ldots, \alpha_{i-1}=\beta_{i-1}, \alpha_{i}<\beta_{i}$.

Most important orders

We define the (total) degree deg $\left(\mathbf{x}^{\alpha}\right)$ of the term \mathbf{x}^{α} as the sum $\alpha_{1}+\cdots+\alpha_{n}$.

Lexicographical order

$$
\mathbf{x}^{\alpha}<_{l e x} \mathbf{x}^{\beta}: \Leftrightarrow \exists 1 \leq i \leq n: \alpha_{1}=\beta_{1}, \ldots, \alpha_{i-1}=\beta_{i-1}, \alpha_{i}<\beta_{i} .
$$

Degree lexicographical order

$$
\begin{aligned}
& \mathbf{x}^{\alpha}<\text { deglex } \mathbf{x}^{\beta}: \Leftrightarrow \operatorname{deg} \mathbf{x}^{\alpha}<\operatorname{deg} \mathbf{x}^{\beta} \text { or } \operatorname{deg} \mathbf{x}^{\alpha}=\operatorname{deg} \mathbf{x}^{\beta} \text { and } \\
& \exists 1 \leq i \leq n: \alpha_{1}=\beta_{1}, \ldots, \alpha_{i-1}=\beta_{i-1}, \alpha_{i}<\beta_{i} .
\end{aligned}
$$

Degree reverse lexicographical order

$$
\begin{aligned}
& \mathbf{x}^{\alpha}<\text { degrevlex } \mathbf{x}^{\beta}: \Leftrightarrow \operatorname{deg} \mathbf{x}^{\alpha}<\operatorname{deg} \mathbf{x}^{\beta} \text { or } \operatorname{deg} \mathbf{x}^{\alpha}=\operatorname{deg} \mathbf{x}^{\beta} \text { and } \\
& \exists 1 \leq i \leq n: \alpha_{n}=\beta_{n}, \ldots, \alpha_{i+i}=\beta_{i+1}, \alpha_{i}>\beta_{i} .
\end{aligned}
$$

Let $<$ be a term order and $f \in R, f \neq 0$. We may write f uniquely in the form

$$
f=a_{\alpha} \mathbf{x}^{\alpha}+a_{\beta} \mathbf{x}^{\beta}+\cdots+a_{\gamma} \mathbf{x}^{\gamma}, \alpha>\beta>\cdots>\gamma
$$

then we denote,

1. $I t_{<}(f)=\mathbf{x}^{\alpha}=$ the leading term of f.
2. $I m_{<}(f)=a_{\alpha} \mathbf{x}^{\alpha}=$ the leading monomial of f.
3. $l c_{<}(f)=a_{\alpha}=$ the leading coefficient of f.

Notice that these definitions depend on the particular order $<$.

Division in R

Given any order $>$ in \mathbb{T}^{n} and an (ordered) sequence of polynomials $f_{1}, \ldots, f_{s} \in R$, we may write every $f \in R$ as

$$
f=u_{1} f_{1}+\ldots+u_{s} f_{s}+r
$$

where $u_{i}, r \in R$ and r is either zero or a linear combination of terms none of which is divisible by any element of $\left\{I_{<}\left(f_{i}\right)\right\}_{i=1}^{s}$.

Division in R

Given any order $>$ in \mathbb{T}^{n} and an (ordered) sequence of polynomials $f_{1}, \ldots, f_{s} \in R$, we may write every $f \in R$ as

$$
f=u_{1} f_{1}+\ldots+u_{s} f_{s}+r
$$

where $u_{i}, r \in R$ and r is either zero or a linear combination of terms none of which is divisible by any element of $\left\{I t_{<}\left(f_{i}\right)\right\}_{i=1}^{s}$.

As we saw earlier the remainder may depend on the order of the polynomials in the sequence i.e. the order in which the divisions are carried out. Also, $r \neq 0$ does not necessarily mean that $f \notin\left\langle f_{1}, \ldots, f_{s}\right\rangle$ (we would like this to be the case).

Gröbner bases

Given a term order < and an ideal I in R, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset R$ is a Gröbner basis of $/$ with respect to $<$ if

$$
\left\langle I t_{<}\left(g_{1}\right), \ldots, I t_{<}\left(g_{s}\right)\right\rangle=\left\langle l t_{<}(I)\right\rangle
$$

where $I t_{<}(I)=\left\{I t_{<}(f) \mid f \in I\right\}$. In other words G is a Gröbner basis of I if for each $f \in I$ there is a $g \in G$ such that $I t(g)$ divides $\operatorname{lt}(f)$.

Gröbner bases

Given a term order < and an ideal I in R, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset R$ is a Gröbner basis of $/$ with respect to $<$ if

$$
\left\langle I t_{<}\left(g_{1}\right), \ldots, I t_{<}\left(g_{s}\right)\right\rangle=\left\langle I t_{<}(I)\right\rangle
$$

where $I t_{<}(I)=\left\{I t_{<}(f) \mid f \in I\right\}$. In other words G is a Gröbner basis of I if for each $f \in I$ there is a $g \in G$ such that $I t(g)$ divides $\operatorname{lt}(f)$.

A Gröbner basis exists with respect to any term order. Each Gröbner basis of I is a generating set of I.

Answer to Problems 1 and 2

If $G=\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis of the ideal $I \subset R$ then the remainder on division of $f \in R$ by G is unique (independent of the order in which the divisions are carried out) and it is zero if and only if $f \in I$. We denote the remainder by $\bar{f}^{G}=r$.

Answer to Problems 1 and 2

If $G=\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis of the ideal $I \subset R$ then the remainder on division of $f \in R$ by G is unique (independent of the order in which the divisions are carried out) and it is zero if and only if $f \in I$. We denote the remainder by $\bar{f}^{G}=r$.

Answer to Problem 3

f may be written in a unique way as,

$$
f=g+r
$$

where $g \in I$ and no term of r is divisible by any term of $I t_{<}\left(g_{i}\right)$, $1 \leq i \leq s$. The set of terms each of which is less than every element of $I t_{<}\left(g_{i}\right)$ thus forms a basis of R / I as \mathbb{K}-vector space.

Computing Gröbner bases

The main tool for computing Gröbner Bases are the S-polynomials.

For any two non-zero polynomials $f, g \in R$ and a monomial order $<$, the S-polynomial of f and g is,

$$
S(f, g)=\frac{\mathbf{x}^{\gamma}}{\operatorname{lm}(f)} f-\frac{\mathbf{x}^{\gamma}}{\operatorname{lm}(g)} g
$$

where $\mathbf{x}^{\gamma}=\operatorname{lcm}\left\{I t_{<}(f), I t_{<}(g)\right\}$.

Computing Gröbner bases

The main tool for computing Gröbner Bases are the S-polynomials.

For any two non-zero polynomials $f, g \in R$ and a monomial order $<$, the S-polynomial of f and g is,

$$
S(f, g)=\frac{\mathbf{x}^{\gamma}}{\operatorname{lm}(f)} f-\frac{\mathbf{x}^{\gamma}}{\operatorname{lm}(g)} g
$$

where $\mathbf{x}^{\gamma}=\operatorname{lcm}\left\{I t_{<}(f), I t_{<}(g)\right\}$.

Buchberger's Theorem

$G=\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis of I with respect to $<$ if and only if

$$
{\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0,1 \leq i, j \leq s, i \neq j
$$

Buchberger's Algorithm

Input: $I=\langle F\rangle:=\left\langle\left\{f_{1}, \ldots, f_{s}\right\}\right\rangle$ and a term order $<$.
Output: G a Gröbner basis of $/$ with respect to $<$.

1. $G=F, G^{\prime}=\{ \}$.
2. while $G \neq G^{\prime}$ do
3. $G^{\prime}=G$
4. for each pair $\{p, q\} \subset G^{\prime}$ do
5. $r=S(p, q)$ reduced by G^{\prime}
6. if $r \neq 0$ then
7. $G=G \cup\{r\}$
8. end if
9. end for
10. end while

Minimal Gröbner bases

A Gröbner basis G is minimal if

1. $\forall g \in G, I c_{<}(g)=1$.
2. $\forall g \in G, I t_{<}(g) \notin\left\langle I t_{<}(G \backslash\{g\})\right\rangle$.

Minimal Gröbner bases

A Gröbner basis G is minimal if

1. $\forall g \in G, I c_{<}(g)=1$.
2. $\forall g \in G$, $t_{<}(g) \notin\left\langle t_{<}(G \backslash\{g\})\right\rangle$.

Reduced Gröbner bases

A Gröbner basis G is reduced if

1. $\forall g \in G, l c_{<}(g)=1$.
2. $\forall g \in G$, no term of g is in $\left\langle\mid t_{<}(G \backslash\{g\})\right\rangle$.

Minimal Gröbner bases

A Gröbner basis G is minimal if

1. $\forall g \in G, I c_{<}(g)=1$.
2. $\forall g \in G, I t_{<}(g) \notin\left\langle t_{<}(G \backslash\{g\})\right\rangle$.

Reduced Gröbner bases

A Gröbner basis G is reduced if

1. $\forall g \in G, l c_{<}(g)=1$.
2. $\forall g \in G$, no term of g is in $\left\langle t_{<}(G \backslash\{g\})\right\rangle$.

Theorem

For any term order there exists a unique reduced Gröbner basis.

Gröbner bases for modules

Let $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{s}=R^{s}$ so elements of A are vectors of polynomials with vector addition and subtraction and multiplication by scalars $f(x) \in R$. A submodule M in A is a subset such that

- $0 \in M$.
- $\forall f, g \in M$ we have that $f-g \in M$.
- $\forall f \in M, \forall a \in R$ we have that $a f \in M$.

Each submodule of A is finitely generated.

Gröbner bases for modules

Let $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{s}=R^{s}$ so elements of A are vectors of polynomials with vector addition and subtraction and multiplication by scalars $f(x) \in R$. A submodule M in A is a subset such that

- $0 \in M$.
- $\forall f, g \in M$ we have that $f-g \in M$.
- $\forall f \in M, \forall a \in R$ we have that $a f \in M$.

Each submodule of A is finitely generated.

Define terms in A as $X \mathbf{e}_{i}$ where X is a term in R and \mathbf{e}_{i} is a standard basis vector. Typical term order is position over term (POT) order. We start with a term order $<$ in R and then define $<_{\text {РОт }}$ by: $X \mathbf{e}_{i}<_{\text {Рот }} Y \mathbf{e}_{j}$ if $i<j$ or if $i=j$ and $X<Y$.

Define $\operatorname{Icm}\left(X \mathbf{e}_{i}, Y \mathbf{e}_{j}\right)=0$ if $i \neq j$ and $\operatorname{Icm}(X, Y) \mathbf{e}_{i}$ if $i=j$. Then can construct Gröbner bases as usual.

