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Let R = K[x1, . . . , xn] where K is a field.
An ideal I in R is a subset such that

0 ∈ I
∀f ,g ∈ I we have that f − g ∈ I.
∀f ∈ I, ∀a ∈ R we have that af ∈ I.

Basic Property of R
Any ideal I of R is finitely generated, i.e., there exist
f1, . . . , fr ∈ R such that

I = 〈f1, . . . , fr 〉 = {
r∑

i=1

hi fi | hi ∈ R}.
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Motivating Problems

Problem 1: Ideal Membership
Given a polynomial f in R determine whether f is in I or not.

Problem 2
If f ∈ I, determine polynomials u1, . . . ,ur ∈ R such that
u1f1 + · · ·+ ur fr = f .

Problem 3
Determine a basis of R/I as K-vector space.
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Easy Case
If R = K[x ] then R is a principal ideal domain (PID), which
means that I = 〈f1, . . . , fr 〉 = 〈g = gcd(f1, . . . , fr )〉. Thus, to
solve the ideal membership problem for given f ∈ I we just
divide f by g. If the remainder is 0 then f ∈ I otherwise f /∈ I.

General Case
R is not a PID. Consider I = 〈xy − x , y + 1〉 and f = xy . It’s not
clear how to do "division" but naively dividing f first by xy − x
leaves remainder x and dividing it first by y + 1 we obtain
remainder −x . But note that

f =
1
2
(xy − x) +

x
2

(y + 1).
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In the previous example there are two things not clear a priori:
Why should we write xy − x rather than −x + xy?
How can we "divide" polynomials in several variables?

For the first question we need to introduce the notion of term
order in the set of terms Tn = {xα = xα1

1 · · · x
αn
n | α ∈ Zn

≥0}.

A term order < in Tn is a total order satisfying:
1. 1 < xα for every xα ∈ Tn

2. If xα < xβ then xαxγ < xβxγ for every xγ ∈ Tn.
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Most important orders

We define the (total) degree deg (xα) of the term xα as the
sum α1 + · · ·+ αn.

Lexicographical order

xα <lex xβ :⇔ ∃1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi < βi .

Degree lexicographical order

xα <deglex xβ :⇔ deg xα <deg xβ or deg xα =deg xβ and
∃1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi < βi .

Degree reverse lexicographical order

xα <degrevlex xβ :⇔ deg xα <deg xβ or deg xα =deg xβ and
∃1 ≤ i ≤ n : αn = βn, . . . , αi+i = βi+1, αi > βi .
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Let < be a term order and f ∈ R, f 6= 0. We may write f
uniquely in the form

f = aαxα + aβxβ + · · ·+ aγxγ , α > β > · · · > γ.

then we denote,
1. lt<(f ) = xα = the leading term of f.
2. lm<(f ) = aαxα = the leading monomial of f.
3. lc<(f ) = aα = the leading coefficient of f.

Notice that these definitions depend on the particular order <.



Division inR

Given any order > in Tn and an (ordered) sequence of
polynomials f1, . . . , fs ∈ R, we may write every f ∈ R as

f = u1f1 + . . .+ usfs + r

where ui , r ∈ R and r is either zero or a linear combination of
terms none of which is divisible by any element of {lt<(fi)}si=1.

As we saw earlier the remainder may depend on the order of
the polynomials in the sequence i.e. the order in which the
divisions are carried out. Also, r 6= 0 does not necessarily
mean that f /∈ 〈f1, . . . , fs〉 (we would like this to be the case).
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{g1, . . . ,gs} ⊂ R is a Gröbner basis of I with respect to < if
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where lt<(I) = {lt<(f ) | f ∈ I}. In other words G is a Gröbner
basis of I if for each f ∈ I there is a g ∈ G such that lt(g)
divides lt(f ).

A Gröbner basis exists with respect to any term order. Each
Gröbner basis of I is a generating set of I.
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Answer to Problems 1 and 2
If G = {g1, . . . ,gs} is a Gröbner basis of the ideal I ⊂ R then
the remainder on division of f ∈ R by G is unique (independent
of the order in which the divisions are carried out) and it is zero
if and only if f ∈ I. We denote the remainder by f

G
= r .

Answer to Problem 3
f may be written in a unique way as,

f = g + r ,

where g ∈ I and no term of r is divisible by any term of lt<(gi),
1 ≤ i ≤ s. The set of terms each of which is less than every
element of lt<(gi) thus forms a basis of R/I as K-vector space.



Answer to Problems 1 and 2
If G = {g1, . . . ,gs} is a Gröbner basis of the ideal I ⊂ R then
the remainder on division of f ∈ R by G is unique (independent
of the order in which the divisions are carried out) and it is zero
if and only if f ∈ I. We denote the remainder by f

G
= r .

Answer to Problem 3
f may be written in a unique way as,

f = g + r ,

where g ∈ I and no term of r is divisible by any term of lt<(gi),
1 ≤ i ≤ s. The set of terms each of which is less than every
element of lt<(gi) thus forms a basis of R/I as K-vector space.



Computing Gröbner bases

The main tool for computing Gröbner Bases are the
S-polynomials.

For any two non-zero polynomials f ,g ∈ R and a monomial
order <, the S-polynomial of f and g is,

S(f ,g) =
xγ

lm<(f )
f − xγ

lm<(g)
g

where xγ = lcm{lt<(f ), lt<(g)}.

Buchberger’s Theorem
G = {g1, . . . ,gs} is a Gröbner basis of I with respect to < if and
only if

S(gi ,gj)
G

= 0,1 ≤ i , j ≤ s, i 6= j .
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Buchberger’s Algorithm

Input: I = 〈F 〉 := 〈{f1, . . . , fs}〉 and a term order <.
Output: G a Gröbner basis of I with respect to <.

1. G = F , G′ = {}.
2. while G 6= G′ do
3. G′ = G
4. for each pair {p,q} ⊂ G′ do
5. r = S(p,q) reduced by G′

6. if r 6= 0 then
7. G = G ∪ {r}
8. end if
9. end for

10. end while



Minimal Gröbner bases
A Gröbner basis G is minimal if

1. ∀ g ∈ G, lc<(g) = 1.
2. ∀ g ∈ G, lt<(g) /∈ 〈lt<(G \ {g})〉.

Reduced Gröbner bases
A Gröbner basis G is reduced if

1. ∀ g ∈ G, lc<(g) = 1.
2. ∀ g ∈ G, no term of g is in 〈lt<(G \ {g})〉.

Theorem
For any term order there exists a unique reduced Gröbner
basis.
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Gröbner bases for modules

Let A = K[x1, . . . , xn]
s = Rs so elements of A are vectors of

polynomials with vector addition and subtraction and
multiplication by scalars f (x) ∈ R. A submodule M in A is a
subset such that

0 ∈ M.

∀f ,g ∈ M we have that f − g ∈ M.
∀f ∈ M, ∀a ∈ R we have that af ∈ M.

Each submodule of A is finitely generated.

Define terms in A as Xei where X is a term in R and ei is a
standard basis vector. Typical term order is position over term
(POT) order. We start with a term order < in R and then define
<POT by: Xei <POT Yej if i < j or if i = j and X < Y .
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Define lcm(Xei ,Y ej) = 0 if i 6= j and lcm(X ,Y )ei if i = j . Then
can construct Gröbner bases as usual.


