INTRODUCTION TO GROBNER BASES

Patrick Fitzpatrick

University College Cork
Ireland

S3Cm, 2-11 July 2008



Let R =K[xq,..., xn] where K is a field.
An ideal /in R is a subset such that
@e0c/

@ Vf,ge lwehavethatf—ge l.
@ Vfe l,Vae Rwe have that af € I.
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Basic Property of R

Any ideal / of R is finitely generated, i.e., there exist
fi,...,fr € R such that

r
I=(f,....6) ={>_hifi| hj € R}.
i—1




Motivating Problems

Problem 1: Ideal Membership
Given a polynomial f in R determine whether f is in / or not.
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Motivating Problems

Problem 1: Ideal Membership
Given a polynomial f in R determine whether f is in / or not.

Problem 2

If f € I, determine polynomials uy, ..., ur € R such that

Problem 3
Determine a basis of R/I as K-vector space.




If R = K[x] then R is a principal ideal domain (PID), which
means that | = (fi,...,f) = (g = gcd(fy,...,f;)). Thus, to
solve the ideal membership problem for given f € | we just
divide f by g. If the remainder is 0 then f € [ otherwise f ¢ I.




Easy Case

If R = K[x] then R is a principal ideal domain (PID), which
means that | = (fi,...,f) = (g = gcd(fy,...,f;)). Thus, to
solve the ideal membership problem for given f € | we just
divide f by g. If the remainder is 0 then f € [ otherwise f ¢ I.

General Case

R is not a PID. Consider | = (xy — x,y + 1) and f = xy. It's not
clear how to do "division" but naively dividing f first by xy — x
leaves remainder x and dividing it first by y + 1 we obtain
remainder —x. But note that

1 X
fzé(xy—x)+§(y+1).




In the previous example there are two things not clear a priori:
@ Why should we write xy — x rather than —x + xy?
@ How can we "divide" polynomials in several variables?




In the previous example there are two things not clear a priori:
@ Why should we write xy — x rather than —x + xy?
@ How can we "divide" polynomials in several variables?

For the first question we need to introduce the notion of term
order in the set of terms T" = {x* = x{"" --- x3" | a € ZZ}.

A term order < in T" is a total order satisfying:
1. 1 < x* for every x* € T"
2. If x* < x% then x*x? < x7x7 for every x € T".
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We define the (total) degree deg (x“) of the term x* as the
sum aq + -+ - + ap.
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Most important orders

We define the (total) degree deg (x“) of the term x* as the
sum aq + -+ - + ap.

Lexicographical order

X< XP oI <i<niar=B1,...,0i 1= Bi1,0; < Bi.

Degree lexicographical order

X% <degiex X &> degx® <deg x” or degx* =deg x” and
N <i<n:iag=p01,...,0i-1 = Bi—1,; < .

Degree reverse lexicographical order

X% <degreviex X° :< degx* <degx” or degx® =degx’ and
N <i<n:ian=Pn.. ., aipi = Biy, 0 > B




Let < be atermorderand f € R, f # 0. We may write f
uniquely in the form

f=ax®+apx’+ - +ax,a>8> - >n.

then we denote,
1. lt-(f) = x* = the leading term of f.
2. Im(f) = a,x* = the leading monomial of f.
3. le<(f) = a, = the leading coefficient of f.
Notice that these definitions depend on the particular order <.




Division inR

Given any order > in T" and an (ordered) sequence of
polynomials fi, ..., fs € R, we may write every f € R as

where u;, r € R and r is either zero or a linear combination of
terms none of which is divisible by any element of {/{-(f;)}?_,.




Division inR

Given any order > in T" and an (ordered) sequence of
polynomials fi, ..., fs € R, we may write every f € R as

f=uwfi+...+usfs+r

where uj, r € R and r is either zero or a linear combination of
terms none of which is divisible by any element of {/{-(f;)}?_,.

As we saw earlier the remainder may depend on the order of
the polynomials in the sequence i.e. the order in which the
divisions are carried out. Also, r # 0 does not necessarily
mean that f ¢ (f;,...,fs) (we would like this to be the case).




Grobner bases

Given a term order < and an ideal / in R, we say that
{91,...,9s} C Ris a Grobner basis of / with respect to < if

(lt<(g1), - -, 1t<(gs)) = {t<(1))

where lt-(I) = {It-(f) | f € I}. In other words G is a Grébner
basis of /if for each f € I there is a g € G such that /t(g)
divides /t(f).




Grobner bases

Given a term order < and an ideal / in R, we say that
{91,...,9s} C Ris a Grobner basis of / with respect to < if

(lt<(g1), - -, 1t<(gs)) = {t<(1))

where lt-(I) = {It-(f) | f € I}. In other words G is a Grébner
basis of /if for each f € I there is a g € G such that /t(g)
divides /t(f).

A Grébner basis exists with respect to any term order. Each
Grébner basis of / is a generating set of /.




Answer to Problems 1 and 2

If G={91,...,9s} is a Grébner basis of the ideal / C R then
the remainder on division of f € R by G is unique (independent
of the order in which the divisions are carried out) and it is zero

if and only if f € I. We denote the remainder by € =r




Answer to Problems 1 and 2

If G={91,...,9s} is a Grébner basis of the ideal / C R then
the remainder on division of f € R by G is unique (independent
of the order in which the divisions are carried out) and it is zero

if and only if f € I. We denote the remainder by €=

Answer to Problem 3
f may be written in a unique way as,

f=g+r,

where g € [ and no term of r is divisible by any term of /f-(g;),
1 < i< s. The set of terms each of which is less than every
element of /t-(g;) thus forms a basis of R// as K-vector space.




Computing Grobner bases

The main tool for computing Grébner Bases are the
S-polynomials.

For any two non-zero polynomials f,g € R and a monomial
order <, the S-polynomial of f and g is,

S(f U S
9=l ® ~ m(@)?

where x? = lem{lt-(f), lt-(g)}.




Computing Grobner bases

The main tool for computing Grébner Bases are the
S-polynomials.

For any two non-zero polynomials f,g € R and a monomial
order <, the S-polynomial of f and g is,

S(f X'y X
(.9) = Im_(f) - Im<(g)g

where x? = lem{lt-(f), lt-(g)}.

Buchberger’s Theorem

G=1{g1,...,9s} is a Grobner basis of / with respect to < if and
only if

———G .. . .
S(glvgj) =0,1< l,] < S)I#.I'




Buchberger’s Algorithm

Input: / = (F) := ({f1,...,fs}) and a term order <.
Output: G a Grobner basis of / with respect to <.

.G=F,G=1{}.
while G # G’ do
G=G
for each pair {p,q} c G’ do
r = S(p, q) reduced by G'
if r # 0 then
G=GuU{r}
end if
end for
. end while

—r

SoO®NO U AL



Minimal Grobner bases
A Grobner basis G is minimal if

1. Vge G, le<(g) =1.
2. Vg e G, lt(g) ¢ (t(G\ {9}))-
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Minimal Grébner bases

A Grébner basis G is minimal if
1.VgeG, le(g)=1.
2. Vg e G, lt(g) ¢ (t-(G\ {9}))-

Reduced Grobner bases
A Grobner basis G is reduced if

1. Vge G, le<(g) =1.
2.Vge G,notermofgisin (t-(G\ {g}))-

For any term order there exists a unique reduced Grébner
basis.




Grobner bases for modules

Let A= Kl[xq,...,Xxn]° = R® so elements of A are vectors of
polynomials with vector addition and subtraction and
multiplication by scalars f(x) € R. A submodule M in Ais a
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@ Vf e M, Va e R we have that af € M.
Each submodule of A is finitely generated.
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Let A= Kl[xq,...,Xxn]° = R® so elements of A are vectors of
polynomials with vector addition and subtraction and
multiplication by scalars f(x) € R. A submodule M in Ais a
subset such that

@ 0eM.

@ Vf,g € Mwe have that f — g e M.

@ Vf e M, Va e R we have that af € M.
Each submodule of A is finitely generated.

Define terms in A as Xe; where X isatermin R and e; is a
standard basis vector. Typical term order is position over term
(POT) order. We start with a term order < in R and then define
<por by: Xe; <por Yejifi <jorifi=jand X < Y.




Define Icm(Xe;, Ye;) = 0if i # jand lcm(X, Y)e; if i = j. Then
can construct Grobner bases as usual.




