INTRODUCTION TO LINEAR CODES

Patrick Fitzpatrick

University College Cork

S³Cm, 2–11 July 2008

Let p be a prime number, $q = p^r$ and \mathbb{F}_q a finite field with q elements.

- \mathbb{F}_q is called the **alphabet**
- An **information sequence** is a finite sequence $m = x_1 x_2 \cdots x_k$ where $x_i \in \mathbb{F}_q$.
- Each information sequence is encoded as the image of an injective map

i : {sequences of length k} \rightarrow {sequences of length n}

• The set C = Im(i) is called a (block) code. The elements of C are called codewords and n is the length of the code.

The most useful codes have some structure. If the sets of sequences of length k, n are regarded as the vector spaces $\mathbb{F}_q^k, \mathbb{F}_q^n$ and the map *i* is linear then the code then \mathcal{C} a **linear** code and its dimension is *k*. From now on all our codes are linear.

The most useful codes have some structure. If the sets of sequences of length k, n are regarded as the vector spaces $\mathbb{F}_q^k, \mathbb{F}_q^n$ and the map *i* is linear then the code then C a **linear** code and its dimension is *k*. From now on all our codes are linear.

Given $x, y \in \mathbb{F}_q^n$ we define **Hamming distance** between x and y as

$$d(x,y) = \sharp\{i \mid 1 \le i \le n, x_i \ne y_i\}.$$

The most useful codes have some structure. If the sets of sequences of length k, n are regarded as the vector spaces $\mathbb{F}_q^k, \mathbb{F}_q^n$ and the map *i* is linear then the code then \mathcal{C} a **linear code** and its **dimension** is *k*. From now on all our codes are linear.

Given $x, y \in \mathbb{F}_q^n$ we define **Hamming distance** between x and y as

$$d(x,y) = \sharp\{i \mid 1 \leq i \leq n, x_i \neq y_i\}.$$

Given $z \in \mathbb{F}_q^n$ we define **Hamming weight** of z as wt(z) = d(z, 0). Thus, d(x, y) = wt(x - y).

The minimum distance of \mathcal{C} is,

$$d = d(\mathcal{C}) = \min\{d(x, y) \mid x, y \in \mathcal{C}, x \neq y\}$$

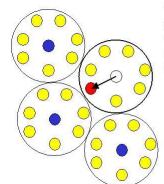
and obviously this is also $min\{wt(c) \mid c \in C, c \neq 0\}$.

Maximum likelihood decoding

If the received word is $x \in \mathbb{F}_q^n$ then we decode it as an element $c \in C$ which minimizes d(x, c). This is not necessarily uniquely defined. The balls of radius $t = \lfloor (d-1)/2 \rfloor$ centred on codewords are disjoint. If the number of errors is $\leq t$ then there is a unique codeword closest to x.

Maximum likelihood decoding

If the received word is $x \in \mathbb{F}_q^n$ then we decode it as an element $c \in C$ which minimizes d(x, c). This is not necessarily uniquely defined. The balls of radius $t = \lfloor (d-1)/2 \rfloor$ centred on codewords are disjoint. If the number of errors is $\leq t$ then there is a unique codeword closest to x.



The corrupted word still lies in its original sphere. The center of this sphere is the corrected word.

Given $a \in \mathbb{F}_{q}^{k}$, the encoding map is just $a \to aG$.

Given $a \in \mathbb{F}_{q}^{k}$, the encoding map is just $a \to aG$.

A **parity check matrix** is an $(n - k) \times n$ matrix *H* such that $Hx^t = 0$ for every $x \in C$. Note that by definition the rows of *H* are also linearly independent. Sometimes it is convenient to consider matrices *H* satisfying the given property whose rows are not linearly independent.

Given $a \in \mathbb{F}_{a}^{k}$, the encoding map is just $a \rightarrow aG$.

A **parity check matrix** is an $(n - k) \times n$ matrix *H* such that $Hx^t = 0$ for every $x \in C$. Note that by definition the rows of *H* are also linearly independent. Sometimes it is convenient to consider matrices *H* satisfying the given property whose rows are not linearly independent.

The code with generator matrix *H* is called the **dual code** of *C* and we denote it as C^{\perp} .

A code C may be described by three parameters [n, k, d]. The main goal is to maximize k (which gives the most efficient use of the communication channel) **and**d (which means the code corrects the highest number of errors). However these are competing objectives.

A code C may be described by three parameters [n, k, d]. The main goal is to maximize k (which gives the most efficient use of the communication channel) **and**d (which means the code corrects the highest number of errors). However these are competing objectives.

For example, if we fix *n* the best code in the sense of distance is the **repetition code** with generator matrix (1, 1, ..., 1). This is a [n, 1, n] code.

A code C may be described by three parameters [n, k, d]. The main goal is to maximize k (which gives the most efficient use of the communication channel) **and**d (which means the code corrects the highest number of errors). However these are competing objectives.

For example, if we fix *n* the best code in the sense of distance is the **repetition code** with generator matrix (1, 1, ..., 1). This is a [n, 1, n] code.

In the other hand the best code in the sense of dimension is generated by Id_n , which is a [n, n, 1] code.

A code C may be described by three parameters [n, k, d]. The main goal is to maximize k (which gives the most efficient use of the communication channel) **and**d (which means the code corrects the highest number of errors). However these are competing objectives.

For example, if we fix *n* the best code in the sense of distance is the **repetition code** with generator matrix (1, 1, ..., 1). This is a [n, 1, n] code.

In the other hand the best code in the sense of dimension is generated by Id_n , which is a [n, n, 1] code.

Singleton bound

For any [n, k, d] code we have $d \le n - k + 1$.

We say that a linear code C of length n over \mathbb{F}_q , is **cyclic**, if for every $(c_0, c_1, \ldots, c_{n-1}) \in C$ we have that $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$.

We say that a linear code C of length n over \mathbb{F}_q , is **cyclic**, if for every $(c_0, c_1, \ldots, c_{n-1}) \in C$ we have that $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$.

The reason for the change of subscript notation is that we may identify every codeword $(c_0, c_1, \ldots, c_{n-1})$ with a univariate polynomial $(c_0, c_1, \ldots, c_{n-1}) \leftrightarrow c(X) = c_0 + c_1 X + \cdots + c_{n-1}) X^{n-1}$.

We say that a linear code C of length n over \mathbb{F}_q , is **cyclic**, if for every $(c_0, c_1, \ldots, c_{n-1}) \in C$ we have that $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$.

The reason for the change of subscript notation is that we may identify every codeword $(c_0, c_1, \ldots, c_{n-1})$ with a univariate polynomial $(c_0, c_1, \ldots, c_{n-1}) \leftrightarrow c(X) = c_0 + c_1 X + \cdots + c_{n-1}) X^{n-1}$.

Main property of cyclic codes

C is a cyclic code if and only if it is an ideal of $\mathbb{F}_q[X]/\langle X^n - 1 \rangle$ (under the correspondence $c(x) \leftrightarrow \overline{c(x)} \in \mathbb{F}_q[X]/\langle X^n - 1 \rangle$). A nice property of $\mathbb{F}_q[X]/\langle X^n - 1 \rangle$ is that every ideal *I* is generated by only one polynomial (i.e. it is a **principal ideal ring**), say $I = \langle g(X) \rangle$, with $g(X) | X^n - 1$.

A nice property of $\mathbb{F}_q[X]/\langle X^n - 1 \rangle$ is that every ideal *I* is generated by only one polynomial (i.e. it is a **principal ideal ring**), say $I = \langle g(X) \rangle$, with $g(X) | X^n - 1$.

For any cyclic code of length *n*, there exists a unique monic polynomial $g(X) \in \mathbb{F}_q$ dividing $X^n - 1$ such that $C = \langle g(X) \rangle$. Therefore, the codewords are precisely the multiples of g(X) with degree less than *n*. The polynomial g(X) is called the **generator polynomial**.

Let C be a cyclic code of length n with generator polynomial g(X) of degree n - k. Then

$$\{g(X), Xg(X), \ldots, X^{k-1}g(X)\}$$

is a basis (vector space) of C. Thus, C has dimension k.

Let C be a cyclic code of length n with generator polynomial g(X) of degree n - k. Then

$$\{g(X), Xg(X), \ldots, X^{k-1}g(X)\}$$

is a basis (vector space) of C. Thus, C has dimension k.

In particular, if $g(X) = g_0 + g_1 X + \cdots + g_{n-k} X^{n-k}$ then the matrix *G* is a generator matrix of *C*:

Let C a cyclic code of length n with generator polynomial g(X) of degree n - k. The polynomial

$$h(X)=\frac{X^n-1}{g(X)}=h_0+h_1X+\cdots+h_kX^k$$

is called the parity check polynomial.

Let C a cyclic code of length n with generator polynomial g(X) of degree n - k. The polynomial

$$h(X)=\frac{X^n-1}{g(X)}=h_0+h_1X+\cdots+h_kX^k$$

is called the parity check polynomial.

The $(n - k) \times n$ matrix *H* is a parity check matrix of *C*,

$$H = \begin{pmatrix} & & & h_k & h_{k-1} & h_{k-2} & \cdots & h_0 \\ & & & h_k & h_{k-1} & h_{k-2} & \cdots & h_0 \\ & & & & \ddots & & & \ddots & \\ h_k & h_{k-1} & h_{k-2} & \cdots & h_0 & & & \end{pmatrix}$$

Suppose that $f_1(X), \ldots, f_r(X)$ are the irreducible factors of the generator polynomial of C, and $\{\alpha_i\}_1^s$ is the set of all roots of the f_i lying in a splitting field \mathbf{F}_{q^m} of $X^n - 1$ over \mathbf{F}_q . Then,

$$\mathcal{C} = \langle g(X) \rangle = \{ c(X) \mid c(\alpha_1) = \cdots = c(\alpha_s) = 0 \}.$$

Suppose that $f_1(X), \ldots, f_r(X)$ are the irreducible factors of the generator polynomial of C, and $\{\alpha_i\}_1^s$ is the set of all roots of the f_i lying in a splitting field \mathbf{F}_{q^m} of $X^n - 1$ over \mathbf{F}_q . Then,

$$\mathcal{C} = \langle g(X) \rangle = \{ c(X) \mid c(\alpha_1) = \cdots = c(\alpha_s) = 0 \}.$$

Notice that we may think in the opposite direction, i.e. a set $\{\alpha_1, \ldots, \alpha_s\} \in \mathbb{F}_{q^m}$ defines a cyclic code.

The $s \times n$ matrix H' extends the definition of parity check matrix because $c(X) \in C$ if and only if H'C(X) = 0.

$$H' = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \alpha_s & \alpha_s^2 & \cdots & \alpha_s^{n-1} \end{pmatrix}$$

We fix a field \mathbb{F}_q , natural numbers n, b and δ with $2 \leq \delta \leq n$. Let m satisfy $q^m \equiv 1 \pmod{n}$, and let $\alpha \in \mathbb{F}_{q^m}$ be a primitive n^{th} root of unity.

We fix a field \mathbb{F}_q , natural numbers n, b and δ with $2 \leq \delta \leq n$. Let m satisfy $q^m \equiv 1 \pmod{n}$, and let $\alpha \in \mathbb{F}_{q^m}$ be a primitive n^{th} root of unity.

Bose, Ray-Chaudhuri, Hocquenghem

A BCH code of length *n* and designed distance δ is the cyclic code with generator polynomial having roots $\alpha^{b}, \alpha^{b+1}, \ldots, \alpha^{b+\delta-2}$.

We fix a field \mathbb{F}_q , natural numbers n, b and δ with $2 \leq \delta \leq n$. Let m satisfy $q^m \equiv 1 \pmod{n}$, and let $\alpha \in \mathbb{F}_{q^m}$ be a primitive n^{th} root of unity.

Bose, Ray-Chaudhuri, Hocquenghem

A BCH code of length *n* and designed distance δ is the cyclic code with generator polynomial having roots $\alpha^{b}, \alpha^{b+1}, \ldots, \alpha^{b+\delta-2}$.

- If b = 1 the code is called **strict sense**.
- If $n = q^m 1$ the code is called a **primitive** BCH code.
- If n = q − 1 then the code is a Reed-Solomon (RS) code.
 Note that in this case α ∈ 𝔽_q.

Theorem

A BCH code of designed distance δ has minimum distance $d \ge \delta$. In general we do not know the exact value of the minimum distance.

Theorem

A BCH code of designed distance δ has minimum distance $d \ge \delta$. In general we do not know the exact value of the minimum distance.

Theorem

An RS code of length *n*, dimension *k* and designed distance δ satisfies $d = \delta = n - k + 1$ and therefore has parameters [n, k, n - k + 1]. For this reason (in view of the Singleton bound) these codes are said to be **maximum distance** separable (MDS).

Theorem

A BCH code of designed distance δ has minimum distance $d \ge \delta$. In general we do not know the exact value of the minimum distance.

Theorem

An RS code of length *n*, dimension *k* and designed distance δ satisfies $d = \delta = n - k + 1$ and therefore has parameters [n, k, n - k + 1]. For this reason (in view of the Singleton bound) these codes are said to be **maximum distance** separable (MDS).

RS codes are among the most commonly used. The only inconvenience is the small length. Any element of \mathbb{F}_q^r may be identified with a vector in \mathbb{F}_q^r . Then an RS code of length *n* is converted to a code of length *rn*. Those new codes are very good for decoding bursts, especially when **interleaved**.