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Codes and Linear Codes

Let p be a prime number, q = pr and Fq a finite field with q
elements.

Fq is called the alphabet
An information sequence is a finite sequence
m = x1x2 · · · xk where xi ∈ Fq.
Each information sequence is encoded as the image of an
injective map
i : {sequences of length k} → {sequences of length n}
The set C = Im (i) is called a (block) code. The elements
of C are called codewords and n is the length of the code.



The most useful codes have some structure. If the sets of
sequences of length k ,n are regarded as the vector spaces
Fk

q,Fn
q and the map i is linear then the code then C a linear

code and its dimension is k . From now on all our codes are
linear.

Given x , y ∈ Fn
q we define Hamming distance between x and

y as
d(x , y) = ]{i | 1 ≤ i ≤ n, xi 6= yi}.

Given z ∈ Fn
q we define Hamming weight of z as

wt(z) = d(z,0). Thus, d(x , y) = wt(x − y).
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Minimum distance

The minimum distance of C is,

d = d(C) = min{d(x , y) | x , y ∈ C, x 6= y}

and obviously this is also min{wt(c) | c ∈ C, c 6= 0}.



Maximum likelihood decoding
If the received word is x ∈ Fn

q then we decode it as an element
c ∈ C which minimizes d(x , c). This is not necessarily uniquely
defined. The balls of radius t = b(d − 1)/2c centred on
codewords are disjoint. If the number of errors is ≤ t then there
is a unique codeword closest to x .
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C is a vector space of dimension k , so there exist linearly
independent codewords c1, . . . , ck ∈ C forming a basis of C.
The k × n matrix G whose rows are the ci is called a generator
matrix of C. Notice that there are as many generator matrices
as there are bases of C.

Given a ∈ Fk
q, the encoding map is just a→ aG.

A parity check matrix is an (n − k)× n matrix H such that
Hx t = 0 for every x ∈ C. Note that by definition the rows of H
are also linearly independent. Sometimes it is convenient to
consider matrices H satisfying the given property whose rows
are not linearly independent.

The code with generator matrix H is called the dual code of C
and we denote it as C⊥.
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Goal
A code C may be described by three parameters [n, k ,d ]. The
main goal is to maximize k (which gives the most efficient use
of the communication channel) andd (which means the code
corrects the highest number of errors). However these are
competing objectives.

For example, if we fix n the best code in the sense of distance
is the repetition code with generator matrix (1,1, . . . ,1). This
is a [n,1,n] code.

In the other hand the best code in the sense of dimension is
generated by Idn, which is a [n,n,1] code.

Singleton bound
For any [n, k ,d ] code we have d ≤ n − k + 1.
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Cyclic codes

We say that a linear code C of length n over Fq, is cyclic, if for
every (c0, c1, . . . , cn−1) ∈ C we have that(cn−1, c0, . . . , cn−2) ∈ C.

The reason for the change of subscript notation is that we may
identify every codeword (c0, c1, . . . , cn−1) with a univariate
polynomial
(c0, c1, . . . , cn−1)↔ c(X ) = c0 + c1X + · · ·+ cn−1)X n−1.

Main property of cyclic codes
C is a cyclic code if and only if it is an ideal of Fq[X ]/〈X n − 1〉
(under the correspondence c(x)↔ c(x) ∈ Fq[X ]/〈X n − 1〉).



Cyclic codes

We say that a linear code C of length n over Fq, is cyclic, if for
every (c0, c1, . . . , cn−1) ∈ C we have that(cn−1, c0, . . . , cn−2) ∈ C.

The reason for the change of subscript notation is that we may
identify every codeword (c0, c1, . . . , cn−1) with a univariate
polynomial
(c0, c1, . . . , cn−1)↔ c(X ) = c0 + c1X + · · ·+ cn−1)X n−1.

Main property of cyclic codes
C is a cyclic code if and only if it is an ideal of Fq[X ]/〈X n − 1〉
(under the correspondence c(x)↔ c(x) ∈ Fq[X ]/〈X n − 1〉).



Cyclic codes

We say that a linear code C of length n over Fq, is cyclic, if for
every (c0, c1, . . . , cn−1) ∈ C we have that(cn−1, c0, . . . , cn−2) ∈ C.

The reason for the change of subscript notation is that we may
identify every codeword (c0, c1, . . . , cn−1) with a univariate
polynomial
(c0, c1, . . . , cn−1)↔ c(X ) = c0 + c1X + · · ·+ cn−1)X n−1.

Main property of cyclic codes
C is a cyclic code if and only if it is an ideal of Fq[X ]/〈X n − 1〉
(under the correspondence c(x)↔ c(x) ∈ Fq[X ]/〈X n − 1〉).



Cyclic codes

A nice property of Fq[X ]/〈X n − 1〉 is that every ideal I is
generated by only one polynomial (i.e. it is a principal ideal
ring), say I = 〈g(X )〉, with g(X ) | X n − 1.

For any cyclic code of length n, there exists a unique monic
polynomial g(X ) ∈ Fq dividing X n − 1 such that
C = 〈g(X )〉.Therefore, the codewords are precisely the
multiples of g(X ) with degree less than n. The polynomial g(X )
is called the generator polynomial.
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Cyclic codes

Let C be a cyclic code of length n with generator polynomial
g(X ) of degree n − k . Then

{g(X ),Xg(X ), . . . ,X k−1g(X )}

is a basis (vector space) of C. Thus, C has dimension k .

In particular, if g(X ) = g0 + g1X + · · ·+ gn−kX n−k then the
matrix G is a generator matrix of C:

G =


g0 g1 g2 · · · gn−k

g0 g1 g2 · · · gn−k
. . . . . . . . .

g0 g1 g2 · · · gn−k
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Let C a cyclic code of length n with generator polynomial g(X )
of degree n − k . The polynomial

h(X ) =
X n − 1
g(X )

= h0 + h1X + · · ·+ hkX k

is called the parity check polynomial.

The (n − k)× n matrix H is a parity check matrix of C,

H =


hk hk−1 hk−2 · · · h0

hk hk−1 hk−2 · · · h0
· · · · · · · · ·

hk hk−1 hk−2 · · · h0
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Zeros of a cyclic code

Suppose that f1(X ), . . . , fr (X ) are the irreducible factors of the
generator polynomial of C, and {αi}s1 is the set of all roots of the
fi lying in a splitting field Fqm of X n − 1 over Fq. Then,

C = 〈g(X )〉 = {c(X ) | c(α1) = · · · = c(αs) = 0}.

Notice that we may think in the opposite direction, i.e. a set
{α1, . . . , αs} ∈ Fqm defines a cyclic code.
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Parity check matrix over extension field

The s × n matrix H ′ extends the definition of parity check matrix
because c(X ) ∈ C if and only if H ′C(X ) = 0.

H ′ =

 1 α1 α2
1 · · · αn−1

1
...

...
...

...
1 αs α2

s · · · αn−1
s





BCH and RS Codes

We fix a field Fq, natural numbers n,b and δ with 2 ≤ δ ≤ n. Let
m satisfy qm ≡ 1(modn), and let α ∈ Fqm be a primitive nth root
of unity.

Bose, Ray-Chaudhuri, Hocquenghem
A BCH code of length n and designed distance δ is the cyclic
code with generator polynomial having roots
αb, αb+1, . . . , αb+δ−2.

If b = 1 the code is called strict sense.
If n = qm − 1 the code is called a primitive BCH code.
If n = q − 1 then the code is a Reed-Solomon (RS) code.
Note that in this case α ∈ Fq.
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Theorem
A BCH code of designed distance δ has minimum distance
d ≥ δ. In general we do not know the exact value of the
minimum distance.

Theorem
An RS code of length n, dimension k and designed distance δ
satisfies d = δ = n − k + 1 and therefore has parameters
[n, k ,n − k + 1]. For this reason (in view of the Singleton
bound) these codes are said to be maximum distance
separable (MDS).

RS codes are among the most commonly used. The only
inconvenience is the small length. Any element of Fr

q may be
identified with a vector in Fr

q. Then an RS code of length n is
converted to a code of length rn. Those new codes are very
good for decoding bursts, especially when interleaved.
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