DECODING ALGORITHMS

Patrick Fitzpatrick

University College Cork Ireland
$S^{3} \mathrm{Cm}, 2-11$ July 2008

Outline

(1) Syndrome Decoding
(2) Decoding BCH Codes. The key equation
(3) Solving the key equation

Suppose that the transmitted word is $c \in C$ and we have received a word $y \in \mathbb{F}_{q}^{n}$. The error in the transmission is $e=y-c$.

Suppose that the transmitted word is $c \in C$ and we have received a word $y \in \mathbb{F}_{q}^{n}$. The error in the transmission is $e=y-c$.

Syndrome

We call

$$
s(y)=H y^{t} \in F_{q}^{n-k}
$$

the syndrome of y. Notice that, $c \in C$ if and only if $s(c)=0$.
Therefore, since the syndrome is a linear map, $s(y)=s(c+e)=s(c)+s(e)=s(e)$.

Suppose that the transmitted word is $c \in C$ and we have received a word $y \in \mathbb{F}_{q}^{n}$. The error in the transmission is $e=y-c$.

Syndrome

We call

$$
s(y)=H y^{t} \in F_{q}^{n-k}
$$

the syndrome of y. Notice that, $c \in C$ if and only if $s(c)=0$.
Therefore, since the syndrome is a linear map,
$s(y)=s(c+e)=s(c)+s(e)=s(e)$.

The syndrome of a received vector is the linear combination of the columns of H corresponding with the positions of the error weighted by the values of the errors.

Cosets and coset leaders

Consider in \mathbb{F}_{q}^{n} the set of (group) cosets of C :
$C=0+C, a_{2}+C, \ldots, a_{q^{n-k}}+C$. Every element in a typical coset $a+C$ has the same syndrome $s(a)$. Suppose the received word y lies in $a+C$ so $y=a+c$ for some c. We could decode y to c by subtracting a from c. If we decode y to any other codeword c^{\prime} this means decoding y as
$y-(a+c)+c^{\prime}=y-\left[a+\left(c^{\prime}-c\right)\right]=y-\left[a+c^{\prime \prime}\right]$ i.e. subtracting another element of the same coset $a+C$.

Cosets and coset leaders

Consider in \mathbb{F}_{q}^{n} the set of (group) cosets of C :
$C=0+C, a_{2}+C, \ldots, a_{q^{n-k}}+C$. Every element in a typical coset $a+C$ has the same syndrome $s(a)$. Suppose the received word y lies in $a+C$ so $y=a+c$ for some c. We could decode y to c by subtracting a from c. If we decode y to any other codeword c^{\prime} this means decoding y as
$y-(a+c)+c^{\prime}=y-\left[a+\left(c^{\prime}-c\right)\right]=y-\left[a+c^{\prime \prime}\right]$ i.e. subtracting another element of the same coset $a+C$.

This means we should choose an element $a+c^{\prime \prime}$ of smallest weight in the coset $a+C$ and always decode any y in that coset by subtracting this element.

Coset leaders

An element of minimum weight in a coset is called a coset leader. Coset leaders are not necessarily unique i.e. there may be more than one element of smallest weight in the coset.

Proposition

A coset of C has at most one element of weight $\leq t=\lfloor d-1 / 2\rfloor$.
Proof. If u, v lie in the same coset, and both have weight $\leq t$, then $u-v \in C$ and $w t(u-v) \leq w t(u)+w t(v) \leq 2 t<d$. Therefore, $u=v$.

Proposition

A coset of C has at most one element of weight $\leq t=\lfloor d-1 / 2\rfloor$.
Proof. If u, v lie in the same coset, and both have weight $\leq t$, then $u-v \in C$ and $w t(u-v) \leq w t(u)+w t(v) \leq 2 t<d$.
Therefore, $u=v$.

Decoding is uniquely defined if and only if the coset of y has a unique leader. The proposition guarantees that if the number of errors is at most t then decoding is unique (and is maximum likelihood decoding).

Decoding using coset leaders

Algorithm

(1) For each coset choose a coset leader as representative.
(2) Construct a table matching syndromes to coset leaders.
(3) If y is received then calculate $s(y)$.

4 Find the corresponding coset leader x.
(5) Decode as $y-x$.

Note that this algorithm is only feasible for very small codes.

Decoding BCH Codes

Let C be a narrow sense $(b=1)$ BCH code length n and designed distance $d=2 t+1$ over F_{q}, with generator polynomial g (we assume that q and n are relatively prime). Let α be a primitive nth root of unity in and extension $F_{q^{m}}$. Let $r=c+e$ be a received word with $c \in C$ and e an error polynomial of weight at most t. Let $J \subseteq\{0,1,2, \ldots, n-1\}$ be the set of indices of the non-zero coefficients of e so that $e=\sum_{j \in J} e_{j} x^{j}$.

Decoding BCH Codes

Let C be a narrow sense $(b=1)$ BCH code length n and designed distance $d=2 t+1$ over F_{q}, with generator polynomial g (we assume that q and n are relatively prime). Let α be a primitive nth root of unity in and extension $F_{q^{m}}$. Let $r=c+e$ be a received word with $c \in C$ and e an error polynomial of weight at most t. Let $J \subseteq\{0,1,2, \ldots, n-1\}$ be the set of indices of the non-zero coefficients of e so that $e=\sum_{j \in J} e_{j} x^{j}$.

The syndromes of r are defined as
$h_{i}=r\left(\alpha^{i+1}\right)=e\left(\alpha^{i+1}\right)=\sum_{j \in J} e_{j} \alpha^{(i+1) j}$ for $0 \leq i \leq 2 t-1$ and the syndrome polynomial is $h=\sum_{i=0}^{2 t-1} h_{i} x^{i}$.

Error locator polynomial

The polynomial $\sigma=\prod_{j \in J}\left(1-\alpha^{j} \boldsymbol{x}\right)$ is called the error locator polynomial because the inverses of its roots give the locations $j \in J$ (i.e. if we know σ then we know the error locations.

Syndrome polynomial

The syndrome polynomial can be rewritten in the following form:

$$
\begin{aligned}
h & =\sum_{i=0}^{2 t-1}\left(\sum_{j \in J} e_{j} \alpha^{(i+1) j}\right) x^{i} \\
& =\sum_{j \in J} \sum_{i=0}^{2 t-1} e_{j} \alpha^{(i+1) j} x^{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j \in J} e_{j} \alpha^{j} \sum_{i=0}^{2 t-1}\left(\alpha^{j} x\right)^{i} \\
& =\sum_{j \in J} \frac{e_{j} \alpha^{j}\left(1-\left(\alpha^{j} x\right)^{2 t}\right)}{1-\alpha^{j} x}
\end{aligned}
$$

Multiplying this by σ we obtain

$$
\sigma h=\sum_{j \in J}\left[e_{j} \alpha^{j} \prod_{\substack{k \in J \\ k \neq j}}\left(1-\alpha^{k} x\right)\right]\left(1-\left(\alpha^{j} x\right)^{2 t}\right)
$$

and reduction modulo $x^{2 t}$ gives the congruence

$$
\sigma h \equiv \sum_{j \in J} e_{j} \alpha^{j} \prod_{\substack{k \in J \\ k \neq j}}\left(1-\alpha^{k} x\right) \bmod x^{2 t}
$$

Error evaluator polynomial

The polynomial ω on the right hand side is known as the error evaluator polynomial. If we know σ and ω then we can calculate the values e_{j} of the errors.

Key equation

The congruence

$$
\sigma h \equiv \omega \bmod x^{2 t}
$$

which is universally known as the key equation (after Berlekamp (1968)).

Error evaluator polynomial

The polynomial ω on the right hand side is known as the error evaluator polynomial. If we know σ and ω then we can calculate the values e_{j} of the errors.

Key equation

The congruence

$$
\sigma h \equiv \omega \bmod x^{2 t}
$$

which is universally known as the key equation (after Berlekamp (1968)).

We seek a solution (σ, ω) with $\operatorname{deg}(\sigma) \leq t, \operatorname{deg}(\omega) \leq \operatorname{deg}(\sigma)$ and σ, ω relatively prime.

Solution module

We define $M=\left\{(a, b) \mid a h \equiv b \bmod x^{2 t}\right\}$ and call it the solution module.

Solution module

We define $M=\left\{(a, b) \mid a h \equiv b \bmod x^{2 t}\right\}$ and call it the solution module.

Lemma

The set $\mathcal{B}=\left\{(1, h),\left(0, x^{2 t}\right)\right\}$ is a basis of M.
Proof. Obviously, $\mathcal{B} \subseteq M$. Now if $(a, b) \in M$ then $a h-b$ is a multiple of $x^{2 t}$ so

$$
(a, b)=a(1, h)-(0, a h-b)=a(1, h)+f\left(0, x^{2 t}\right)
$$

A specific term order $<$ in $A=\mathbb{F}_{q}[x]^{2}$

$(1,0)<(0,1)<(x, 0)<(0, x)<\cdots$ is a term order in A so for example $\left(3 x^{2}-2 x+1,4 x^{3}+x-5\right)=$ $4\left(0, x^{3}\right)+3\left(x^{2}, 0\right)+(0, x)-2(x, 0)-5(0,1)+(1,0)$.

A specific term order $<$ in $A=\mathbb{F}_{q}[x]^{2}$

$(1,0)<(0,1)<(x, 0)<(0, x)<\cdots$ is a term order in A so for example $\left(3 x^{2}-2 x+1,4 x^{3}+x-5\right)=$ $4\left(0, x^{3}\right)+3\left(x^{2}, 0\right)+(0, x)-2(x, 0)-5(0,1)+(1,0)$.

GB of a submodule $N \subseteq A$

Two possibilities for a GB of N.

$$
N=\langle(a, b)\rangle
$$

for some (a, b) where (a, b) is the minimal element of N.

$$
N=\left\langle\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\rangle
$$

where $\operatorname{It}\left(a_{1}, b_{1}\right)=\left(x^{p_{1}}, 0\right)$ with p_{1} minimal, $\operatorname{It}\left(a_{2}, b_{2}\right)=\left(0, x^{p_{2}}\right)$ with p_{2} minimal, and either $\left(a_{1}, b_{1}\right)$ or $\left(a_{2}, b_{2}\right)$ is the minimal element of N.

Minimal element in solution module M

Theorem

If a solution (a, b) exists in M with $\operatorname{deg}(a) \leq t, \operatorname{deg}(b) \leq \operatorname{deg}(a)$ and a, b relatively prime then (a, b) is the minimal element of M.

Minimal element in solution module M

Theorem

If a solution (a, b) exists in M with $\operatorname{deg}(a) \leq t, \operatorname{deg}(b) \leq \operatorname{deg}(a)$ and a, b relatively prime then (a, b) is the minimal element of M.

Algorithm (PF)

Input: h, t
Output: $(a, b) \in M$ with $\operatorname{deg}(a) \leq 2 t, \operatorname{deg}(b) \leq \operatorname{deg}(a)$ and a, b relatively prime, if such an element exists
Initialize: $\left(a_{1}, b_{1}\right):=(1, h) ;\left(a_{2}, b_{2}\right):=\left(0, x^{2 t}\right)$
WHILE $\operatorname{deg}\left(a_{1}\right) \leq \operatorname{deg}\left(b_{1}\right)$ DO [i.e. while $\operatorname{It}\left(a_{1}, b_{1}\right)$ on right]
$(u, v):=\left(a_{2}, b_{2}\right) \bmod \left(a_{1}, b_{1}\right)$ [division algorithm]
$\left(a_{2}, b_{2}\right):=\left(a_{1}, b_{1}\right)$
$\left(a_{1}, b_{1}\right):=(u, v)$
$(a, b):=\left(a_{1}, b_{1}\right)$

Solution by approximations

For $k=0,1, \ldots 2 t$ define $M_{k}=\left\{(a, b) \in A \mid a h \equiv b \bmod x^{k}\right\}$.

Solution by approximations

For $k=0,1, \ldots 2 t$ define $M_{k}=\left\{(a, b) \in A \mid a h \equiv b \bmod x^{k}\right\}$.

Theorem (PF)

Let $\mathcal{B}=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}$ be a GB of M_{k} with $\left(a_{1}, b_{1}\right)$ minimal and let

$$
\begin{aligned}
& a_{1} h-b_{1} \equiv \alpha_{1} x^{k} \bmod x^{k+1} \\
& a_{2} h-b_{2} \equiv \alpha_{2} x^{k} \bmod x^{k+1}
\end{aligned}
$$

Define $\mathcal{B}^{\prime}=\left\{\left(a_{1}^{\prime}, b_{1}^{\prime}\right),\left(a_{2}^{\prime}, b_{2}^{\prime}\right)\right\}$ as follows.

If $\alpha_{1}=0$ then

$$
\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=\left(a_{1}, b_{1}\right),\left(a_{2}^{\prime}, b_{2}^{\prime}\right)=\left(x a_{2}, x b_{2}\right)
$$

If $\alpha_{1} \neq 0$ then

$$
\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=\left(x a_{1}, x b_{1}\right),\left(a_{2}^{\prime}, b_{2}^{\prime}\right)=\left(a_{1}, b_{1}\right)-\frac{\alpha_{2}}{\alpha_{1}}\left(a_{2}, b_{2}\right)
$$

Then \mathcal{B}^{\prime} is a GB of M_{k+1}.

Algorithm (PF)

This theorem gives an obvious algorithm (which can be improved by suppressing the computation of the b_{i}). The algorithm has the same complexity as Berlekamp-Massey.

Algorithm can be extended to list decoding algebraic geometry codes.

References

- See Fitzpatrick (IEEE Trans IT 1995) for the first paper to use this technique (simplified proof in notes)
- See chapter on coding theory in Using Algebraic Geometry by Cox, Little and O'Shea for a discussion in relation to RS codes.
- See Byrne and Fitzpatrick (JSC 2000, IEEE Trans IT 2001) for extension to codes over rings.
- See O'Keeffe and Fitzpatrick in AAECC journal (2006 or 2007) for extension to list decoding of algebraic geometry codes.

