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Suppose that the transmitted word is c ∈ C and we have
received a word y ∈ Fn

q. The error in the transmission is
e = y − c.

Syndrome
We call

s(y) = Hy t ∈ F n−k
q

the syndrome of y . Notice that, c ∈ C if and only if s(c) = 0.
Therefore, since the syndrome is a linear map,
s(y) = s(c + e) = s(c) + s(e) = s(e).

The syndrome of a received vector is the linear combination of
the columns of H corresponding with the positions of the error
weighted by the values of the errors.
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Cosets and coset leaders

Consider in Fn
q the set of (group) cosets of C:

C = 0 + C,a2 + C, . . . ,aqn−k + C. Every element in a typical
coset a + C has the same syndrome s(a). Suppose the
received word y lies in a + C so y = a + c for some c. We
could decode y to c by subtracting a from c. If we decode y to
any other codeword c′ this means decoding y as
y − (a + c) + c′ = y − [a + (c′ − c)] = y − [a + c′′] i.e.
subtracting another element of the same coset a + C.

This means we should choose an element a + c′′ of smallest
weight in the coset a + C and always decode any y in that
coset by subtracting this element.
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Coset leaders

An element of minimum weight in a coset is called a coset
leader. Coset leaders are not necessarily unique i.e. there may
be more than one element of smallest weight in the coset.
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Proposition
A coset of C has at most one element of weight
≤ t = bd − 1/2c.
Proof. If u, v lie in the same coset, and both have weight ≤ t ,
then u − v ∈ C and wt(u − v) ≤ wt(u) + wt(v) ≤ 2t < d .
Therefore, u = v .

Decoding is uniquely defined if and only if the coset of y has a
unique leader. The proposition guarantees that if the number of
errors is at most t then decoding is unique (and is maximum
likelihood decoding).
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Decoding using coset leaders

Algorithm
1 For each coset choose a coset leader as representative.
2 Construct a table matching syndromes to coset leaders.
3 If y is received then calculate s(y).
4 Find the corresponding coset leader x .
5 Decode as y − x .

Note that this algorithm is only feasible for very small codes.
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Decoding BCH Codes

Let C be a narrow sense (b = 1) BCH code length n and
designed distance d = 2t + 1 over Fq, with generator
polynomial g (we assume that q and n are relatively prime). Let
α be a primitive n th root of unity in and extension Fqm . Let
r = c + e be a received word with c ∈ C and e an error
polynomial of weight at most t . Let J ⊆ {0,1,2, . . . ,n − 1} be
the set of indices of the non-zero coefficients of e so that
e =

∑
j∈J

ejx j .

The syndromes of r are defined as
hi = r(αi+1) = e(αi+1) =

∑
j∈J ejα

(i+1)j for 0 ≤ i ≤ 2t − 1 and

the syndrome polynomial is h =
2t−1∑
i=0

hix i .
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Error locator polynomial

The polynomial σ =
∏
j∈J

(1− αjx) is called the error locator

polynomial because the inverses of its roots give the locations
j ∈ J (i.e. if we know σ then we know the error locations.
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Syndrome polynomial

The syndrome polynomial can be rewritten in the following form:

h =
2t−1∑
i=0

∑
j∈J

ejα
(i+1)j

 x i

=
∑
j∈J

2t−1∑
i=0

ejα
(i+1)jx i
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=
∑
j∈J

ejα
j

2t−1∑
i=0

(αjx)i

=
∑
j∈J

ejα
j(1− (αjx)2t)

1− αjx
.
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Multiplying this by σ we obtain

σh =
∑
j∈J

ejα
j
∏
k∈J
k 6=j

(1− αkx)

 (1− (αjx)2t)

and reduction modulo x2t gives the congruence

σh ≡
∑
j∈J

ejα
j
∏
k∈J
k 6=j

(1− αkx) mod x2t .
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Error evaluator polynomial
The polynomial ω on the right hand side is known as the error
evaluator polynomial. If we know σ and ω then we can
calculate the values ej of the errors.

Key equation
The congruence

σh ≡ ω mod x2t

which is universally known as the key equation (after
Berlekamp (1968)).

We seek a solution (σ, ω) with deg(σ) ≤ t ,deg(ω) ≤ deg(σ)
and σ, ω relatively prime.
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Solution module

We define M = {(a,b) | ah ≡ b mod x2t} and call it the
solution module.

Lemma

The set B = {(1,h), (0, x2t)} is a basis of M.
Proof. Obviously, B ⊆ M. Now if (a,b) ∈ M then ah − b is a
multiple of x2t so
(a,b) = a(1,h)− (0,ah − b) = a(1,h) + f (0, x2t).
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A specific term order < in A = Fq[x ]2

(1,0) < (0,1) < (x ,0) < (0, x) < · · · is a term order in A so for
example (3x2 − 2x + 1,4x3 + x − 5) =
4(0, x3) + 3(x2,0) + (0, x)− 2(x ,0)− 5(0,1) + (1,0).

GB of a submodule N ⊆ A
Two possibilities for a GB of N.

N = 〈(a,b)〉

for some (a,b) where (a,b) is the minimal element of N.

N = 〈(a1,b1), (a2,b2)〉

where lt(a1,b1) = (xp1 ,0) with p1 minimal, lt(a2,b2) = (0, xp2)
with p2 minimal, and either (a1,b1) or (a2,b2) is the minimal
element of N.
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Minimal element in solution module M

Theorem
If a solution (a,b) exists in M with deg(a) ≤ t ,deg(b) ≤ deg(a)
and a,b relatively prime then (a,b) is the minimal element of M.

Algorithm (PF)
Input: h, t
Output: (a,b) ∈ M with deg(a) ≤ 2t ,deg(b) ≤ deg(a) and a,b
relatively prime, if such an element exists
Initialize: (a1,b1) := (1,h); (a2,b2) := (0, x2t)
WHILE deg(a1) ≤ deg(b1) DO [i.e. while lt(a1,b1) on right]

(u, v) := (a2,b2) mod (a1,b1) [division algorithm]
(a2,b2) := (a1,b1)
(a1,b1) := (u, v)

(a,b) := (a1,b1)

Example: linear recurring sequence
1,0,−1,1,−2,2,−1 is the initial segment of a linear recurring
sequence over Q which is known to have a minimal polynomial
of degree at most 4. Find the minimal polynomial.
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Solution by approximations

For k = 0,1, . . .2t define Mk = {(a,b) ∈ A | ah ≡ b mod xk}.

Theorem (PF)
Let B = {(a1,b1), (a2,b2)} be a GB of Mk with (a1,b1) minimal
and let

a1h − b1 ≡ α1xk mod xk+1

a2h − b2 ≡ α2xk mod xk+1.

Define B′ = {(a′1,b′1), (a′2,b′2)} as follows.



Syndrome Decoding Decoding BCH Codes. The key equation Solving the key equation

Solution by approximations

For k = 0,1, . . .2t define Mk = {(a,b) ∈ A | ah ≡ b mod xk}.

Theorem (PF)
Let B = {(a1,b1), (a2,b2)} be a GB of Mk with (a1,b1) minimal
and let

a1h − b1 ≡ α1xk mod xk+1

a2h − b2 ≡ α2xk mod xk+1.

Define B′ = {(a′1,b′1), (a′2,b′2)} as follows.



Syndrome Decoding Decoding BCH Codes. The key equation Solving the key equation

If α1 = 0 then

(a′1,b
′
1) = (a1,b1), (a′2,b

′
2) = (xa2, xb2).

If α1 6= 0 then

(a′1,b
′
1) = (xa1, xb1), (a′2,b

′
2) = (a1,b1)−

α2

α1
(a2,b2).

Then B′ is a GB of Mk+1.
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Algorithm (PF)

This theorem gives an obvious algorithm (which can be
improved by suppressing the computation of the bi ).
The algorithm has the same complexity as Berlekamp-Massey.

Algorithm can be extended to list decoding algebraic geometry
codes.
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