DECODING ALGORITHMS

Patrick Fitzpatrick

University College Cork Ireland

S³Cm, 2–11 July 2008

Decoding BCH Codes. The key equation

Suppose that the transmitted word is $c \in C$ and we have received a word $y \in \mathbb{F}_q^n$. The error in the transmission is e = y - c.

Suppose that the transmitted word is $c \in C$ and we have received a word $y \in \mathbb{F}_q^n$. The error in the transmission is e = y - c.

Syndrome

We call

$$s(y) = Hy^t \in F_q^{n-k}$$

the **syndrome** of *y*. Notice that, $c \in C$ if and only if s(c) = 0. Therefore, since the syndrome is a linear map, s(y) = s(c + e) = s(c) + s(e) = s(e). Suppose that the transmitted word is $c \in C$ and we have received a word $y \in \mathbb{F}_q^n$. The error in the transmission is e = y - c.

Syndrome

We call

$$s(y) = Hy^t \in F_q^{n-k}$$

the **syndrome** of *y*. Notice that, $c \in C$ if and only if s(c) = 0. Therefore, since the syndrome is a linear map, s(y) = s(c + e) = s(c) + s(e) = s(e).

The syndrome of a received vector is the linear combination of the columns of H corresponding with the positions of the error weighted by the values of the errors.

Cosets and coset leaders

Consider in \mathbb{F}_q^n the set of (group) cosets of *C*: $C = 0 + C, a_2 + C, \dots, a_{q^{n-k}} + C$. Every element in a typical coset a + C has the same syndrome s(a). Suppose the received word *y* lies in a + C so y = a + c for some *c*. We could decode *y* to *c* by subtracting *a* from *c*. If we decode *y* to any other codeword *c'* this means decoding *y* as y - (a + c) + c' = y - [a + (c' - c)] = y - [a + c''] i.e. subtracting another element of the same coset a + C.

Cosets and coset leaders

Consider in \mathbb{F}_q^n the set of (group) cosets of *C*: $C = 0 + C, a_2 + C, \dots, a_{q^{n-k}} + C$. Every element in a typical coset a + C has the same syndrome s(a). Suppose the received word *y* lies in a + C so y = a + c for some *c*. We could decode *y* to *c* by subtracting *a* from *c*. If we decode *y* to any other codeword *c'* this means decoding *y* as y - (a + c) + c' = y - [a + (c' - c)] = y - [a + c''] i.e. subtracting another element of the same coset a + C.

This means we should choose an element a + c'' of smallest weight in the coset a + C and always decode any y in that coset by subtracting this element.

Coset leaders

An element of minimum weight in a coset is called a **coset leader**. Coset leaders are not necessarily unique i.e. there may be more than one element of smallest weight in the coset.

Proposition

A coset of *C* has at most one element of weight $\leq t = \lfloor d - 1/2 \rfloor$. **Proof.** If *u*, *v* lie in the same coset, and both have weight $\leq t$, then $u - v \in C$ and $wt(u - v) \leq wt(u) + wt(v) \leq 2t < d$. Therefore, u = v.

Proposition

A coset of *C* has at most one element of weight $\leq t = \lfloor d - 1/2 \rfloor$. **Proof.** If *u*, *v* lie in the same coset, and both have weight $\leq t$, then $u - v \in C$ and $wt(u - v) \leq wt(u) + wt(v) \leq 2t < d$. Therefore, u = v.

Decoding is uniquely defined if and only if the coset of y has a unique leader. The proposition guarantees that if the number of errors is at most t then decoding is unique (and is maximum likelihood decoding).

Decoding using coset leaders

Algorithm

- For each coset choose a coset leader as representative.
- Construct a table matching syndromes to coset leaders.
- If y is received then calculate s(y).
- Find the corresponding coset leader x.
- Solution Decode as y x.

Note that this algorithm is only feasible for very small codes.

Decoding BCH Codes

Let *C* be a narrow sense (*b* = 1) BCH code length *n* and designed distance d = 2t + 1 over F_q , with generator polynomial *g* (we assume that *q* and *n* are relatively prime). Let α be a primitive *n*th root of unity in and extension F_{q^m} . Let r = c + e be a received word with $c \in C$ and *e* an error polynomial of weight at most *t*. Let $J \subseteq \{0, 1, 2, ..., n - 1\}$ be the set of indices of the non-zero coefficients of *e* so that $e = \sum_{j \in J} e_j x^j$.

Decoding BCH Codes

Let *C* be a narrow sense (*b* = 1) BCH code length *n* and designed distance d = 2t + 1 over F_q , with generator polynomial *g* (we assume that *q* and *n* are relatively prime). Let α be a primitive *n*th root of unity in and extension F_{q^m} . Let r = c + e be a received word with $c \in C$ and *e* an error polynomial of weight at most *t*. Let $J \subseteq \{0, 1, 2, ..., n - 1\}$ be the set of indices of the non-zero coefficients of *e* so that $e = \sum_{j \in J} e_j x^j$.

The syndromes of *r* are defined as $h_i = r(\alpha^{i+1}) = e(\alpha^{i+1}) = \sum_{j \in J} e_j \alpha^{(i+1)j}$ for $0 \le i \le 2t - 1$ and the **syndrome polynomial** is $h = \sum_{i=0}^{2t-1} h_i x^i$.

Error locator polynomial

The polynomial $\sigma = \prod_{j \in J} (1 - \alpha^j x)$ is called the **error locator polynomial** because the inverses of its roots give the locations $j \in J$ (i.e. if we know σ then we know the error locations.

Syndrome polynomial

The syndrome polynomial can be rewritten in the following form:

$$h = \sum_{i=0}^{2t-1} \left(\sum_{j \in J} e_j \alpha^{(i+1)j} \right) x^i$$
$$= \sum_{j \in J} \sum_{i=0}^{2t-1} e_j \alpha^{(i+1)j} x^i$$

Multiplying this by σ we obtain

$$\sigma h = \sum_{j \in J} \left[e_j \alpha^j \prod_{\substack{k \in J \\ k \neq j}} (1 - \alpha^k x) \right] (1 - (\alpha^j x)^{2t})$$

and reduction modulo x^{2t} gives the congruence

$$\sigma h \equiv \sum_{j \in J} e_j \alpha^j \prod_{\substack{k \in J \\ k \neq j}} (1 - \alpha^k x) \mod x^{2t}.$$

Error evaluator polynomial

The polynomial ω on the right hand side is known as the **error evaluator polynomial**. If we know σ and ω then we can calculate the values e_i of the errors.

Key equation

The congruence

 $\sigma h \equiv \omega \mod x^{2t}$

which is universally known as the **key equation** (after Berlekamp (1968)).

Error evaluator polynomial

The polynomial ω on the right hand side is known as the **error evaluator polynomial**. If we know σ and ω then we can calculate the values e_i of the errors.

Key equation

The congruence

 $\sigma h \equiv \omega \mod x^{2t}$

which is universally known as the **key equation** (after Berlekamp (1968)).

We seek a solution (σ, ω) with $deg(\sigma) \le t$, $deg(\omega) \le deg(\sigma)$ and σ, ω relatively prime.

Solution module

We define $M = \{(a, b) \mid ah \equiv b \mod x^{2t}\}$ and call it the solution module.

Solution module

We define $M = \{(a, b) \mid ah \equiv b \mod x^{2t}\}$ and call it the solution module.

Lemma

The set $\mathcal{B} = \{(1, h), (0, x^{2t})\}$ is a basis of M. Proof. Obviously, $\mathcal{B} \subseteq M$. Now if $(a, b) \in M$ then ah - b is a multiple of x^{2t} so $(a, b) = a(1, h) - (0, ah - b) = a(1, h) + f(0, x^{2t}).$

A specific term order < in $A = \mathbb{F}_q[x]^2$

 $(1,0) < (0,1) < (x,0) < (0,x) < \cdots$ is a term order in A so for example $(3x^2 - 2x + 1, 4x^3 + x - 5) = 4(0,x^3) + 3(x^2,0) + (0,x) - 2(x,0) - 5(0,1) + (1,0).$

A specific term order < in $A = \mathbb{F}_q[x]^2$

 $(1,0) < (0,1) < (x,0) < (0,x) < \cdots$ is a term order in A so for example $(3x^2 - 2x + 1, 4x^3 + x - 5) = 4(0,x^3) + 3(x^2,0) + (0,x) - 2(x,0) - 5(0,1) + (1,0).$

GB of a submodule $N \subseteq A$

Two possibilities for a GB of N.

 $\textit{N} = \langle (\textit{a},\textit{b}) \rangle$

for some (a, b) where (a, b) is the minimal element of N.

$$N = \langle (a_1, b_1), (a_2, b_2) \rangle$$

where $lt(a_1, b_1) = (x^{p_1}, 0)$ with p_1 minimal, $lt(a_2, b_2) = (0, x^{p_2})$ with p_2 minimal, and either (a_1, b_1) or (a_2, b_2) is the minimal element of N.

Minimal element in solution module *M*

Theorem

If a solution (a, b) exists in M with $deg(a) \le t$, $deg(b) \le deg(a)$ and a, b relatively prime then (a, b) is the minimal element of M.

Minimal element in solution module *M*

Theorem

If a solution (a, b) exists in M with $deg(a) \le t$, $deg(b) \le deg(a)$ and a, b relatively prime then (a, b) is the minimal element of M.

Algorithm (PF)

Input: h, tOutput: $(a, b) \in M$ with $deg(a) \le 2t$, $deg(b) \le deg(a)$ and a, brelatively prime, if such an element exists Initialize: $(a_1, b_1) := (1, h)$; $(a_2, b_2) := (0, x^{2t})$ WHILE $deg(a_1) \le deg(b_1)$ DO [i.e. while $lt(a_1, b_1)$ on right] $(u, v) := (a_2, b_2) \mod (a_1, b_1)$ [division algorithm] $(a_2, b_2) := (a_1, b_1)$ $(a_1, b_1) := (u, v)$ $(a, b) := (a_1, b_1)$

Example: linear requiring coquenes

Solution by approximations

For $k = 0, 1, \dots 2t$ define $M_k = \{(a, b) \in A \mid ah \equiv b \mod x^k\}$.

Solution by approximations

For
$$k = 0, 1, \dots 2t$$
 define $M_k = \{(a, b) \in A \mid ah \equiv b \mod x^k\}$.

Theorem (PF)

Let $\mathcal{B} = \{(a_1, b_1), (a_2, b_2)\}$ be a GB of M_k with (a_1, b_1) minimal and let

$$a_1h - b_1 \equiv \alpha_1 x^k \mod x^{k+1}$$
$$a_2h - b_2 \equiv \alpha_2 x^k \mod x^{k+1}$$
Define $\mathcal{B}' = \{(a'_1, b'_1), (a'_2, b'_2)\}$ as follows.

If $\alpha_1 = 0$ then $(a'_1, b'_1) = (a_1, b_1), (a'_2, b'_2) = (xa_2, xb_2).$ If $\alpha_1 \neq 0$ then $(a'_1, b'_1) = (xa_1, xb_1), (a'_2, b'_2) = (a_1, b_1) - \frac{\alpha_2}{\alpha_1}(a_2, b_2).$ Then \mathcal{B}' is a GB of M_{k+1} .

Algorithm (PF)

This theorem gives an obvious algorithm (which can be improved by suppressing the computation of the b_i). The algorithm has the same complexity as Berlekamp-Massey.

Algorithm can be extended to list decoding algebraic geometry codes.

References

- See Fitzpatrick (*IEEE Trans IT 1995*) for the first paper to use this technique (simplified proof in notes)
- See chapter on coding theory in *Using Algebraic Geometry* by Cox, Little and O'Shea for a discussion in relation to RS codes.
- See Byrne and Fitzpatrick (*JSC 2000, IEEE Trans IT 2001*) for extension to codes over rings.
- See O'Keeffe and Fitzpatrick in AAECC journal (2006 or 2007) for extension to list decoding of algebraic geometry codes.