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Gröbner Bases and linear codes in the literature

To find a Gröbner basis of the error locator ideal.
A systematic method for encoding and decoding m-
dimensional cyclic codes.
The key equation and Berlekam-Massey Algorithm (BCH
codes).

Gröbner bases and the integer programing problem related
with the soft-decision maximum likelihood decoding of binary
linear block codes.

The FGLM algorithm has been connected already to coding
theory:
Related with the error locator ideal and a change of ordering.
Related with the Berlekam-Massey Algorithm.
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Gröbner Bases and linear codes in the literature

Also there are works devoted to extensions of the previous ideas to
Algebraic Geometric Codes and codes over rings.

Gröbner bases and coding theory, an incomplete list of authors:
S. Sakata, T. Mora, M. Sala, E. Orsini, P. Fitzpatrick, J.C. Faugere,
J. Fitzgerald, R.F. Lax, D. Ikegami, R. Pellikaan, S. Bulygin, ...

Our approach

(Borges-Quintana, Borges-Trenard, Mart́ınez-Moro): a Gröbner
basis is associated with the structure of the linear code.
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Overview of the method

Let A be a finitely generated algebra (we want to solve a problem
in A).

To find the appropiate morphism

ξ : K [X ] → A.

I will be the ideal such that

A ∼= K [X ]/I ∼= SpanK (N) (N: the set of canonical forms).

If A is a monoid (or group) algebra (A = K [M])

I = 〈{xw − xv | ξ(xw ) = ξ(xv ), xw , xv ∈ [X ]}〉.
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Overview of the method

ξ : K [X ] → A,

A ∼= K [X ]/I ∼= SpanK (N) (N: the set of canonical forms)

To find or construct an appropiate ordering ≺ on [X ].

Define a reduction process (s.t. it allows to solve the
problem):

? finite numbers of reductions,
? unique canonical forms.
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Overview of the method: the instance of linear codes

Having:

ξ : K [X ] → A = K [M],

K [M] ∼= K [X ]/I ∼= SpanK (N) (N: the set of canonical forms)

The instance of linear codes:
1 M = Fn−k

2 (the monoids of the syndromes).
2 ξ: gives the syndrome of each xw ∈ [X ].
3 N ⇔ the coset leaders.
4 I: we call it the ideal associated with the code.

Then, we compute a Gröbner basis of I for a convenient ordering
≺ such that:

Can(xw , I ,≺)⇔ the coset leader with syndrome ξ(xw ).
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Buchberger’s Algorithm

Input: A set of polynomials F s.t.
I = Ideal(F ),

≺ an admissible ordering on [X ].

Output: Gröbner basis of I w.r.t. ≺.

Ejemplo
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Gröbner bases (GB)

Applications Generalizations Computation
of GB

Problems related
with polynomial
ideals.

Polynomial sys-
tems of equations.

Algebraic rela-
tions, implicita-
tion, parametri-
zation, etc.

Specific
algebras

in a wide
sense

Non
commutative

case
zero-dimessional

ideals

⇓
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Computation of GB

Specialization to
specific algebras

Using other inputs

zero-dimenssional ideals

zero-dimenssional: dim K〈X〉/I < ∞

Linear Algebra in K〈X〉/I :

∀ci ∈ K, si ∈ 〈X〉
r∑

i=1

cisi ∈ I \ {0} ⇔

{s1, . . . , sr}, is linear dependent module I.
More . . .
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Gröbner Bases

The zero-dimenssional ideal case
Binary Codes

Some comments about specialized algorithms

Introduction
A monoid representation of Fn

2

Outline
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A primer on binary codes

Let F2 be the finite field of two elements. A binary code C of
dimension k and length n is the image of a linear (injective) mapping:

L : Fk
2 −→ Fn

2 k ≤ n.

There exists an n × (n − k) matrix H called parity check matrix
such that for each word (element) we have: c · H = 0⇔ c ∈ C.
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A primer on binary codes (Cont.)

The weight of a word is its Hamming distance to the word 0, i.e. the
number of non-zero coordinates of the word. The minimun distance
d of the code C is the minimum weight among all the non-zero
codewords.

The error-correcting capacity of a code is t = bd−1
2 c. If we let

B(C, t) := {y ∈ Fn
2 | ∃c ∈ C s.t. d(y , c) ≤ t}, it is well known that

the equation e ·H = y ·H has a unique solution e with weight(e) ≤ t
if y ∈ B(C, t). Then y − e ∈ C (syndrome decoding).
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A monoid representation

Let us consider the free commutative monoid [X ] generated by the
n variables X := {x1, . . . , xn}.

We have the following map from X to Fn
2:

ψ : X → Fn
2, where xi 7→ ei (the i-th coordinate vector).

The map ψ can be extended in a natural way to a morphism from
[X ] onto Fn

2, where ψ(
∏n

i=1 xβi
i ) = (β1 mod 2, . . . , βn mod 2).
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The equivalence relation RC in Fn
2

A binary code C defines an equivalence relation RC in Fn
2:

(x , y) ∈ RC ⇔ x − y ∈ C. (1)

Let ξ(xu) := ψ(xu)H (note that xu ∈ [X ]). The above congruence
can be translated to [X ] by the linear morphims ξ as

xu ∼=C xw ⇔ (ψ(xu), ψ(xw )) ∈ RC ⇔ ξ(xu) = ξ(xw ). (2)
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Gröbner Bases

The zero-dimenssional ideal case
Binary Codes

Some comments about specialized algorithms

Introduction
A monoid representation of Fn

2

The binomial ideal associated with the code

Let I (C) be the ideal associated with the relation RC on [X ], that
is:

I(C) := 〈{xw − xv | (ψ(xu), ψ(xw)) ∈ RC}〉.
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Computing the reduced Gröbner basis

Let GT be the reduced Gröbner basis of the ideal I (C) with respect

to < (a total degree compatible ordering).

There are diferent algorithmic ways of computing GT for this setting.
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FGLM algorithm for monoid algebras

FGLM algorithm for finite dimension monoid algebras:

An algorithm based on the generation of representative elements

of the quotient algebra w.r.t. a given admisible ordering (in this

case Fn−k
2
∼= K [X ]/I (C)) based on linear algebra techniques.

([4], specialized to linear codes in [1].)

Outputs: GT . It can also give a set N of representative

elements corresponding to a set of coset leaders for the

code and a matrix structure that allows to multiply the

representative elements (to sum the cosets leaders and

obtaining the corresponding coset leader).

Skip details . . .
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Monoid rings

Let M be a finite commutative monoid generated by g1, . . . , gn;

ξ : [X ]→ M, the canonical morphism that sends xi to gi ;

σ ⊂ [X ]× [X ], a presentation of M defined by ξ

σ = {(xw , xv ) | ξ(xw ) = ξ(xv )}.
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Monoid rings

ξ : [X ]→ M, the canonical morphism that sends xi to gi ;

σ ⊂ [X ]× [X ], a presentation of M defined by ξ

σ = {(xw , xv ) | ξ(xw ) = ξ(xv )}.

Then, it is known that the monoid ring K [M] is isomorphic to
K [X ]/I (σ), where I (σ) is the ideal generated by P(σ) = {xw −xv |
(xw , xv ) ∈ σ}

I (σ) = 〈P(σ)〉 = 〈{xw − xv | (xw , xv ) ∈ σ}〉.

Moreover, any Gröbner basis G of I (σ) is also formed by bino-
mials of the above form. In addition, it can be proved that
{(xw, xv) | xw − xv ∈ G} is another presentation of M.
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Moreover, any Gröbner basis G of I (σ) is also formed by bino-
mials of the above form. In addition, it can be proved that
{(xw, xv) | xw − xv ∈ G} is another presentation of M.
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Note that M is finite if and only if I = I (σ) is zero-dimensional.
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Specifying the monoid M

The monoid M is set to be Fn−k
2 (where the syndromes belong to).

Doing gi := ξ(xi ), note that

M = Fn−k
2 = 〈g1, . . . , gn〉.

Moreover, σ := RC, hence I(σ) = I(C).
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Starting from a generator matrix

Obtaining the ideal I(C): Let be {w1, . . . ,wk} be the row vectors

of a generator matrix for a code (more generally any matrix whose

rows span the code C), i.e., a basis (spanning set) of the code as

subspace of Fn
2 (see [3]). Let

I = 〈{xw1 − 1, . . . , xwk − 1} ∪ {x2
i − 1 | i = 1, . . . , n}〉 (3)

be the ideal generated by the set of binomials {xw1−1, . . . , xwk−1}∪

{x2
i − 1 | i = 1, . . . , n} ⊂ K [X ]. Since {w1, . . . ,wk} generates

C it is clear that I = I(C).
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Starting from a generator matrix

Let F = {xw1−1, . . . , xwk−1}∪{x2
i −1 | i = 1, . . . , n} ⊂ K[X],

r = k + n. There are two ways for computing GT :
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Starting from a generator matrix

Let F = {xw1−1, . . . , xwk−1}∪{x2
i −1 | i = 1, . . . , n} ⊂ K[X],

r = k + n. There are two ways for computing GT :

GT can be computed by Buchberger’s algorithm starting
with the initial set F .
However, there are some computational advantages in this
case. The coefficient field is F2 (therefore, there is no coeffi-
cient growth), and the maximal length of words in the com-
putation is n (the binomials x2

i − 1 prevent the length being
greater than n).
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Starting from a generator matrix

Let F = {xw1−1, . . . , xwk−1}∪{x2
i −1 | i = 1, . . . , n} ⊂ K[X],

r = k + n. There are two ways for computing GT :

GT can be computed by Buchberger’s algorithm starting
with the initial set F .
However, there are some computational advantages in this
case. The coefficient field is F2 (therefore, there is no coeffi-
cient growth), and the maximal length of words in the com-
putation is n (the binomials x2

i − 1 prevent the length being
greater than n). Thus the two principal disadvantages of
Gröbner basis computations are not valid for this case. In
addition, total degree compatible term orders are among the
most efficient for the computation of Gröbner bases.
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Starting from a generator matrix

Let F = {xw1−1, . . . , xwk−1}∪{x2
i −1 | i = 1, . . . , n} ⊂ K[X],

r = k + n. There are two ways for computing GT :

Using the FGLM basis convertion algorithm to obtain a

basis for the syzygy module M in K [X ]r+1 of the generator set

F ′ = {−1, f1, f2, . . . , fr}. Each of the syzygies corresponds to

a solution

f =
r∑

i=1

bi fi bi ∈ K [X ], i = 1, . . . , r .

and thus points to an element f in the ideal I generated by

F .
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Examples
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Test sets

Minimal subsets in codes

Let Fn
2 the n-dimensional coordinate space over the field F2 and

C ⊆ Fn
2 a linear code. We define the support of a codeword

c = (c1, . . . , cn) ∈ C as

supp(c) = {i ∈ {1, . . . , n} | ci 6= 0} . (4)

If supp(c′) ⊂ supp(c) (respectively ⊆) we will write c′ ≺ c (respec-
tively �).

Definition (Minimal codeword)

A nonzero vector c ∈ C is said to be minimal if 0 6= c′ � c and
c′ ∈ C then it implies that there exists a nonzero constant α ∈ F2

such that c′ = αc.
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Test sets

Test set gradient-like decoding

Definition

Any set T ⊆ C of codewords such that for every vector y ∈ Fn
2 either

y lies in C or there exists z ∈ T such that

d(y + z, 0) < d(y, 0)

is called a test set.

Note that the set of minimal codewords is a test sets.
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Test sets

A gradient-like decoding algorithm is obtained using a test set T
as follows.
Let y be the received vector

1 c← 0,

2 Find z ∈ T such that d(y + z, 0) < d(y, 0).

c← c + z and y← y + z.

3 Repeat 2. until no such z is found in T .

4 Return c.

This decoding algorithm always converges to one of the closest
codewords to the received vector.
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Let [X ] = {xa | a ∈ Nn} be the set of terms.

Let G be the reduced Gröbner basis of the ideal I (C) with respect
to the term ordering < (a total degree compatible ordering) and let
g ∈ K [X ], we denote by Can(g ,G ) the canonical form of g with
respect to the Gröbner basis G .

Theorem (GB’s Reduction means decoding)

Let C be a linear code. Let xw ∈ [X ] and xv ∈ N its corresponding
canonical form. If weight(ψ(xv )) ≤ t then ψ(xv ) is the error vector
corresponding to ψ(xw ). Otherwise, if weight(ψ(xv )) > t, ψ(xw )
contains more than t errors. (t is the error correcting capability)
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If g = xw − xv ∈ I (C) denote by cg the codeword associated to the
binomial g , that is,

cg = ψ(xw) + ψ(xv)

Definition

Let G be a Gröbner basis with respect to the term ordering < of
the binomial ideal I (C). The Gröbner codewords set w.r.t. G is

CG = {cg | g ∈ G} \ {0}.
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Theorem

The elements of the set CG of Gröbner codewords are minimal code-
words of the code C.

Not every minimal codeword is a Gröbner codeword! Not even for
a border basis of C.
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The Gröbner decoding algorithm

The theorem allows us to perform a gradient-like decoding algorithm
but according to < instead of the weight of the vectors. Thus we
say that the set of Gröbner codewords is a “test set”.

Input: CG and y a received vector.
Output: One of the closest codewords to y.

1 i := 0; vi = y; ci = 0.

2 Repeat
3 Find w ∈ CG such that xvi > xvi+1 and vi+1 = vi + w.
4 ci+1 = ci + w; i = i + 1

5 Until such a w does not exist.
6 Return[ci ].
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Gröbner test sets
Worked example

Remarks and Complexity

other structures (Matphi and border basis)

Worked example

Consider the code C in F6
2 (a [6, 3, 3] binary linear code) with

generator matrix:

G =

 1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

 .

The set of codewords is

C = {(0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 0, 0),

(1, 1, 0, 0, 1, 0), (0, 1, 0, 1, 0, 1),

(0, 0, 1, 0, 1, 1), (1, 1, 1, 0, 0, 1),

(0, 1, 1, 1, 1, 0), (1, 0, 0, 1, 1, 1)}
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other structures (Matphi and border basis)

The reduced Gröbner basis of I (C) with respect to the degree
reverse Lexicographical ordering < is

G = {x2
1 − 1, x2

2 − 1, x2
3 − 1, x2

4 − 1, x2
5 − 1, x2

6 − 1,
x1x2 − x5, x1x3 − x4, x1x4 − x3, x1x5 − x2,
x2x3 − x1x6, x2x4 − x6, x2x5 − x1, x2x6 − x4,
x3x4 − x1, x3x5 − x6, x3x6 − x5,
x4x5 − x1x6, x4x6 − x2, x5x6 − x3}.

Therefore the code is 1-correcting (i.e. t = 1) and the set of
Gröbner codewords is

CG =

{
(1, 1, 0, 0, 1, 0), (1, 0, 1, 1, 0, 0), (0, 1, 0, 1, 0, 1),
(0, 0, 1, 0, 1, 1), (1, 1, 1, 0, 0, 1), (1, 0, 0, 1, 1, 1)

}
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1 If we recive y = (1, 1, 0, 1, 1, 0); then

c1 := (1, 1, 0, 0, 1, 0) and y1 = y + c1 = (0, 0, 0, 1, 0, 0).

Since d(y1, 0) = 1, i.e. the codeword corresponding to y is c1.

2 Let y = (1, 1, 0, 1, 0, 0); then

c1 := (0, 1, 0, 1, 0, 1) and y1 = y + c1 = (1, 0, 0, 0, 0, 1).

y1 can not be reduced following the algorithm; thus,
d(y1, 0) > 1; and in this case y contains more errors than the
error-correcting capability of the code. However, note that c1

is the closest codeword to y.

Skip . . .
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other structures (Matphi and border basis)

Example: Other outputs

N = {1, x1, x2, x3, x4, x5, x6, x1x6};
Matphi (Practical representation):

ψ(w) φ(w , xi )
↓ ↓

w −→ 1 −→ [ [ [0, 0, 0, 0, 0, 0], 1, [2, 3, 4, 5, 6, 7] ],
x1 −→ [ [1, 0, 0, 0, 0, 0], 1, [1, 6, 5, 4, 3, 8] ],
x2 −→ [ [0, 1, 0, 0, 0, 0], 1, [6, 1, 8, 7, 2, 5] ],
x3 −→ [ [0, 0, 1, 0, 0, 0], 1, [5, 8, 1, 2, 7, 6] ],
x4 −→ [ [0, 0, 0, 1, 0, 0], 1, [4, 7, 2, 1, 8, 3] ],
x5 −→ [ [0, 0, 0, 0, 1, 0], 1, [3, 2, 7, 8, 1, 4] ],
x6 −→ [ [0, 0, 0, 0, 0, 1], 1, [8, 5, 6, 3, 4, 1] ],

x2x3 −→ [ [0, 1, 1, 0, 0, 0], 0, [7, 4, 3, 6, 5, 2] ] ]

Skip . . .
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Gröbner test sets
Worked example

Remarks and Complexity

other structures (Matphi and border basis)

Example: Decoding

(i.) y ∈ B(C , t) : y = (1, 1, 0, 1, 1, 0); wy := x1x2x4x5; φ(1, x1) = x1;

φ(x1, x2) = x5; φ(x5, x4) = x2x3; φ(x2x3, x5) = x4, this means

e = ψ(x4) = (0, 0, 0, 1, 0, 0), weight(e) = 1 then, the codeword

corresponding to y is c = y − e = (1, 1, 0, 0, 1, 0).

(ii.) y /∈ B(C , t) : y = (0, 1, 0, 0, 1, 1); wy := x2x5x6; φ(1, x2) = x2;

φ(x2, x5) = x1; φ(x1, x6) = x2x3; e = (0, 1, 1, 0, 0, 0); weight(e) > 1

then, we report an error in the transmission process.

Borges, Borges, Mart́ınez Gradient-like decoding of binary linear codes



Gradient decoding of binary codes
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Gradient decoding of binary codes
Gröbner test sets
Worked example

Remarks and Complexity

Some computations with the binary Golay Code

We use the GAP package GUAVA to construct a generator matrix of
the binary Golay code [23, 12, 7] and GBLA LC: a group of programs
made in GAP to carry out our approach.

The code has 4096 codewords, 2048 syndromes.

1 Computing the reduced Gröbner basis (Gr): 17.42 min.

2 Computing the border basis (BB): 13.34 min.

3 | Gr |= 8878.

4 | BB |= 14697.

5 CGr = CBB and | CGr |= 253.
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Gröbner test sets
Worked example

Remarks and Complexity

Some computations with the binary Golay Code

Computing the reduced Gröbner basis in some system of Sym-
bolic Computation:

Mathematica (4.0): was interrupted after 4 hours.

Maple (9.0): was interrupted after 4 hours.

Singular (3-0-0): it succeeded in 2 hours.
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Gradient decoding of binary codes
Gröbner test sets
Worked example

Remarks and Complexity

The decoding procedure is a complete decoding procedure,
that is, it always finds the codeword that is the closest to the
received vector.

Furthermore, with the same procedure it is easy to know
whether the result is reliable or not, if d(vi , 0) ≤ t then ci is
the codeword corresponding to y, where t is the
error-correcting capability of C. As a byproduct of the
computation of CG it is possible to obtain t.

Generalizations to linear codes is possible by using the border
basis, the extension of the ordering “the error vector ordering”
(not anymore a degree compatible ordering) is not admissible.

Borges, Borges, Mart́ınez Gradient-like decoding of binary linear codes



Gradient decoding of binary codes
Gröbner test sets
Worked example

Remarks and Complexity

The decoding procedure is a complete decoding procedure,
that is, it always finds the codeword that is the closest to the
received vector.

Furthermore, with the same procedure it is easy to know
whether the result is reliable or not, if d(vi , 0) ≤ t then ci is
the codeword corresponding to y, where t is the
error-correcting capability of C. As a byproduct of the
computation of CG it is possible to obtain t.

Generalizations to linear codes is possible by using the border
basis, the extension of the ordering “the error vector ordering”
(not anymore a degree compatible ordering) is not admissible.

Borges, Borges, Mart́ınez Gradient-like decoding of binary linear codes



Gradient decoding of binary codes
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Gröbner test sets
Worked example
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Complexity

Preprocesing Computing the reduced Gröbner basis or the border
basis performed O(n22n−k) operations.

Decoding The decoding complexity depends on the size of CG
(or CB) and the number of reductions. The number
of reductions for CB is less than n.

Computing t The error correction capability of an arbitrary linear
code (not neccesary binary) can be computed in at
most m · n · S(t + 1) itererations of the Algorithm
showed in B.,B. & M. where

S(l) =
l∑

i=0

(
n
i

)
(q − 1)i .
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Gröbner test sets
Worked example

Remarks and Complexity

Complexity

Preprocesing Computing the reduced Gröbner basis or the border
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Dualities: Möller Algorithm. Comm. Algebra 31(2), 783-818, 2003.

M. A. Borges-Trenard, M. Borges-Quintana, and T. Mora.
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Appendix
Introduction to Gröbner Bases

The zero-dimenssional ideal case

Admissible ordering

≺ is admissible on 〈X〉:

If it is a total ordering on 〈X 〉 s.t., for all s, t, u ∈ 〈X 〉:
i) 1 � s.

ii) t ≺ u : (st ≺ su and ts ≺ us).

Return
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Appendix
Introduction to Gröbner Bases

The zero-dimenssional ideal case

Example of a Gröbner basis

F := { x2 − 1, x2y − 1 },

p := x2y2 − y2.

Reducing p module F:

With x2y − 1: y − y2 = x2y2 − y2 − (x2y − 1)y.

With x2 − 1: 0 = x2y2 − y2 − (x2 − 1)y2.

G := { x2 − 1, y − 1 } is a Gröbner basis for Ideal(F).

Return
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F := { x2 − 1, x2y − 1 },

p := x2y2 − y2.

Reducing p module F:

With x2y − 1: y − y2 = x2y2 − y2 − (x2y − 1)y.

With x2 − 1: 0 = x2y2 − y2 − (x2 − 1)y2.

G := { x2 − 1, y − 1 } is a Gröbner basis for Ideal(F).
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The zero-dimenssional ideal case

Definition of Gröbner basis

I = Ideal(F ), let T≺(I ) = {T (f ) | f ∈ I} be the semigroup ideal of
the maximal terms of I with respect to (w.r.t.) ≺.

G is a Gröbner basis of I w.r.t. ≺ if and only if

T(I) = 〈T{G}〉.

The set of maximal terms of I is generated by the set of maximal
terms of G .

Top Back
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The zero-dimenssional ideal case

Applications of GB

? Algebraic Geometry.

? Coding Theory.

? Criptography.

? Differential Equations.

? Integer Programming.

? Statistics.

Return
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Introduction to Gröbner Bases

The zero-dimenssional ideal case

GBLA: Gröbner bases by linear algebra

GBLA ≡ FGLM techniques (in a more general sense).
Let < be a fixed term ordering on 〈X 〉, I a zero-dimenssional ideal.

SpanK (N<(I )) is represented by !

• a K -vector space E with an effective function
LinearDependency[v , {v1, . . . , vr}]

{v1, . . . , vr} ⊂ E linear independent vectors {λ1, . . . , λr} ⊂ K si v =
∑r

i=1 λivi ,
False if v is not a linear combination of

{v1, . . . , vr}.

• an injective morphism ξ : SpanK (N<(I )) 7→ E .

Back More . . .
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The zero-dimenssional ideal case

GBLA pattern algorithm

Input: ≺, a term ordering on 〈X 〉;
ξ : SpanK (N<(I )) 7→ E , a suitable representation of
SpanK (N<(I )).

Output: rGb(I ,≺).

< could be equal to ≺.

Top Back More . . .
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The zero-dimenssional ideal case

GBLA algorithm !
1. G := ∅; List := {1}; N := ∅; r := 0;
2. While List 6= ∅ do
3. t := NextTerm[List];
4. If t /∈ T≺(G ) then
5. v := ξ(Can(t, I, <)); ⇐=
6. Λ := LinearDependency[v, {v1, . . . , vr}]; ⇐=
7. If False 6= Λ then G := G ∪ {t −

∑r
i=1 λi ti}

(where Λ := (λ1, . . . , λr ))

8. else r := r + 1
9. vr := v ;
10. tr := t; N := N ∪ {tr};
11. List := InsertNexts[tr , List];
12. Return[G ].

Top Back More . . .
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The zero-dimenssional ideal case

GBLA: Main objects

N: A set of representative elements for
K 〈X 〉/I .

Matphi (φ): ? Allows to perform multiplication in N.

? To reduce an element in K 〈X 〉 to its
representative in N
(Allows to solve the Word Problem).

Top Back More . . .
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The zero-dimenssional ideal case

Other possible outputs

Gröbner representation: (N, φ), N := {h1, . . . , hs} s.t:

K 〈X 〉/I ∼= SpanK (N), and

Matphi structure:

φ(k) : N × X −→ K

∀ (hixk =
∑s

j=1 φ(k)[hi , xj ]hj). (in the quotient)

i ∈ [1, s]

Border basis: B(I ,≺) := {w − Can(w , I ,≺) | w ∈ B≺(I )}
B≺(I ) = {w | w ∈ T (I ) and ∃ v ∈ N and x ∈ X s.t. w = vx}

(the border of T (I )).

N = N≺(I) if ≺ is admissible.

Top Back
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