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The matrix A is considered to be n-by-n with entries aij throughout. We also suppose 
that A is row diagonally dominant (DD), i.e. |aii| ≥

∑
j �=i |aij |, and invertible. (There 

are corresponding statements for column DD.) Invertibility is often a consequence of 
DD, but not always. For example, strict diagonal dominance or irreducible diagonal 
dominance suffices [2], but is not necessary as indicated by

(
1 0

1/2 1

)
or

(
1 1

−1 1

)
.

Diagonal dominance means that the diagonal entry in each row is rather big, occupying 
at least half the weight. One of our purposes is to show that the diagonal entries of the 
inverse are also “big” in at least two senses, an absolute size sense and relative to column 
entries. At first this seems no surprise, as AA−1 = I, but it is, by no means, trivial from 
this. Some of what we say generalizes known facts about M -matrices. But, we were also 
motivated by questions coming from international trade theory in economics, whence 
M -matrices also arise [4,3]. In any event, these observations make a nice addition to core 
matrix analysis and will likely be useful elsewhere.

By |A| we mean the entry-wise absolute value of A: |A| = (|aij |). Of course, A is row 
(column) DD if and only if |A| is. We take our matrices to be real-entried. If e, as usual, 
is the n-vector of all ones, let r(A) = |A|e, the vector of absolute row sums of A and let 
Dr be the diagonal matrix such that Dre = r(A). Then, assuming A has no zero rows, 
|D−1

r A| is row stochastic and row DD if A is row DD. It is the case of row stochastic, 
DD matrices that generated the original motivating interest in international trade theory 
and these will be special cases of work here.

In case A is real and DD, then sgn(detA) = sgn(
∏n

i=1 aii), weakly. If A is invertible, 
the equality is precise.

Let A(i; j) denote the (n − 1)-by-(n − 1) submatrix of A resulting from deletion of 
row i and column j. Of course, A(i; i), or for short A(i), is a principal submatrix. Our 
first major fact is

Theorem 1. Let A ∈ Mn(R) be such that for some R ≥ 1:

R
∑
j �=i

|aij | ≤ |aii| , i = 1, . . . , n. (1)

Then also

R |detA(i; j)| ≤ |detA(i)| for j �= i. (2)

For R = 1, Theorem 1 yields

Corollary 2. If A ∈ Mn(R) is row DD, then

|detA(i; j)| ≤ |detA(i)|, j = 1, 2, . . . , n.
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(In case the DD is strict and j �= i, the above inequality is strict.)

Proof of Theorem 1. We can assume that the diagonal of A is nonnegative because all 
the minors of

diag (sgn(a11), . . . , sgn(ann))A

in absolute value are equal to the ones of A and the previous matrix has nonnegative 
diagonal. Note that in this case detA(i) is nonnegative.

It suffices to show that

R|det(A(1; j)| ≤ detA(1),

or, equivalently,

detA(1) ±R detA(1; j) ≥ 0; (3)

for others values of i the proof will be analogous.
Let Cr denote the r-th column of A without the first entry:

Cr = (a2r, . . . , anr)T ,

so that

A(1; j) = (C1, . . . , Cj−1, Cj+1, . . . , Cn) and A(1) = (C2, . . . , Cn).

Then (3) can be rewritten as

det(C2, . . . , Cn) ±R det(C1, . . . , Cj−1, Cj+1, . . . , Cn) ≥ 0,

or, equivalently, detA± ≥ 0, where

A± =: (C2, . . . , Cj−1, Cj ± (−1)jRC1, Cj+1, . . . , Cn)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a22 . . . a2j−1 a2j ± (−1)jRa21 a2j+1 . . . a2n
...

...
...

...
...

...
... ajj ± (−1)jRaj1

...
...

...
...

...
...

...
an2 . . . anj−1 anj ± (−1)jRan1 anj+1 . . . ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that the matrices A± have nonnegative diagonal entries and are row DD. Indeed, 
arr ≥ 0 by assumption, while ajj ±Raj1 ≥ 0 due to (1). Furthermore, also due to (1):
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aii ≥ R
∑
k �=i

|aik| = R
∑

k �=i,j,1

|aik| + R |ai1| + R |aij | ≥
∑

k �=i,j,1

|aik| + |ai1 ±Raij |

and

|ajj ±Raj1| ≥ |ajj | −R |aj1| ≥ R
∑
k �=j,1

|akj | ≥
∑
k �=j,1

|akj | .

The non-negativity of detA± follows. �
We say that a matrix A is diagonally dominant of its (off-diagonal) column entries if, 

for i = 1, . . . , n,

|aii| ≥ |aji|, j = 1, . . . , n.

This, of course, is strictly weaker than the traditional diagonal dominance. If the inequal-
ity is strict, for j �= i, we refer to this dominance as strict. A restatement of Theorem 1
generalizes the known case of diagonally dominant M -matrices [2].

Corollary 3. If A ∈ Mn(R) is row DD and invertible, then A−1 is diagonally dominant 
of its column entries. If the row DD is strict, then the invertibility of A is ensured and 
the diagonal dominance of the column entries in A−1 is also strict.

Proof. This is a restatement of Corollary 2, using the co-factor form of the inverse. �
Recall that C is the comparison matrix for A if cii = |aii| , cij = − |aij |, i, j =

1, . . . , n; i �= j. An H-matrix is a matrix with its comparison matrix an M -matrix. Of 
course, the comparison matrix of an M -matrix is this matrix itself, and so M -matrices 
are H-matrices by default. According to [1, Theorem 5.7.5], if A, B ∈ Mn(R) are M -
matrices, then so is the Hadamard product A ◦ B−1. With the use of Corollary 3, we 
have the following generalization.

Theorem 4. Let A, B ∈ Mn(R) be H-matrices. Then A ◦B−1 also is an H-matrix.

Proof. The characteristic property of H-matrices is that they become strictly row DD 
upon multiplying on the right by a suitable diagonal matrix with positive diagonal 
entries. So, let D be the respective diagonal matrix for A, and E for BT . Applying 
Corollary 3 to BTE we find that B−1E−1 is diagonally dominant of its row entries. A 
direct computation shows that then (AD) ◦ (B−1E−1) is strictly row DD along with 
AD. It remains to observe that (AD) ◦ (B−1E−1) = (A ◦ B−1)(DE−1) and invoke the 
invariance of H-matrices under right multiplication by positive diagonal matrices. �
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Corollary 5. If A ∈ Mn(R) is row DD, then, for i = 1, . . . , n,

|detA| ≤

⎛
⎝ n∑

j=1
|aij |

⎞
⎠ |detA(i)|,

with strict inequality when the dominance is strict.

Proof. We have

|detA| =

∣∣∣∣∣∣
n∑

j=1
(−1)i+jaij detA(i; j)

∣∣∣∣∣∣ ≤
n∑

j=1
|aij detA(i; j)|

= |aii detA(i)| +
n∑

j = 1
j �= i

|aij detA(i; j)|

≤ |aii detA(i)| +
n∑

j = 1
j �= i

|aij detA(i)| =

⎛
⎝ n∑

j=1
|aij |

⎞
⎠ |detA(i)|. �

Corollary 6. If A ∈ Mn(R) is row stochastic, and row DD and invertible, then each 
diagonal entry of A−1 is at least 1. If the dominance is strict, the diagonal entries of 
A−1 are all strictly greater than 1.

Proof. Note that because A is invertible, nonnegative, and row DD, then sgn(detA) =
sgn(

∏n
i=1 aii) > 0 and detA(i) ≥ 0 for i = 1, . . . , n. If we apply Corollary 5 to the matrix 

A we have detA ≤ detA(i) for i = 1, . . . , n. So the element (i, i) of A−1 is

detA(i)
detA ≥ 1. �

The row stochastic case may be generalized as follows.

Theorem 7. If A ∈ Mn(R) is row DD and invertible, then

∣∣(A−1)ii
∣∣ ≥ 1

(|A|e)i
.

This inequality is strict when the dominance is strict.

Proof. The theorem follows from Corollary 6 via left multiplication by D−1
r and calcu-

lation. �
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We note that when the dominance is weak (equality in each row), the matrix may 
be invertible, without further assumption, and if it is invertible the inequalities, given 
for the diagonal entries of the inverse may or may not be strict. We illustrate this in 
the row stochastic case. We note that in the 2-by-2 row stochastic case, invertibility 
cannot occur, though it can in the non-row-stochastic, as illustrated by the example, 
earlier.

Example 8. The row stochastic matrix

A =

⎛
⎜⎝ 1/2 1/2 0

0 1/2 1/2
1/2 0 1/2

⎞
⎟⎠

has all dominance inequalities weak, but

A−1 =

⎛
⎜⎝ 1 −1 1

1 1 −1
−1 1 1

⎞
⎟⎠

exists. But the diagonal entries are all 1, so that equality can occur in Corollary 6.

Example 9. On the other hand

A =

⎛
⎜⎝ 1/2 1/4 1/4

1/4 1/2 1/4
1/4 1/4 1/2

⎞
⎟⎠

is also invertible,

A−1 =

⎛
⎜⎝ 3 −1 −1

−1 3 −1
−1 −1 3

⎞
⎟⎠ ,

but its diagonal entries are all > 1.

It appears that for n ≥ 3, row stochastic, row DD matrices are generically invertible 
and usually have inverse diagonal entries > 1. Real (weakly) row DD matrices seem also 
to be invertible and usually satisfy the inequalities of Theorem 7 strictly.
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