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A B S T R A C T

We identify the class of real square invertible matrices A for which the signs of the diagonal entries of A�1 match
those of A, and begin their study. We say such matrices have the inverse diagonal property (IDP). This class
includes many important classes: the positive definite matrices, the M-matrices, the totally positive matrices and
some variants, the P-matrices, the diagonally dominant and H-matrices and their inverse classes, as well as
triangular matrices. This class is closed under any real invertible diagonal multiplication on either the right or the
left. So questions about this class can be reduced to the case of positive diagonal entries. Other basic properties are
given. One theme is what conditions need be added to the IDP to insure membership in a familiar class. For
example, the positive definite matrices are characterized as certain IDP matrices with special conditions on certain
particular principal minors. The tridiagonal case is highlighted. Certain specially simple conditions on such
matrices are mentioned that ensure them to be P-matrices, positive definite matrices or M-matrices. We also note
that recent results about the invertibility of weakly diagonally dominant matrices are used. Examples are given
throughout the paper.
Introduction

Suppose that A 2 MnðRÞ, A ¼ (aij), is invertible. We are interested in
the situation in which the i-th diagonal entry of A�1 has the same sign as
aii, i ¼ 1,…, n, i.e. diag(A)◦diag(A�1) > 0 (no 0 diagonal entries). Here ◦
denotes the Hadamard product. For brevity, we say that A has the inverse
diagonal property (IDP) or A is IDP. For example, if

A ¼
2
4

1 0 �1
0 �1 1
�1 1 �2

3
5;

then

A�1 ¼ 1
2

2
4

1 �1 �1
�1 �3 �1
�1 �1 �1

3
5;

and, as the diagonal entries match in sign, A has the IDP.
Several special types of IDPmatrices will be of interest. If the diagonal

entries of A are all positive, we say that A has the positive IDP, or P-IDP. If
A has positive (negative) determinant, we indicate this as IDPþ (IDP�),
and when A is symmetric, we say “symmetric IDP”. Of course,
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are matrices with the inverse
combinations are possible, such as symmetric P-IDPþ, which means that
A is symmetric with positive diagonal entries and determinant.

As we will see, (1) for general matrices, the general IDP may be
reduced to the P-IDP, and (2) the IDP unites many familiar and important
classes of matrices.

Here, our purpose is two-fold: (1) to lay the groundwork for a problem
we have found to be worthy of study; and (2) to give some specific results
and limiting examples about the topic. In the next section, we give some
examples (not necessarily all) of important classes that enjoy the IDP,
mostly P-IDPþ. In Sections Closure Properties and Observations we give
some closure properties for the IDP class(es) and some basic observations
that underlay analysis of the IDP. We consider in Section The Positive
Definite Case the relationship between positive definite (PD) matrices
and the symmetric P-IDPþ. In Section Tridiagonal Matrices, we make
some initial observations about the tridiagonal case. This suggests further
study of related ideas about tridiagonal matrices, which we anticipate.
Finally, in Section Diagonally Dominant Matrices, we consider strictly
(and invertible weakly) diagonally dominant (DD) matrices. They are
(both) IDP, and we extend some ideas of (Johnson et al., 2023; Johnson
et al.). In (Johnson et al.), inequalities were obtained for the inverse
diagonal entries of row stochastic diagonally dominant matrices. This
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raises the question of when a weakly diagonal dominant matrix is
invertible, which was addressed in (Johnson et al., 2023). However, in
(Johnson et al., 2023) it was not noticed that a weakly diagonal dominant
invertible matrix is IDP, which we show in the last section. The example
above is weakly DD.

There are other perspectives on matrix sign patterns including those
of the inverse entries (Eschenbach et al., 1999; Ma and Zhan, 2014; Roy
and Xue, 2021).

We use the standard principal submatrix notation throughout:
A[i1, …, ik] means the principal submatrix of A lying in the rows and
columns {i1, …, ik}⊆{1, …, n} and A(i) means the principal submatrix of
A obtained deleting the row and column i 2 {1, …, n}.

Examples of familiar IDP classes

We were motivated in part by a question posed by Jordan Norris
(economist, NYU) to Charles Johnson, stemming from economic equi-
librium analysis, about the case of strictly (row or column) diagonally
dominant (DD) matrices. They do have the IDP property, as one might
guess from (Johnson et al., 2023). We verify this directly in Section
Diagonally Dominant Matrices and extend it to the weakly DD, but
invertible case, as studied in (Johnson et al.).

In fact the IDP notion unites many familiar and important classes of
matrices, and our purpose here is to mention several of them.

The PD matrices are symmetric P-IDPþ, as they are closed under
inversion and necessarily have positive diagonal entries (Horn and John-
son, 2013). Not all symmetric P-IDPþ matrices are PD, but in Section The
Positive Definite Case we investigate the relationship more deeply and
determinewhat additional hypotheses areneeded togive a converse. This is
especially interesting in the tridiagonal case, Section Tridiagonal Matrices.

A nonsingular M-matrix is a Z-matrix:

2
66664

þ
þ �=0

⋱
�=0 þ

þ

3
77775

(positive diagonal entries and nonpositive off-diagonal entries), with
entry-wise nonnegative inverse (Horn and Johnson, 2013). The proper-
ties of M-matrices often parallel those of PD matrices, and that is so here.
The M-matrices are P-IDPþ and, in pursuit of a converse, there are par-
allel statements.

Matrix A is totally positive (TP) if all its minors are positive (Fallat and
Johnson, 2011). The TP matrices are also P-IDPþ.

For the totally nonnegative (TN) matrices, the minor conditions are
relaxed to “nonnegative”. Such matrices may, or may not, be nonsingular.
However, when they are, the diagonal entries and, in fact, all principal
minors must be positive, because the inequalities of Hadamard and Fischer
hold (Fallat and Johnson, 2011). Thus, invertible TN-matrices are P-IDPþ.
The “sign regular”matrices may or may not be IDP, but when they are not,
the inverse diagonal signs will be the opposite of the diagonal ones. It
depends on the sequence of signs defining the sign regular class.

Clearly, an invertible diagonal matrix is IDP. But, also invertible
(upper or lower) triangular matrices are IDP. These matrices have an
even stronger property. The diagonal entries of the inverse are the in-
verses of the diagonal entries of the original matrix.

The P-matrices (all principal minors positive) are also P-IDPþ as they
are inverse closed. They include several of the above classes, but are
much less structured.
Closure properties

The IDPmatrices are naturally closed under inversion, as are each IDP
variant. So, for example, the inverse M-matrices are P-IDPþ, as the
M-matrices are.
2

If A 2 MnðRÞ is invertible and P is any permutation matrix in MnðRÞ,
since ðPTAPÞ�1 ¼ PTA�1P, the IDP matrices, as well as each variant, are
closed under permutation similarity. The same applies to any diagonal
similarity.

If A is IDP and D is any invertible diagonal matrix then
(DA)�1 ¼ A�1D�1 ((AD)�1 ¼ D�1A�1). Since the signs of the diagonal
entries are changed in the same way in each, DA is IDP if and only if A is
IDP. So, in particular, the IDP is unchanged by left or right multiplication
by either a positive diagonal matrix or a signature matrix. Since a
signature multiply can change the diagonal signs, the general IDP prob-
lem may always be changed to the P-IDP problem, the natural special
case to study. Then P-IDPþ [ P-IDP� is the general problem. In either
case, using a further positive diagonal multiply (or positive diagonal
congruence in the symmetric positive diagonal case), we may assume 1's
on the diagonal of A if A is P-IDP.

Observations

In a sense, IDPmay be checked in a simple way; however wewantmore

interesting observations. If det(A) > 0, since ðA�1Þii ¼ det AðiÞ
detðAÞ , A is IDPþ if

and only if det A(i) and aii have the same (nonzero) sign, i¼ 1,…, n, i.e. aii
det A(i) > 0. Similarly, if det A < 0, then IDP� means aii det A(i) < 0.
In either event, for A to be IDP, aii det A(i) must have the same sign as
det A, i ¼ 1, …, n.

Since the inverse of a direct sum of matrices is the direct sum of the
inverses, the direct sum of two (or more) matrices is IDP if and only if
each is IDP. Similarly, a block triangular matrix is IDP if and only if each
diagonal block is IDP. So, it suffices to consider irreducible IDP matrices.

Another interesting variant of IDP is “inheritted IDP” by which we
mean that A and each leading principal submatrix of A has the IDP.
Again, the variants mentioned before are possible. Of course, a strictly
DD matrix is naturally inheritted IDP. As in the strictly DD case, the sign
of the determinant of an inheritted IDP matrix is the same as that of the
product of its diagonal entries (by induction).

We also note that the set of IDP matrices (and of each variant) is open
in MnðRÞ.

The positive definite case

As mentioned, all PD matrices are symmetric P-IDPþ. In the presence
of symmetry, to what extent is there a converse? To see that the converse
is not generally so, consider the following.

Example 1. The matrix

A ¼

2
664

1 �5 10 �2
�5 1 �5 10
10 �5 1 �5
�2 10 �5 1

3
775

is symmetric P-IDPþ and not PD. Observe that

A�1 ¼ 1
483

2
664
39 40 75 53
40 8 15 75
75 15 8 40
53 75 40 39

3
775:

This raises the question of what additional (minimal?) hypotheses
permit a converse, i.e., the implication that P-IDPþ implies PD. First, we
note.

Theorem 2. If n < 4, then a symmetric P-IDPþ matrix is PD.

Proof. The cases n ¼ 1 and n ¼ 2 are straightforward. Suppose that n ¼
3. As is well-known (Horn and Johnson, 2013), we only need show that
the leading principal minors of such a matrix are positive. (We will use
this fact again.) As the diagonal entries are positive, the first leading
principal minor is positive. The determinant is positive, as we are in
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IDPþ. The second leading principal minor is positive as it is the numer-
ator of the third diagonal entry of the inverse (with positive denominator,
as the determinant is positive). See Section Observations.

Theorem 3. For a symmetric A 2 MnðRÞ, A is PD if and only if A is an
inheritted P-IDPþ matrix.

Proof. Since PD is an inheritted property and we have mentioned that
PD matrices are symmetric P-IDPþ, the forward implication is clear.
Conversely, if A is inheritted P-IDPþ, then each leading principal minor is
positive and A is PD.

In fact, the proof of the backward implication only needs to use in-
heritance by the leading principal minors 3 to (n � 2). We also note that,
for n ¼ 4, when just P-IDPþ is not sufficient, the only counterexamples
may be shown to be essentially positive (entry-wise) (signature similar to
a positive matrix) as in Example 1. In general, we have.

Theorem 4. For symmetric A 2 MnðRÞ, the following are equivalent:

1. A is PD;
2. A is P-IDPþ and det A[1, 2, …, k] > 0, k ¼ 2, …, n � 2 (equivalently,

det A[k, …, n � 1, n] > 0, k ¼ 3, …, n � 1); and
3. A is P-IDPþ and A[1, …, n � 2] is PD (equivalently, A[3, …, n] is PD).
Proof. That 1. implies 2. and 3. is clear from prior comments and the
fact that all principal minors are positive in a PD matrix. Conversely, we
show that either 2. or 3. imply that the leading principal minors are all
positive. We proof the result assuming the hypotheses on the leading
principal submatrices. For the trailing ones, the proof is analogous. In the
case of 2., the only ones not explicitly mentioned are the first diagonal
entry and the last 2 leading principal minors. The diagonal entry and the
determinant are part of the definition of P-IDPþ, and the penultimate
leading principal minor is the numerator of the last diagonal entry of A�1.
The argument for 3. implies 1. is similar. Notice that in the presence of
P-IDPþ, the additional hypotheses of 2. and 3. are equivalent.

If we assume that A 2 MnðRÞ has the Z-sign pattern, there are parallel
theorems in which “PD” is replaced by “M-matrix”.

Tridiagonal matrices

When A is tridiagonal, the (n � 1)-by-(n � 1) principal submatrices
missing an interior row and column break into direct sums. This is
helpful. Again, positive definite and M-matrices may be studied in
parallel.

First, we ask how large n may be so that all symmetric tridiagonal
P-IDPþ matrices are PD, the analog of Theorem 2.

Lemma 5. A 3-by-3 symmetric tridiagonal matrix with positive diago-
nal entries is PD if and only if its determinant is positive.

Proof. A simple calculation shows that the positivity of the determinant
(and that of either the 1,1 or 3,3 diagonal entry) implies that of either the
leading or trailing 2-by-2 principal minors. Thus, both the leading and
trailing principal minors are positive and the matrix is PD.

We note that Lemma 5 has generalizations that we do not need here.

Theorem 6. Suppose A 2 MnðRÞ is symmetric tridiagonal and n < 6.
Then, A is P-IDP þ if and only if A is PD.

Proof. Again, we have already noted the reverse implication (without
the tridiagonal hypothesis). For the forward implication, the case n < 4
follows from Theorem 2. When n ¼ 4, 5, the hypothesis implies that each
of the (n � 1)-by-(n � 1) principal minors is positive. Noting that the
interior ones reduce in the tridiagonal case, we have

det A½1; 2; 3� > 0
det A½1; 2� > 0 ðas a44 > 0Þ;

when n ¼ 4, and
3

det A½1; 2; 3; 4� > 0
det A½1; 2; 3� > 0 ðas a55 > 0Þ

det A½1; 2� > 0 ðby Lemma 5Þ;

when n ¼ 5. Since a11, det A > 0 by the definition of P-IDPþ, this
means that the leading principal minors of A are all positive, and because
of symmetry, A is PD.

Example 7. A 6-by-6 symmetric tridiagonal P-IDPþ matrix that is not
PD is

2
6666664

1 3 0 0 0 0
3 1 5 0 0 0
0 5 1 3 0 0
0 0 3 1 5 0
0 0 0 5 1 3
0 0 0 0 3 1

3
7777775
:

Now, we may say exactly what need be added to P-IDPþ in the
symmetric tridiagonal case to ensure PD. Note that a forward/backward
symmetry occurs in the next result (as happened in Theorem 4).

Theorem 8. Suppose A 2 MnðRÞ is symmetric and tridiagonal.

1. If n ¼ 6, A is PD if and only if A is P-IDPþ and det A[1,2] > 0 (equiv-
alently, det A[5,6] > 0).

2. If n > 6, the following are equivalent:
(a) A is PD;
(b) A is P-IDPþ and det A[1, 2, …, k] > 0, k ¼ 3, …, n � 4 (equiva-

lently, det A[k, …, n � 1, n] > 0, k ¼ 5, …, n � 2); and
(c) A is P-IDPþ and A[1, …, n � 4] is PD (equivalently, A[5, …, n] is

PD).
Proof. In 1. and 2., PD is sufficient and we wish to show the reverse
implication by showing that the hypothesis implies that the
leading principal minors of A are positive. Again P-IDPþ implies that
det A(i) > 0, i ¼ 1, …, n, and some of the A(i) are reducible. In case 1.,
taking into account Theorem 4, we just need to see that det A[1,2,3]> 0 and
det A[1,2,3,4] > 0. The latter inequality follows because det A(5) > 0 and
a66 > 0. As for the former inequality, we have

det Að3Þ ¼ det A½1; 2�det A½4; 5; 6� > 0; and (1)

det Að4Þ ¼ det A½1; 2; 3�det A½5; 6� > 0: (2)

From (1) and the hypothesis, det A[4,5,6]> 0, implying, by Lemma 5,
det A[5,6] > 0. Thus, from (2), det A[1,2,3] > 0. For 2., because
of Theorem 4, we just need to show that (b) implies det A[1,2] > 0,
det A[1, 2, …, n � 3] > 0 and det A[1, 2, …, n � 2] > 0. The latter
determinant is positive since det A(n � 1) > 0 and ann > 0. The former
determinant is positive by Lemma 5, as, by hypothesis, det A[1,2,3] > 0.
As for the second determinant, we have

det Aðn� 3Þ ¼ det A½1;…; n� 4�det A½n� 2; n� 1; n� > 0;

implyingdet A[n� 2, n� 1, n]> 0and, by Lemma5, det A[n� 1, n]> 0.
Then, since

det Aðn� 2Þ ¼ det A½1;…; n� 3�det A½n� 1; n� > 0;

we have det A[1, …, n � 3] > 0.
There are again parallel results identifying the M-matrices among the

Z-matrices in the tridiagonal case.

Diagonally dominant matrices

Matrix A ¼ ðaijÞ 2 MnðRÞ is (row) DD if

jaiij �
X
j 6¼i

��aij
��; i ¼ 1;…; n:
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If all inequalities are strict, we say strictly DD; in this event, A is
invertible, and a simple Gersgorin argument [3, Ch 6] shows that the sign
of det A is the same as

Qn
i¼1aii. If some, or all, inequalities are equalities,

Amay be singular. When the dominance is weak (as weak as possible, i.e.
all equalities) the occurrence of invertibility was recently studied in
(Johnson et al., 2023). If some (and not all) inequalities are strict, it
follows from Gersgorin Theory ([3, Ch 6]) that A is singular if and only if
A has an irreducible component that is weakly (with all inequalities
equalities) DD and singular.

We show that strictly DDmatrices are IDP. As mentioned in Section 3,
it suffices to consider the case of aii> 0, i¼ 1,…, n; then det A> 0. So, we
only need to show that A is P-IDPþ in this case. For this, according to
Section 4, we need show that det A(i) > 0, i ¼ 1,…, n. But, as each of the
submatrices A(i), i ¼ 1, …, n, inherits strict diagonal dominance, as well
as positive diagonal entries, from A, then each has positive determinant.
This verifies that a strictly diagonally dominant matrix with positive
diagonal entries is P-IDPþ. We may conclude

Theorem 9. A strictly DD matrix is IDP.
This leaves the question of what happens if the diagonal dominance

is not strict, including the case in which all inequalities are equalities.
The answer is largely combinatorial. Again, we may assume the diag-
onal entries are positive. Suppose that A is invertible. Consider Aϵ¼ Aþ
ϵI, for small ϵ > 0; then det Aϵ > 0, as Aϵ is strictly DD with positive
diagonal entries. Taking a limit as ϵ → 0 implies that det A(¼ det A0) �
0. Since A ¼ A0 is invertible, then det A > 0 and the sign of det A is the
same as that of its diagonal entries, an addition to the theory developed
in (Johnson et al., 2023). Now, A(i) is either strictly DD or is DD with
some equalities. The former case, or the latter when all entries in col-
umn i off the diagonal are 0, are straightforward; det A(i) > 0. In the
other cases, if det A(i) were 0, A(i) would have to have its own principal
submatrix, corresponding to a connected component of A(i) in which all
inequalities were equalities and the determinant is 0. The entries of A(i)
in the rows corresponding to this submatrix and outside it would then
be 0. But the corresponding entries in column i of A would also have to
be 0. Then det Awould also be 0, a contradiction. Thus, det A(i)> 0. We
conclude again that A is P-IDPþ. Then, we have
4

Theorem 10. If A 2 MnðRÞ is DD and invertible (even if all inequalities are
equalities), then A is IDP.

Again, if all diagonal entries were positive, Awould be a P-matrix. It is
also interesting that in the case of all equalities, the analysis of inverti-
bility, and thus the taking of limits, is primarily combinatorial (sign
patterns and cycle structure). See (Johnson et al., 2023; Johnson et al.).
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