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1. Introduction

A self-conjugate list of complex numbers is realizable if it is the spectrum of some en-
trywise nonnegative matrix. The nonnegative inverse eigenvalue problem is the problem 
of characterizing all possible realizable lists. If the list is real we have the real nonnegative 
inverse eigenvalue problem (hereafter RNIEP). A complete solution to these problems is 
known only for spectra of size n ≤ 4 (see [11], [19], [9]) and n = 5 with trace 0 (see [10], 
[19]).

If, in the RNIEP, we require that the nonnegative matrix be symmetric, we have the 
symmetric nonnegative inverse eigenvalue problem (hereafter SNIEP). Both problems, 
RNIEP and SNIEP, are equivalent for n ≤ 4 and are different and remain open for n ≥ 5
(see [8], [4], [9]). One of the most general sufficient conditions for the SNIEP follows 
from the Soules approach by means of the so-called Soules matrices, first introduced 
in [17], and later characterized by Elsner, Nabben and Neumann in [6]. The SNIEP for 
size n = 5 with trace 0 has been solved by Spector [18].

Many different points of view have been adopted to find sufficient conditions for both 
the RNIEP and the SNIEP. In [12–14], the authors construct maps of several sufficient 
conditions for the RNIEP and SNIEP, respectively, in which they prove inclusion or 
independence relations between them. Two of the strongest sufficient conditions are 
(i) the so called C- realizability (see Definition 2.1 below), due to Borobia, Moro and 
Soto [2], which might be roughly summarized as realizability by compensation, and (ii) the 
sequence of Soto p conditions, due to Soto [16]. According to these maps, C-realizability 
and the union of all Soto p conditions contain, as a particular case, most of the sufficient 
conditions in the literature for the RNIEP.

Recently, Ellard and Šmigoc [5] have extended the Soules approach to what they call 
piecewise Soules, and have proposed a new recursive method to construct symmetrically 
realizable lists. The main contribution in [5] is proving the equivalence among the four 
sufficient conditions mentioned above: C-realizability, the union of all Soto p, piecewise 
Soules and the Ellard-Šmigoc method. As a consequence, C-realizability is shown to be a 
criterion of symmetric realizability. This turn of events is hardly uncommon in the area: 
several sufficient conditions which were first obtained for the RNIEP have later turned 
out to be sufficient conditions for the SNIEP as well.

For all of the above, it seems clear that the set of C-realizable lists is a reasonably large 
part of the set of all symmetrically realizable lists, and that understanding its structure 
and properties could shed some light on the problem of characterizing the full set of real 
realizable lists. The fact that this set can be approached from different points of view is 
an additional advantage when studying it. The main goal of this paper is to characterize, 
using a mostly combinatorial approach, the subset of C-realizable lists with zero sum. In 
particular, this set will be shown to be a union of polyhedral cones, with each of these 
cones given by an inequality which only involves linear combinations with coefficients 1
and −1 of the entries in the list under study. Hopefully, this will be a first step towards 
characterizing the whole set of C-realizable lists.
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The paper is organized as follows: in Section 2 we define C-realizability and briefly 
present some of its basic properties. Section 3 presents the basic ideas behind the com-
binatorial procedure we will use to characterize C-realizability. In particular, it is shown 
that one can associate both a directed rooted tree and a so-called nested bracket structure 
to each C-realizing procedure. These will be the main concepts in the characterization. 
The general combinatorial procedure leading to the characterization is completely de-
scribed in Section 4, while Section 5 contains the statement and proof of our main result, 
Theorem 5.1. Finally, Section 6 presents by way of example the explicit formulas derived 
from Theorem 5.1 when there are four positive entries or less in the original candidate 
list. Appendix A contains the proof of a somewhat fundamental result (Lemma 3.2) which 
removes a basic ambiguity and justifies the overall approach to C-realization taken in 
this paper.

2. C-realizability: definition and basic properties

In what follows, a list is a collection Λ = {λ1, . . . , λn} of real numbers with possi-
ble repetitions. C-realizability is a kind of realizability by compensation based on the 
following three known results:

• Rule 1 : Let Λ = {λ1, λ2, . . . , λn} be a realizable list with λ1 ≥ |λ| for λ ∈ Λ and let 
ε > 0. Then {λ1 + ε, λ2, . . . , λn} is also realizable.

• Rule 2 : Let Λ = {λ1, λ2, . . . , λn} be a realizable list with λ1 ≥ |λ| for λ ∈ Λ and let 
ε > 0. Then {λ1 + ε, λ2 − ε, λ3, . . . , λn} is also realizable (see [7]).

• Rule 3 : Let Λ1 and Λ2 be realizable lists. Then the list Λ1 ∪ Λ2 is realizable.

This suggests considering three types of ‘moves’, transforming realizable lists into 
other realizable lists. Suppose, as above, that Λ = {λ1, λ2, . . . , λn} ⊂ R is a realizable 
list with λ1 ≥ |λ| for λ ∈ Λ, and let ε > 0. We consider:

Move of type 1: Λ �→ {λ1 + ε, λ2, . . . , λn};
Move of type 2: Λ �→ {λ1 + ε, λ2 − ε, . . . , λn};

And, if Λ1 and Λ2 are realizable lists, the third type of move is just the union:

Move of type 3: (Λ1, Λ2) �→ Λ1 ∪ Λ2.

Definition 2.1. (see [2]) Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers. We say that 
Λ is C-realizable if it can be reached starting from the n realizable lists

{0} {0} . . . {0} (1)
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and successively applying, in any order and any number of times, any of the moves of 
types 1, 2 or 3.

Example. The list {10, 7, 3, −5, −6, −8} is C-realizable, since it can be reached starting 
from {0} {0} {0} {0} {0} {0} and performing the moves

{0, 0} {0, 0} {0, 0}

{8,−8} {6,−6} {3,−3}

{8,−8} {6,−6, 3,−3}

{8,−8} {7,−6, 3,−4}

{8,−8, 7,−6, 3,−4}

{9,−8, 7,−6, 3,−5}

{10,−8, 7,−6, 3,−5}

It is clear that any C-realizable list is, in particular, realizable, since the three types of 
move preserve realizability. However, not all realizable lists are C-realizable (see below). 
Nevertheless, C-realizability turns out to be one of the strongest sufficient conditions for 
the RNIEP, in the sense that it includes any other known sufficient condition except the 
ones given by Perfect in [15] (see [2,12,14]). Recall that, as mentioned in the Introduction, 
any C-realizable list is, in particular, realizable by a symmetric matrix.

Several necessary conditions are known for C-realizability, some of which are connected 
to the concept of majorization:

Definition 2.2. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in Rn

with their entries ordered decreasingly. We say that x weakly majorizes y if

k∑
j=1

xj ≥
k∑

j=1
yj , k = 1, . . . , n

We say that x majorizes y if, additionally,

n∑
j=1

xj =
n∑

j=1
yj .

Negative subdivisions will also play a relevant role in our discussion:

Definition 2.3. The set {ρ1, . . . , ρi−1, γ, δ, ρi+1, . . . , ρn} is a negative subdivision of 
{ρ1, . . . , ρi−1, ρi, ρi+1, . . . , ρn} if γ + δ = ρi with γ, δ, ρi < 0.

Some necessary conditions for C-realizability are as follows (see [2]):
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Lemma 2.4. If Λ is a C-realizable list, then so is any list obtained by successively applying 
negative subdivisions on Λ.

Lemma 2.5. Let Λ = {λ1, . . . , λn, −μm, . . . , −μ1} be a C-realizable list such that λ1 ≥
· · · ≥ λn > 0 and μ1 ≥ · · · ≥ μm ≥ 0. Set α = (λ1, . . . , λn) ∈ Rn and β = (μ1, . . . , μm) ∈
Rm and let α̃, β̃ ∈ Rp, p = max{n, m}, be the vectors obtained respectively from α, β by 
adjoining an appropriate number of zeros to one of them. Then α̃ weakly majorizes β̃.

Example. The list {4, 1, 1, −3, −3} is known to be symmetrically realizable [18], but does 
not satisfy weak majorization. Hence, it is not C-realizable. This shows that the set of 
C-realizable lists is a strict subset of the set of symmetrically realizable ones.

Lemma 2.6. Let Λ be any list of real numbers, and let Λ̃ be the same list with any number 
of zeros appended to it. Then Λ̃ is C-realizable if and only if Λ is.

Proof. If Λ is C -realizable, then a number of moves of type 3 leads from Λ to Λ̃, so Λ̃ is 
C -realizable. Conversely, suppose that Λ̃ is C -realizable via a sequence of moves of types 
1, 2 or 3. The same moves, only removing the appended zeros from the intermediate 
lists, show the C -realizability of Λ. �

It should be noted that this property of not being affected by the addition (or removal) 
of zero entries in the list is true for C -realizability, but not for realizability: the existence 
of non-realizable lists which are the nonzero part of the spectra of some nonnegative 
matrices of large enough dimension is well known (see Boyle & Handelman [3]). Thus, 
adding or removing zeros from a list can make a difference with regard to realizability, 
but not for C -realizability. Therefore, in what follows we will only consider lists with no 
zero entries.

In this paper, we focus our attention on the C-realizability of lists with zero trace (i.e., 
with zero sum) as a first step towards analyzing the general case of arbitrary nonnegative 
trace. One special feature of C-realizability in the case of zero trace is the following:

Corollary 2.7. Let the list Λ = {λ1, . . . , λn, −μm, . . . , −μ1} be such that λ1 ≥ · · · ≥ λn >

0 and λ1 ≥ μ1 ≥ · · · ≥ μm > 0. Suppose that Λ has zero trace, i.e.

n∑
i=1

λi =
m∑
i=1

μi, (2)

and that n > m. Then, Λ is not C-realizable.

Proof. If Λ were C -realizable and n > m, the majorization guaranteed by Lemma 2.5
would imply

m∑
λi ≥

m∑
μi,
i=1 i=1
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which contradicts (2), since λm+1 > 0. �
This means that we may assume that there are at least as many negative entries in 

Λ as there are positive ones. This, together with the exclusion of zero entries, suggests 
the following definition:

Definition 2.8. We say that a list

Λ = {λ1, . . . , λn,−μm, . . . ,−μ1},

of real numbers is T0-admissible if n ≤ m, λ1 ≥ . . . ≥ λn > 0, λ1 ≥ μ1 ≥ . . . ≥ μm > 0, 
and

n∑
i=1

λi =
n∑

j=1
μj . (3)

3. Preliminaries

The main idea underlying C-realizability is that of compensation, i.e., the fact that 
certain lists of real numbers having a positivity surplus may transfer part of that excess to 
other lists having a positivity deficit, thereby decreasing, or eventually overcoming, such 
deficit (see [1]). Systematizing this transfer procedure will lead us to a characterization 
of the set of C-realizable lists of real numbers with zero sum: given a T0-admissible list

Λ = {λ1, . . . , λn,−μm, . . . ,−μ1}, (4)

as defined above, we want to determine whether it is C-realizable or not.
We begin with a toy example to illustrate our ideas. Consider the following three lists:

Λ1 = {12, −3, −8}, Λ2 = {6,−5}, Λ3 = {9,−5,−5}.

None of them has zero sum, but both Λ1 ∪Λ3 and Λ2 ∪Λ3 have. The sum of the entries 
in either Λ1 or Λ2 is +1, so we call Λ1 and Λ2 positive lists, while the sum of entries in 
Λ3 is −1, so we say the list Λ3 is negative. Since the sum of entries in both Λ1 ∪Λ3 and 
Λ2 ∪ Λ3 is zero, we say they are neutral.

We shall now show that Λ1 ∪ Λ3 is C-realizable by exhibiting a C-realization, i.e., a 
sequence of moves of types 2 and 3, as described in Section 2, leading from the zero 
spectrum to Λ1 ∪ Λ3. On the other hand, we shall see that Λ2 ∪ Λ3 is not C-realizable, 
and why it is not.

In order to C-realize Λ1 ∪ Λ3 we may start, for instance, with Λ3 by using a move of 
type 2 to construct the set {5, −5}, and then merge it with an initial {0} set to obtain 
{5, 0, −5}. Then, another move of type 2 leads to {9, −4, −5}. Notice that the target, 9, 
for the dominant entry has been reached, but one of the negative entries, −4, has not yet 
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reached its final value of −5. Also, the difference between −4 and −5 is precisely the sum 
−1 of all entries in Λ3. Next, we try to C-realize Λ1 on its own by using moves of type 
2 on {0, 0, 0} to obtain {11, −3, −8}. Now both negative entries −3, −8 have reached 
their final value, while the dominant one, 11, has not yet reached the desired value of 
12. Again, the difference between 11 and 12 is equal to the sum +1 of the entries in Λ1. 
The idea now is that, since Λ1 has a surplus +1, this surplus should be transferred to 
Λ3 in order to compensate its deficit −1. We can do this by merging the two lists into 
{11, −3, −8, 9, −4, −5} with a move of type 3, and then making a last move of type 2 to 
complete {12, −3, −8, 9, −5, −5} = Λ1 ∪ Λ3. This proves that Λ1 ∪ Λ3 is C-realizable.

On the other hand, if we take Λ2 and Λ3, we may do the same to Λ3 as above, leading 
to {9, −4, −5}, and proceed with Λ2 in a similar way to that done with Λ1, leading to 
{5, −5}. However, once we merge both lists into {9, −4, −5, 5, −5}, we notice that the 
5 entry cannot be raised up to the desired level of 6, because it is no longer dominant 
in the merged list, and the only moves allowing us to increase a number in the list are 
moves of type 2, which only increase the largest entry in the list. In fact, one can easily 
show that Λ2∪Λ3 is not C-realizable by using Theorem 6.1 below (see also [18], Theorem 
5), which characterizes C-realizable spectra with two positive entries.

These examples illustrate the basic positivity transfer mechanism which underlies any 
C-realizing procedure, as well as the need to impose certain conditions on the entries 
in the list in order to guarantee that the compensation procedure can be successfully 
performed. Thus, we characterize all C-realizable T0-admissible lists by systematizing 
the description of all possible C-realizing procedures as follows:

1. first, we prove in §3.1 that every possible C-realization procedure can be represented 
by a rooted tree;

2. then we show in §4 that, given any rooted tree representing one such C-realizing 
procedure, one can write down a set of explicit conditions (see (21) and (22) below) 
on the entries of a generic T0-admissible list Λ in such a way that any list Λ satisfying 
that set of conditions will be C-realizable via the procedure represented by that 
rooted tree.

This allows us to describe the set of all C-realizable T0-admissible lists by exhaustion.
In order to keep track of the set of conditions mentioned in step 2 above, and to be 

able to write them down explicitly, we present a systematic procedure in Section 4 that is 
based on the concept of ‘target list’ (see §3.2 for a formal definition), and which describes 
all possible C-realizing procedures compatible with the given set of target lists. Each of 
these different C-realizing procedures will give rise to different sets of conditions.

The procedure presented in §4 is organized in levels: at each level new target lists are 
constructed by merging one positive target list with one or more negative target lists, 
all from the previous level. As we have seen in the example above, these merging steps 
may or may not lead to compensation, depending on the actual values of the entries in 
the original list Λ. In order to achieve compensation, certain conditions have to be met 
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by the actual entries of the sublists merging at each level. Some of them will be sign 
conditions, requiring that each new target list constructed via moves of type 3 has a 
suitable sign. Others will be merging conditions, which ensure that appropriate moves of 
type 2 can be performed after merging. Theorem 5.1 will show that sign conditions and 
merging conditions are both necessary and sufficient for C-realizability.

3.1. C-realization and trees

The following result shows that a rooted tree can be associated to each C-realizing 
procedure:

Theorem 3.1. Any C-realizing procedure for a T0-admissible list Λ can be uniquely rep-
resented through a rooted tree.

Proof. Any C-realization of Λ starts with a list

{0} {0} . . . {0}

of Card(Λ) zero lists and, after a sequence of moves of types 2 and 3, concludes in the 
list Λ. We may associate a digraph T = (V, A) to this procedure, where the vertices 
in V are all sublists appearing throughout the C-realization procedure. Each move of 
type 2, applied to a list u and producing a list v, is described by a directed arc (u, v). 

Likewise, each move of type 3 applied on the lists u1, · · · , up to obtain the list u =
p⋃

j=1
uj

is described by the p directed arcs (u1, u), · · · , (up, u).
Notice that moves of type 2 do not modify the cardinality of the lists involved, while 

moves of type 3 strictly increase it. On the other hand, moves of type 2 produce lists 
with dominant entry strictly larger than that of the list it comes from. As a consequence 
of this, the digraph T is acyclic.

Furthermore, since all vertices of V have outdegree 1, there is in T a unique directed 
path connecting each vertex u with the final vertex Λ. This proves that T is connected 
and, consequently, a directed tree. Finally, T is rooted because it has a unique maximal 
vertex Λ. �

Let us illustrate this theorem with a specific example: consider the list

Λ = {16, 13, 10, 10, 8, 4, −2, −3, −5, −6, −6, −6, −9, −12, −12} (5)

and the following C-realizing procedure for Λ:
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{0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
{0, 0, 0} {0, 0} {0, 0} {0, 0, 0} {0, 0, 0} {0, 0}

{11, −2, −9} {12, −12} {10, −10} {8, −3, −5} {8, −2, −6} {4,−4}
{11,−2, −9, 10,−10, 4, −4} {12, −12} {8, −3, −5, 8, −2, −6}
{15, −2, −9, 10, −12, 4, −6} {12, −12} {10, −3, −5, 8, −4, −6}
{15, −2, −9, 10, −12, 4, −6} {12, −12, 10, −3, −5, 8, −4, −6}
{15, −2, −9, 10, −12, 4, −6} {13, −12, 10, −3, −5, 8, −5, −6}
{15, −2, −9, 10, −12, 4, −6, 13, −12, 10, −3, −5, 8, −5, −6}

Λ = {16, −2, −9, 10, −12, 4, −6, 13, −12, 10, −3, −5, 8, −6, −6}

(6)

We now construct a rooted tree associated with the above C-realizing procedure: its 
vertices are the sublists appearing in the sequence above (ignoring the first row of zeros), 
and a vertex u is adjacent to a vertex v whenever v is obtained from u via a move of 
type either 2 or 3 (recall that, since our lists have zero sum, no move of type 1 can be 
performed). The tree is organized by levels, each level corresponding to one row in the 
process (6) above, and is represented in Fig. 1. Numbers in red indicate that the desired 
final value has not yet been reached, while numbers in black indicate that it has.

Remark 1. It should be noted that, for each C-realizing procedure, there is a variety of 
trivially equivalent C-realizing procedures which should ideally be represented by the 
same tree. For instance,

• if several moves of type 2 are applied to the same list before performing a move of 
type 3, all those moves of type 2 may be merged into a single one (two consecutive 
moves of type 2 with ε = ε1 and ε = ε2, for instance, are equivalent to one single 
move of type 2 with ε = ε1 + ε2);

• if several moves of type 3 are applied to a collection u1, . . . , up of lists, leading 
eventually to a list u without applying any move of type 2 in between, all those 
moves of type 3 are equivalent to a single move of type 3 on the lists u1, . . . , up to 
obtain u.

• each row in (6) records moves of one single type, either 2 or 3, performed on lists 
from the previous, say (i − 1)-st, row. If any list in the (i − 1)-st row is not involved 
in any of those moves, then that list is preserved in the i-th row below, and an arc 
is included connecting them.

Given any C-realization procedure, if we apply these simplifications, we obtain a 
unique, simpler procedure whose associated rooted tree is also unique and has the prop-
erty that all maximal paths (i.e., those connecting the leaves of the tree – the zero lists 
in the C-realizing procedure on top of Fig. 1 – with the root vertex) are alternating 
sequences of moves of types 2 and 3 with the same length. Note that at some step we 
may skip the move of type 2 just by taking ε = 0. Similarly, some sublists may be left 
out of the union corresponding to that move of type 3. Without loss of generality, we 
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Λ = {16,−2,−9 ‖ 10,−12 ‖ 4,−6 ‖ 13,−12 ‖ 10,−3,−5 ‖ 8,−6,−6}

M2

�

{15,−2,−9 ‖ 10,−12 ‖ 4,−6 ‖ 13,−12 ‖ 10,−3,−5 ‖ 8,−5,−6}

{15,−2,−9 ‖ 10,−12 ‖ 4,−6} {13,−12 ‖ 10,−3,−5 ‖ 8,−5,−6}

M3
�
�

���

�
�

���

M2

� �

{15,−2,−9 ‖ 10,−12 ‖ 4,−6} {12,−12 ‖ 10,−3,−5 ‖ 8,−4,−6}

M3

�

�
�
���

�
�

���

{15,−2,−9 ‖ 10,−12 ‖ 4,−6} {12,−12} {10,−3,−5 ‖ 8,−4,−6}

M2

� � �

{11,−2,−9 ‖ 10,−10 ‖ 4,−4} {12,−12} {8,−3,−5 ‖ 8,−2,−6}

M3

�

�
�
�

���

�
�

�
���

�
�
�
�
�� �

																			


{11,−2,−9} {12,−12} {10,−10} {8,−3,−5} {8,−2,−6} {4,−4}

M2

� � � � � �

{0, 0, 0} {0, 0} {0, 0} {0, 0, 0} {0, 0, 0} {0, 0}

Fig. 1. Rooted tree associated with the C-realization procedure (6). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

may assume in what follows that any C-realization has already been simplified in this 
sense. The tree in Fig. 1, for instance, is already in this simplified form.

3.2. Target lists and QCRs

Given any C-realization procedure for a T0-admissible list Λ, and given its correspond-
ing associated tree, we now focus on each leaf of the tree (i.e., each set of zeroes at the 
top) and traverse the tree downwards in order to identify which entries of Λ are produced 
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by those specific zeros (in order to make it easier to trace the origin of each entry in Λ
we separate with a double vertical bar those entries coming from the same subset in the 
third uppermost line of the tree). For instance, in the example above, one can easily see 
that the leftmost triplet of zeros results in the list {16, −2, −9}, the pair of zeros con-
tiguous to it produces {13, −12}, and so on. These sets we will call target lists, since the 
whole C-realizing procedure can be interpreted as an attempt to gradually approximate 
those sets as final goals, to be reached at the end of the process. In view of the last line 
in Fig. 1, the target lists for the C-realization procedure above are

{16,−2,−9}, {10,−12}, {4,−6}, {13,−12}, {10,−3,−5}, {8,−6,−6}.

Notice that the union of all lists is just the T0-admissible list Λ in (5). Furthermore, a 
sign is assigned to each target list: a target list is said to be positive (resp., negative) if 
the sum of its entries is positive (resp., negative): the first, fourth and fifth lists above, 
for example, are positive, while the remaining three are negative. Target lists with zero 
sum are said to be neutral. At this point it is worth mentioning that whenever we have a 
neutral target list, the C-realizing problem can be simplified by putting aside the neutral 
target list and dealing with the rest of the entries: since the neutral list can be trivially 
C-realized via moves of type 2, if the rest of the list can be C-realized in some way, then 
the full list can also be C-realized. In fact, we shall see in Appendix A that the set Λ
in (5) can be C-realized in a completely different way, with one of the target lists being 
{8, −3, −5}, which happens to be neutral (and is therefore disregarded in the analysis of 
Appendix A).

The approximation to Λ is made gradually as we go down the nodes in the tree, all of 
which are lists with zero sum. Some of these lists, namely the ones obtained after a move 
of type 2, we call quasi C-realizations (henceforth QCRs) since they are intermediate 
steps in the process of reaching the target lists. The QCR {15, −2, −9, 10, −12, 4, −6}, 
for instance, is an approximation to the union

{16, −2, −9} ∪ {10, −12} ∪ {4, −6}

of target lists. Thus, we may think of the C-realization procedure as being organized in 
subsequent levels: at each level, the process creates new QCRs by first merging old ones 
from the previous level via a move of type 3, and then performing a move of type 2. This 
will provide an improved approximation of the union of the target lists indicated by the 
move of type 3. Therefore, it makes sense to consider that, at each level, we first create a 
new target list, which is the union of the target lists in the previous level, merged by the 
move of type 3. We then improve the approximation to that new target list by creating 
a new QCR via a move of type 2.
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3.3. C-realization and bracket structures

What we now show is that any rooted tree in simplified form can be represented by 
what we call its corresponding nested bracket structure. In order to understand this, 
let us go back to the procedure (6) above, and start using the crucial concept of target 
list, already introduced in §3.2 above: we claim that the whole C-realizing procedure (6)
above corresponds to simply choosing the initial target lists

Λ(0)
1 = {16, −2, −9}, Λ(0)

2 = {13, −12}, Λ(0)
3 = {10, −12},

Λ(0)
4 = {10, −3, −5}, Λ(0)

5 = {8, −6, −6}, Λ(0)
6 = {4, −6}

(7)

(which can be read off from the bottom line in the tree) and then repeatedly generating 
successive QCRs until the union of these target lists is reached. The first nonzero row in 
(6), for instance, is just the sequence of QCRs for the initial target lists Λ(0)

j , i = 1, · · · , 6.
The second nonzero row in (6) is obtained by merging some QCRs, e.g., the one of 

Λ(0)
1 with those of Λ(0)

3 and Λ(0)
6 . This is done with the prospect of later being able to 

transfer positivity from Λ(0)
1 into Λ(0)

3 and Λ(0)
6 , which are both negative, via a move of 

type 2. The same motivation lies behind merging the QCRs of (positive) Λ(0)
4 with that 

of (negative) Λ(0)
5 . This first round of mergings can be represented through the brackets

[1, 3, 6], [2], [4, 5], (8)

where the one in the middle indicates that the QCR of Λ(0)
2 has not been subject to any 

merging operation at this stage. The leftmost bracket corresponds to creating a new, 
aggregated, target list

Λ(1)
1 = Λ(0)

1 ∪ Λ(0)
3 ∪ Λ(0)

6 = {16, −2, −9, 10, −12, 4, −6}, (9)

which is again positive (the total sum of its entries is +1). The target list Λ(0)
2 = Λ(1)

2 re-
mains unchanged (thus positive), while the third bracket [4, 5] corresponds to an updated 
target list

Λ(1)
3 = Λ(0)

4 ∪ Λ(0)
5 = {10, −3, −5, 8, −6, −6},

which is negative (its total sum is −2). Again, the sign of each of the updated target 
lists Λ(1)

j , j = 1, 2, 3 leads to a sign condition on the corresponding entries of Λ, which 
has to be satisfied in order to be able to continue applying the C-realizing procedure (6).

The next row in (6) (i.e., its third nonzero row) corresponds to another round of 
QCRs, this time for the three updated target lists Λ(1)

j , j = 1, 2, 3.
The fourth nonzero row in (6) corresponds to merging positive and negative target 

lists, namely,
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Λ(2)
2 = Λ(1)

2 ∪ Λ(1)
3 = {13, −12, 10, −3, −5, 8, −6, −6 },

which turns out to be a new negative target list with sum −1. The target list Λ(2)
1 = Λ(1)

1
remains unchanged at this stage. This second level of merging can be represented through 
the brackets

[ [1, 3, 6] ] , [ [2] , [4, 5] ] . (10)

The transition from the fourth to the fifth nonzero row in (6) corresponds to generating 
a QCR for Λ(2)

2 , while the one from the fifth to the sixth nonzero row is another move of 
type 3 merging Λ(2)

2 with Λ(2)
1 , which makes Λ(3)

1 = Λ(2)
1 ∪ Λ(2)

2 = Λ the final target list. 
This can be denoted with the bracket structure

[ [ [1, 3, 6] ] , [ [2] , [4, 5] ] ] , (11)

which represents the whole procedure in a more compact way than the rooted tree. The 
last target list Λ = Λ(3)

1 is finally reached via a move of type 2, which concludes the 
C-realizing procedure.

3.4. Sign and merging conditions

We have seen in §3.3 above how the rooted tree in Fig. 1 has an associated bracket 
structure (11). However, that structure by itself is not enough to guarantee that the C-
realizing procedure (6) succeeds, since it only reflects which moves of type 3 are performed 
throughout the procedure. The moves of type 2 that can actually be performed in order 
to complete the C-realizing procedure are codified via some further conditions, namely 
those we shall call sign and merging conditions.

The question here is: given the C-realizing procedure (6), which T0-admissible lists, 
other than the specific list Λ given in (5), can be C-realized using that exact same 
procedure? Which conditions have to be satisfied by the specific entries of those lists to 
guarantee that the moves of type 2 in procedure (6) can be performed in their entirety, 
proving those lists to be C-realizable?

First, since the way each QCR is generated in (6) depends on the sign of the successive 
target lists, it is clear that the sign of each target list at each level must be imposed if 
(6) is to be run to completion. These we call sign conditions, and have to be imposed 
starting from the initial level 0.

On the other hand, once a move of type 3 is performed, a move of type 2 typically 
follows, but this can only be done if the dominant entry of the QCR corresponding to 
the only positive target list being merged is not smaller than the largest dominant entry 
among the other negative target lists participating in the merger. Take, for instance the 
move of type 3 given by (9), and the corresponding list {11, −2, −9, 10, −10, 4, −4}. 
The C-realizing procedure can move on to the next QCR, {15, −2, −9, 10, −12, 4, −6}, 
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only because the dominant entry 11 of the QCR {11, −2, −9} of the positive target 
list Λ(0)

1 is not smaller than 10, the largest dominant entry among the QCRs of the two 
negative target lists Λ(0)

3 and Λ(0)
6 . These conditions we call merging conditions, and have 

to be imposed at every level of the C-realizing procedure.

3.5. Moves of type 2 decrease negative entries

When performing moves of type 2

{λ1, λ2, . . . , λn} −→ {λ1 + ε, λ2 − ε, . . . , λn},

the entry λ2 which is decreased can, in principle, have any sign. However, we will show 
that without loss of generality we may always assume that λ2 is negative.

Lemma 3.2. Let Λ be a C-realizable T0-admissible list such that there exists a C-realizing 
procedure containing moves of type 2 with λ2 > 0. Then Λ can be C-realized through 
another procedure where all moves of type 2 are performed on negative λ2s.

Since this result is of independent interest, and its proof requires a somewhat different 
notation than the one employed up to this point, we defer its proof to Appendix A. In 
any case, from now on, whenever a move of type 2 is considered, it will be assumed that 
the entry λ2 which is decreased is negative.

4. The general procedure

We are now in a position to describe in detail a general combinatorial procedure 
by which necessary and sufficient conditions for C-realizability are generated for T0-
admissible lists.

4.1. Step zero

Let

Λ = {λ1, . . . , λn,−μm, . . . ,−μ1} (12)

be such a T0-admissible list (recall that n ≤ m). First, we partition Λ into n target 
lists Λ(0)

j , j = 1, . . . , n for level zero in such a way that each Λ(0)
j contains exactly one 

positive entry. Thus, we have the initial partition Π0:

Λ = Λ(0)
1 ∪ . . . ∪ Λ(0)

n . (13)

For each j, we say the list Λ(0)
j is positive or negative according to the sign of the sum of 

its entries (as already mentioned, sublists with zero sum may be set aside to be C-realized 
separately).



56 C. Marijuán, J. Moro / Linear Algebra and its Applications 615 (2021) 42–76
Next, we identify each Λ(0)
j with a corresponding index j(0), which, by extension, is 

also said to be positive or negative, according to the sign of the list Λ(0)
j . The list of 

indices

1(0), . . . , n(0) (14)

together with the n-vector (+, · · · , −) of their signs, constitutes the so-called configura-
tion C0 at level 0.

We further associate with each index j(0) the quantity

λ
(0)
j = λj ,

i.e., the dominant entry in the target list Λ(0)
j .

To each such index j(0) we associate its so-called local quasi C-realization (QCR.j), 
which is a list defined as follows: suppose Λ(0)

j = {λj , −μj1 , −μj2 , . . . , −μjkj
}; then a 

partial realization of j(0) is either

- [QCR.j+]: the list 

⎧⎨
⎩

kj∑
s=1

μjs ,−μj1 ,−μj2 , . . . ,−μjkj

⎫⎬
⎭ whenever j(0) is positive, or

- [QCR.j−]: a list of the form {λj , −μ̃1, −μ̃2, . . . , −μ̃kj
}, where

0 ≤ μ̃s ≤ μjs , s = 1, . . . , kj and
kj∑
i=1

μ̃i = λj ,

whenever the index j(0) is negative.

Such local quasi-C-realizations can be trivially achieved via moves of types 3 and 2 on 
n + m zero singletons (1), starting with n moves of type 3 creating n lists of zeros 
with the respective cardinalities of Λ(0)

1 , . . . , Λ(0)
n . The reunion of the local QCRs for all 

j(0), j = 1, . . . , n is the QCR at level zero, denoted QCR0.
To conclude the zero-th step, if the index j(0) is positive, we additionally associate 

with j(0) a second quantity

S
(0)
j =

∑
−μk∈Λ(0)

j

μk, (15)

namely, the dominant entry in the local QCR.j+ of j(0) (we make the convention that 
S

(0)
j = 0 if Λ(0)

j = {λj}). Thus, each negative index has one quantity attached to it, 
while each positive index has two.
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4.2. Step one: partition rules

Next, we group the signed indices in the configuration C0 into an ordered partition
Π1, which is the result of distributing the indices in C0 into a certain number, say n1, 
of packages, separated by brackets, according to the following three rules:

R1: each bracket contains at most one positive index,
R2: that positive index (if there is one) is the smallest among the indices within that 

bracket, and
R3: the rightmost positive index in the configuration is grouped with at least one nega-

tive index.

The reason for imposing rule R1 is that there cannot be two or more positive indices 
in the same bracket, because then some of the positivity would be wasted, since only the 
dominant entry can be increased via moves of type 2 (recall that, due to the zero-trace 
condition, no positivity can possibly be wasted in the compensation process if we want 
to C-realize). It may happen, however, that some package contains only one positive 
single index (see, for instance, the bracket [ 2 ] in (8) above). That is admissible, unless 
that package is the rightmost one: the rightmost positive index cannot stand on its own 
because, again, in that case its positivity would be wasted, making C-realizability impos-
sible. This is why rule R3 needs to be imposed. It may even be that no positive index is 
contained in some of the brackets: consider, for instance, the list Λ = {7, 5, 2, −4, −4, −6}
partitioned as the union of

Λ(0)
1 = {7, −4}, Λ(0)

2 = {5,−6}, Λ(0)
3 = {2, −4},

which is C-realizable via the procedure

{0, 0} {0, 0} {0, 0}
{4, −4} {5, −5} {2, −2}
{4, −4 ‖ 2, −2} {5, −5}
{6, −4 ‖ 2, −4} {5, −5}
{6, −4 ‖ 2, −4 ‖ 5, −5}
{7, −4 ‖ 2, −4 ‖ 5, −6}

(16)

which corresponds to the bracket structure [ [ 1, 3 ], [ 2 ] ], where the index 2 is negative 
and stands alone, with no positive index in its bracket. Notice that the bracket structure 
[ [ 1, 2, 3 ] ] gives no valid C-realizing procedure, since the first move of type 3 would bring 
together

{4, −4 ‖ 5,−5 ‖ 2,−2}
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and neither of the 4 or 2 entries in that list can possibly be increased to 5, since they 
are no longer dominant in the merged list. Situations like this one motivate rule R2 
above, which tries to make sure that each positive entry in the corresponding sublist is 
dominant within that list.

Finally, although they are not essential, it will be convenient to make the two following 
conventions: within each bracket, indices are written in increasing order, and brackets 
are written by increasing order of its only first positive index (in case there is one).

Our next step is to define new, updated target lists for level 1: if the j-th bracket in 
Π1 is [j(0)

1 , j(0)
2 , . . . , j(0)

sj ], we define

Λ(1)
j =

sj⋃
t=1

Λ(0)
jt .

Furthermore, we identify the j-th bracket in Π1 with a new index j(1). This gives rise to 
a new configuration C1 at level 1 with indices

1(1), 2(1), . . . , n
(1)
1 ,

together with the n1-vector of their signs, where each j(1) has the same sign, positive 
or negative, of the corresponding target list Λ(1)

j . Thus, we have transformed the initial 
configuration C0 into a new configuration, C1.

Next, we update the dominant λs: for each index j(1) = [j(0)
1 , j(0)

2 , . . . , j(0)
sj ] in Π1, we 

set λ(1)
j as the dominant entry in Λ(0)

j1
∪Λ(0)

j2
∪ . . .∪Λ(0)

jsj
. In the most common case when 

the first index j(0)
1 is positive, one can easily check that λ(1)

j is just the dominant entry 

in Λ(0)
j1

.
The next step in our procedure would be to obtain a new, local QCR for each index 

j(1) in Π1. All these local QCRs of the indices j(1) for j = 1, . . . , n1 will be the QCR1
associated with the configuration C1. For the sake of conciseness, we will not go into 
details at this stage (see step 4 in §4.3 below for more details).

Finally, step one is completed by updating the sums S(0)
j as defined in (15), only for 

those j(1) in Π1 which happen to be positive: suppose j(1) := [j(0)
1 , j(0)

2 , . . . , j(0)
sj ] is one 

such positive index. Then

S
(1)
j = S

(0)
j1

−
∑

γ∈Λ(0)
j2

∪···∪Λ(0)
jsj

γ, (17)

i.e., at level 1, the corresponding S(1)
j is the result of adding the negativity of all negative 

indices in the bracket at level zero, generating j(1) to the sum S(0)
j1

associated with the 
only dominant positive index in that bracket at level 1.

Notice that the entries in Λ have to satisfy certain conditions if we want the C-realizing 
procedure to continue: for instance, the entries have to produce the positivities and 
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negativities given by the indices j(0) at level zero: thus, each bracket [j(0)
1 , j(0)

2 , . . . , j(0)
sj ]

in the ordered partition Π1 gives rise to sj − 1 sign conditions
∑

γ∈Λ(0)
jt

γ < 0, t = 2, . . . , sj , (18)

plus one additional condition 
∑

γ∈Λ(1)
j1

γ > 0 if the first index j(0)
1 is positive (respectively, ∑

γ∈Λ(1)
j1

γ < 0 if the first index j(0)
1 is negative too). Also, we need the merging condition

S
(1)
j1

≥ λ
(1)
j2

(19)

whenever the index j(1)
1 is positive, since otherwise we cannot use a move of type 2 to 

construct the local QCRs at level 1.

4.3. Step k + 1

The overall C-realizing procedure we propose consists in successively generating new 
configurations Ck+1 from already existing ones, Ck, for each k = 1, 2, . . ., while updating 
in the process all quantities associated with the configuration. In the process we shall 
identify which conditions ensure that this C-realizing procedure is not interrupted when 
passing from Ck to Ck+1. The procedure finishes once we reach a configuration with one 
single index, whose QCR is the original list Λ in (12).

Suppose Ck is one such intermediate configuration

1(k), 2(k), . . . , n
(k)
k ,

with the corresponding nk-vector of their signs, where each j(k) is associated with a 
(positive or negative) target sublist

Λ(k)
j =

⋃
r

Λ(k−1)
r ,

which is a union of target sublists from the previous level k− 1. For each Λ(k)
j , there is a 

corresponding QCRk, which is obtained in exactly the same way as previously described 
in [QCR.j+] and [QCR.j−] above. Furthermore, each j(k) has a dominant λ(k)

j attached 

to it, whereas positive indices have an additional, second number S(k)
j attached to them. 

Let us describe step by step the transition from Ck to the new configuration Ck+1:

step 1 (Partition Πk+1): Choose one of the possible ordered partitions Πk+1 by 
grouping the indices of the configuration Ck into packages, separated by brackets, 
according to rules R1, R2 and R3, and update the target lists for level k + 1: if the 
j-th bracket in Πk+1 is [j(k)

1 , j(k)
2 , . . . , j(k)

sj ], then we update the target sublists
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Λ(k+1)
j =

sj⋃
t=1

Λ(k)
jt

.

step 2 (Configuration Ck+1): Identify each bracket [j(k)
1 , j(k)

2 , . . . , j(k)
sj ] of Πk+1 with 

one single index j(k+1), giving rise to a list

1(k+1), 2(k+1), . . . , n
(k+1)
k+1

of indices for level k+1, where each index j(k+1) := [j(k)
1 , j(k)

2 , . . . , j(k)
sj ] is negative if

∑
γ∈Λ(k+1)

j

γ < 0

or positive otherwise. The list of indices above, together with the nk+1-vector con-
taining the corresponding signs, constitutes the configuration Ck+1 at level k + 1.
step 3 (Update the dominant λs): For each index j(k+1) := [j(k)

1 , j(k)
2 , . . . , j(k)

sj ], up-
date

λ
(k+1)
j = λ

(k)
j1

,

i.e., at level k + 1, the corresponding λ(k+1)
j is just the λ(k)

j1
associated with the only 

dominant positive index j(k)
1 in the corresponding bracket at level k.

step 4 (Update QCRs for level k + 1): For each j(k+1), j = 1, . . . , nk+1, construct 
its associated local QCR as follows:
(1) use moves of type 3 to merge all local QCRs corresponding to indices of level k

in the bracket j(k+1) := [j(k)
1 , j(k)

2 , . . . , j(k)
sj ], and

(2) make moves of type 2 in the following way:
(2.a) if the index j(k+1) is positive, increase the dominant entry up to the point 

where all negative entries in the list are fully reached. This leads to a list 
where all entries are realized, except for the first, dominant one.

(2.b) if j(k+1) is negative, increase the dominant entry until it is fully reached, 
and decrease the negative entries collectively by that same amount, i.e., in 
such a way that the sum of the decreases of the negative entries equals the 
increase in the dominant one.

The collection of all local quasi C-realizations of the indices j(k+1) for j =
1, . . . , nk+1 is the QCRk+1 associated with the configuration Ck+1.

step 5 (Update sums S): For each positive index j(k+1) := [j(k)
1 , j(k)

2 , . . . , j(k)
sj ], update

S
(k+1)
j = S

(k)
j1

−
∑

γ∈Λ(k)
j ∪···∪Λ(k)

js

γ, (20)
2 j
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i.e., at level k + 1, the corresponding S(k+1)
j is the result of adding the negativity 

of all negative indices in the k-th level bracket generating j(k+1) to the sum S(k)
j1

associated with the only dominant positive index in that k-th level bracket.

As announced in §3.4, the creation of each level requires additional conditions which 
have to be met by the entries in Λ if we want the C-realizing procedure to continue: each 
bracket [j(k)

1 , j(k)
2 , . . . , j(k)

sj ] in the ordered partition Πk+1 gives rise to sj sign conditions. 
The sj − 1 last indices in Π1 dictate

∑
γ∈Λ(k)

jt

γ < 0, t = 2, . . . , sj , (21)

while the sj-th sign condition depends on whether the first index j(k)
1 is positive or neg-

ative: it amounts to imposing the sum 
∑

γ∈Λ(k)
j1

γ to be positive or negative, accordingly. 
Furthermore, the merging condition

S
(k)
j1

≥ λ
(k)
j2

, (22)

which only applies if the index j(k)
1 is positive and sj ≥ 2, ensures that the corresponding 

local QCR for j(k)
1 can be constructed.

Notice that, since each of the quantities above is just a combination of the original 
entries λj , −μj of Λ, every one of these conditions can be written ultimately in terms 
of those original entries. Furthermore, each of these conditions is a linear inequality, 
involving only linear combinations of those entries with coefficients 1 or −1.

The whole process stops once we arrive at a level L whose configuration CL consists 
of one single index 1(L) whose QCRL is Λ. The outcome of the process can be taken 
to be either a rooted tree, as explained in §3.1 above or, equivalently, a nested bracket 
structure, analogous to (11), obtained after successively blowing up all ordered partitions 
ΠL, ΠL−1, . . . , Π0, together with the conditions (21) and (22) associated with each of 
those levels.

5. The main result

It is clear from the discussion in §4 above that, at each level, there are many possible 
choices for the ordered partition, each of them giving rise to different conditions (21)
and (22). This produces many different sets of sufficient conditions guaranteeing C-
realizability. What we shall see now is that, not only is each of these conditions sufficient 
for C-realizability, but collectively they are also necessary, in the sense of the following 
result:

Theorem 5.1. Let Λ = {λ1, . . . , λn, −μm, . . . , −μ1} be a T0-admissible list. Then Λ is 
C-realizable if and only if there exists a partition (13) and a nested bracket structure 
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for the indices 1, · · · , n such that the entries in Λ satisfy all conditions (21) and (22)
associated with that bracket structure for k = 0, 1, 2, . . . , L, where L is the highest level 
in the nested bracket structure.

Proof. First, recall that, due to Lemma 3.2, whenever we speak of a C-realizing procedure 
we may assume that all moves of type 2 are done with λ2 negative, as in the procedure 
described in §4.

Suppose the T0-admissible list Λ is such that there exists a partition (13) and a nested 
bracket structure for the indices 1, · · · , n such that the entries in Λ satisfy all conditions 
(21) and (22) associated with that bracket structure for k = 0, 1, 2, . . . , L. Then, as shown 
in Section 4, the list Λ is trivially C-realizable, since the conditions (21) and (22) are 
precisely the guarantee that the general procedure described in §4 can progress step by 
step until it reconstructs the full list Λ via moves of types 2 and 3.

Conversely, suppose Λ is C-realizable and consider any C-realizing procedure for Λ. 
Then, by Theorem 3.1, there exists a rooted tree associated with that procedure, which 
we may assume to be simplified in the sense described in Remark 1. Furthermore, the 
tree has a corresponding nested bracket structure, as explained in §3.3. We have already 
seen that, for each level k = 0, 1, 2, . . ., each bracket [j(k)

1 , j(k)
2 , . . . , j(k)

sj ] in the ordered 
partition Πk+1 gives rise to sj sign conditions (21) plus one merging condition (22). 
Finally, the initial partition (13), i.e., the initial target lists Λ(0)

j , can be easily read 
from the bottom line in the tree. Obviously, the indices 1, · · · , n involved in the nested 
bracket structure correspond to the n positive entries in Λ and the maximum level L of 
the nested bracket structure is the number of moves of type 2 in the associated rooted 
tree minus one (since the first moves of type 2 produce the QCR0). �
Remarks to Theorem 5.1:

- Since, for every k, both the sign conditions (21) and the merging condition (22) are 
sums and differences of the original entries λj and −μj of Λ, it is clear that every one 
of these conditions can be easily rewritten in terms of the original entries. Moreover, 
since each of (21) and (22) is a linear inequality between sums of λs and sums of μs, 
all conditions together define a union of polyhedral cones. Therefore, Theorem 5.1
identifies the set of zero-sum C-realizable lists as a union of polyhedral cones.
In fact, these cones are rather special, since every equation defining one of its faces 
is just a linear combination of λs and μs with (respective) coefficients 1 and −1.

- It should be noted that dependence relations may exist among the conditions (21)
and (22). We have chosen to include all conditions in the statement of Theorem 5.1, 
even if some of them may be mutually dependent, or even trivially satisfied, in order 
to be able to systematically enumerate the conditions. However, once a full set of 
conditions is obtained, it could be purged a posteriori until only nontrivial, mutually 
independent conditions remain (see, for instance, Corollary 6.4 below).
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- Since C-realizability is preserved by negative subdivision (see Definition 2.3 above), 
we may take advantage of this by writing the following result, which trivially follows 
from Theorem 5.1 and Lemma 2.4:

Corollary 5.2. Let Λ = {λ1, . . . , λn, −μp, . . . , −μ1} be a list of real numbers with 
n ≤ p, λ1 ≥ · · · ≥ λn > 0 and μj > 0 for j = 1, . . . , p. Suppose there is a partition

I =
m⋃

k=1

Ik

of the index set I = {1, . . . , p} such that the partial sums

Sk =
∑
j∈Ik

μj , k = 1, . . . ,m, m ≥ n

lead to a T0-admissible list {λ1, . . . , λn, −Sm, . . . , −S1} satisfying the conditions of 
Theorem 5.1. Then Λ is C-realizable.

6. The cases n = 2, 3, 4

The systematic application of Theorem 5.1 allows all conditions corresponding to all 
possible nested bracket structures to be written explicitly in cases of low dimension. 
In this section, we illustrate this by analyzing the simplest cases in which the number 
n of positive entries in Λ is 2, 3 or 4. We include two tables displaying all possible 
initial configurations C0, all possible ordered partitions Π1 compatible with C0, and 
all C-realizing nested bracket structures which synthesize the results described in the 
corollaries solving the cases n = 3 and n = 4.

The case n = 2 was already solved in [2] (see Theorem 2.2), even for spectra with 
arbitrary trace. A version adapted to our context (and notation) is as follows:

Theorem 6.1. Let Λ = {λ1, λ2, −μm, . . . , −μ2, −μ1} be a T0-admissible list. Then Λ is 
C-realizable if and only if there is a partition Λ = Λ(0)

1 ∪ Λ(0)
2 as in (13) such that

λ1 ≥ max

⎧⎨
⎩

∑
−μk∈Λ(0)

1

μk,
∑

−μk∈Λ(0)
2

μk

⎫⎬
⎭ .

Note that λ1 ≥
∑

−μk∈Λ(0)
1

μk is a sign condition (including the neutral case); the other 

negative sign condition is deduced from zero trace. Furthermore, λ1 ≥
∑

−μk∈Λ(0)
2

μk is 

equivalent to the merging condition 
∑

(0)

μk ≥ λ2.

−μk∈Λ1
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The case n = 3 is slightly more convoluted, but can be easily described via the 
following Corollary, which is a straightforward consequence of Theorem 5.1:

Corollary 6.2. Let Λ = {λ1, λ2, λ3, −μm, . . . , −μ2, −μ1} be a T0-admissible list. Then Λ
is C-realizable if and only if there is a partition Λ = Λ(0)

1 ∪Λ(0)
2 ∪Λ(0)

3 as in (13) satisfying 
either of the following two sets of conditions:

(a)
∑

γ∈Λ(0)
j

γ ≤ 0, j = 2, 3, and one of the following:

(a.1)
∑

−μk∈Λ(0)
1

μk ≥ λ2;

(a.2)
∑

−μk∈Λ(0)
1

μk ≥ λ3; 
∑

−μk∈Λ(0)
1

μk −
∑

γ∈Λ(0)
3

γ ≥ λ2;

(b)
∑

γ∈Λ(0)
j

γ ≥ 0, j = 1, 2, 
∑

−μk∈Λ(0)
2

μk ≥ λ3, 
∑

−μk∈Λ(0)
1

μk ≥ λ2.

Proof. There are two possible initial configurations 1(0), 2(0), 3(0) with sign vectors 
(+, −, −) and (+, +, −).
a) The configuration with sign vector (+, −, −) admits three ordered partitions Π1:

[1(0), 2(0), 3(0)]; [1(0), 2(0)], [3(0)] and [1(0), 3(0)], [2(0)] according to rules R1, R2 and 
R3.

All the sign conditions of the corresponding bracket structures [1, 2, 3]; [[1, 2], [3]] and 
[[1, 3], [2]] can be reduced to the two conditions in part (a) (see (21)). The remaining 
sign conditions are trivially satisfied due to the zero trace.

The condition in (a.1) is just the merging condition of the bracket structure [1, 2, 3]: 
S

(0)
1 ≥ λ

(0)
2 , where S(0)

1 is as defined in (15).
The partition [1(0), 2(0)], [3(0)] has the configuration C1 : 1(1) = [1(0), 2(0)], 2(1) =

[3(0)] with sign vector (+, −) and the final configuration C2 : 1(2) = [1(1), 2(1)] =
[[1(0), 2(0)], [3(0)]].

At level one we have:

• dominant λs: λ
(1)
1 = λ

(0)
1 = λ1; λ

(1)
2 = λ

(0)
3 = λ3;

• update sums: S
(1)
1 = S

(0)
1 −

∑
γ∈Λ(0)

2

γ =
∑

−μk∈Λ(0)
1

μk −
∑

γ∈Λ(0)
2

γ (see (20)) and

• merging condition: S
(0)
1 ≥ λ

(0)
2 , i.e., 

∑
−μk∈Λ(0)

1

μk ≥ λ2.

At level two we have a neutral list with merging condition: S(1)
1 ≥ λ

(1)
2 , i.e., ∑

−μk∈Λ(0)
1

μk −
∑

γ∈Λ(0)
2

γ ≥ λ3. However, this merging condition is weaker than the pre-

vious one, since
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∑
−μk∈Λ(0)

1

μk −
∑

γ∈Λ(0)
2

γ ≥
∑

−μk∈Λ(0)
1

μk ≥ λ2 ≥ λ3.

Then, the bracket structure [[1, 2], [3]] is C-realizable under the same sign and merging 
conditions as the bracket structure [1, 2, 3], so they can be considered equivalent (see 
Definition 6.3 below).

In a similar way, the partition [1(0), 3(0)], [2(0)] is C-realizable by the bracket structure 
[[1, 3], [2]] under the merging conditions given in (a.2): the first one is the merging 
condition S(0)

1 ≥ λ
(0)
3 = λ3 of the bracket [1, 3], and the second one is the merging 

condition S(1)
1 = S

(0)
1 −

∑
γ∈Λ(0)

3

γ ≥ λ
(1)
2 = λ

(0)
2 = λ2 of the bracket [[1, 3], [2]], which is 

independent of the previous one.
b) The configuration with sign vector (+, +, −) only admits the ordered partition 

Π1 = [1(0)], [2(0), 3(0)] which is C-realizable by the bracket structure [[1], [2, 3]]. The 
sign conditions can be reduced to the first condition given in part (b), and the two latter 
conditions in (b) are the merging conditions of the two positive indices: S(0)

2 ≥ λ
(0)
3 = λ3

and S(1)
1 = S

(0)
1 ≥ λ

(1)
2 = λ

(0)
2 = λ2. �

We have already seen, in the proof of Corollary 6.2, that certain nested bracket struc-
tures are equivalent, in the following sense:

Definition 6.3. Two nested bracket structures are said to be equivalent, and we denote 
this with the symbol ∼, if they induce the same sign and merging conditions.

In view of this, most of these equivalent structures are omitted in the tables below, 
including only one representative for each equivalence class.

From this point on, the notation for the configurations will be simplified by omitting 
the (k) superindices and by replacing sign vectors with colors (for interpretation of the 
colors see the web version of this article): more precisely, each index written in blue 
(respectively, in red) is understood to be positive (respectively, negative): for instance, the 
configuration 1(0), 2(0), 3(0), 4(0) at level 0 with sign vector (+, +, −, −) will be written 
1, 2, 3, 4. Moreover, once an ordered partition is chosen, the corresponding brackets will 
also be colored, according to the sign of the new target list created by each bracket: 
the ordered partition [ 1(0), 3(0) ] [ 2(0), 4(0) ], giving rise to the configuration 1(1), 2(1) at 
level 1 with sign vector (+, −) will be described by [1, 3] [2, 4].

Using this sign/color criterion in Table 1 we synthesize the possible non-equivalent 
C-realizations for the case n = 3 studied in the previous Corollary, where the leftmost 
column displays the two possible C0 configurations (+, −, −) and (+, +.−), i.e., 1, 2, 3
and 1, 2, 3, the middle column shows the ordered partitions Π1 corresponding to each 
configuration C0 and the rightmost column shows the non-equivalent nested bracket 
structures corresponding to each ordered partition Π1.
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Table 1
Possible non-equivalent ordered partitions and 
nested bracket structures for n = 3.

Initial 
configurations 
C0

Ordered 
partitions 
Π1

Nested 
bracket 
structures

1, 2, 3 [1, 2, 3] [1, 2, 3]
[1, 3] [2] [[1, 3], [2]]

1, 2, 3 [1] [2, 3] [ [1], [2, 3] ]

Table 2
Non-equivalent ordered partitions and bracket structures for n = 4.

Initial 
configurations C0

Ordered 
partitions Π1

Nested bracket 
structures

1, 2, 3, 4 [1, 2, 3, 4] [1, 2, 3, 4]
[1, i, 4] [j], {i, j} = {2, 3} [[1, i, 4], [j]], {i, j} = {2, 3}
[1, i] [2, j], {i, j} = {3, 4} [[1, i], [2, j]], {i, j} = {3, 4}
[1, i] [2] [j], {i, j} = {3, 4} [[[1, i], [j]], [2]], {i, j} = {3, 4}

1, 2, 3, 4 [1, 2] [3, 4] [ [1, 2], [3, 4] ]
[1] [2] [3, 4] [ [[1], [3, 4]], [2] ]

[ [1], [[3, 4], [2] ]

1, 2, 3, 4 [1] [2, 3, 4] [ [1], [2, 3, 4] ]
[1, j] [2, i], {i, j} = {3, 4} [ [1, j], [2, i] ], {i, j} = {3, 4}
[1] [2, i] [j], {i, j} = {3, 4} [ [1], [2, i], [j] ], {i, j} = {3, 4}

[ [1], [[2, i], [j]] ], {i, j} = {3, 4}
[ [[1], [j]], [2, i] ], {i, j} = {3, 4}

1, 2, 3, 4 [1] [2] [3, 4] [ [1], [[2], [3, 4]] ]

Table 2 synthesizes the possible non-equivalent C-realizations studied in Corollary 6.4
below, which summarizes the list of conditions which Theorem 5.1 provides for the case 
n = 4.

Corollary 6.4. Let Λ = {λ1, λ2, λ3, λ4, −μm, . . . , −μ2, −μ1} be a T0-admissible list. Then 
Λ is C-realizable if and only if there is a partition Λ = Λ(0)

1 ∪Λ(0)
2 ∪Λ(0)

3 ∪Λ(0)
4 satisfying 

any of the following four sets of conditions:

(a)
∑

γ∈Λ(0)
j

γ ≤ 0, j = 2, 3, 4; and one of the following:

(a.1)
∑

−μk∈Λ(0)
1

μk ≥ λ2;

(a.2)
∑

−μk∈Λ(0)
1

μk ≥ λi; 
∑

−μk∈Λ(0)
1

μk −
∑

γ∈Λ(0)
i ∪Λ(0)

4

γ ≥ λj, with {i, j} = {2, 3};

(a.3)
∑

−μk∈Λ(0)
1

μk ≥ λi; 
∑

−μk∈Λ(0)
1

μk −
∑

γ∈Λ(0)
i

γ ≥ λ2, with i = 3, 4;

(a.4)
∑

(0)

μk ≥ λi; 
∑

(0)

μk −
∑
(0) (0)

γ ≥ λ2, with i = 3, 4;

−μk∈Λ1 −μk∈Λ1 γ∈Λ3 ∪Λ4
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(b)
∑

γ∈Λ(0)
j

γ ≥ 0, j = 1, 3;
∑

γ∈Λ(0)
j

γ ≤ 0, j = 2, 4; and one of the following:

(b.1)
∑

γ∈Λ(0)
3

γ +
∑

γ∈Λ(0)
4

γ ≤ 0; 
∑

−μk∈Λ(0)
1

μk ≥ λ2; 
∑

−μk∈Λ(0)
3

μk ≥ λ4;

(b.2)
∑

γ∈Λ(0)
3

γ +
∑

γ∈Λ(0)
4

γ ≤ 0; 
∑

−μk∈Λ(0)
3

μk ≥ λ4; 
∑

−μk∈Λ(0)
1

μk −
∑

γ∈Λ(0)
3 ∪Λ(0)

4

γ ≥ λ2;

(b.3)
∑

γ∈Λ(0)
3

γ +
∑

γ∈Λ(0)
4

γ ≥ 0; 
∑

−μk∈Λ(0)
3

μk ≥ λ4; 
∑

−μk∈Λ(0)
3

μk −
∑

γ∈Λ(0)
4

γ ≥ λ2; 

∑
−μk∈Λ(0)

1

μk ≥ λ3.

(c)
∑

γ∈Λ(0)
j

γ ≥ 0, j = 1, 2;
∑

γ∈Λ(0)
j

γ ≤ 0, j = 3, 4; and one of the following:

(c.1)
∑

−μk∈Λ(0)
2

μk ≥ λ3; 
∑

−μk∈Λ(0)
1

μk ≥ λ2;

(c.2)
∑

γ∈Λ(0)
2

γ +
∑

γ∈Λ(0)
i

γ ≤ 0; 
∑

−μk∈Λ(0)
1

μk ≥ λj ; 
∑

−μk∈Λ(0)
2

μk ≥ λi; 
∑

−μk∈Λ(0)
1

μk −

∑
γ∈Λ(0)

j

γ ≥ λ2;

(c.3)
∑

γ∈Λ(0)
2

γ +
∑

γ∈Λ(0)
i

γ ≤ 0; 
∑

−μk∈Λ(0)
1

μk ≥ λ2; 
∑

−μk∈Λ(0)
2

μk ≥ λi;

(c.4)
∑

γ∈Λ(0)
2

γ +
∑

γ∈Λ(0)
i

γ ≥ 0; 
∑

−μk∈Λ(0)
1

μk ≥ λ2; 
∑

−μk∈Λ(0)
2

μk ≥ λi; 
∑

−μk∈Λ(0)
2

μk −

∑
γ∈Λ(0)

i

γ ≥ λj.

(c.5)
∑

γ∈Λ(0)
2

γ +
∑

γ∈Λ(0)
i

γ ≤ 0; 
∑

−μk∈Λ(0)
1

μk ≥ λj ; 
∑

−μk∈Λ(0)
2

μk ≥ λi; 
∑

−μk∈Λ(0)
1

μk −

∑
γ∈Λ(0)

j

γ ≥ λ2;

(d)
∑

γ∈Λ(0)
j

γ ≥ 0, j = 1, 2, 3;
∑

−μk∈Λ(0)
3

μk ≥ λ4;
∑

−μk∈Λ(0)
2

μk ≥ λ3;
∑

−μk∈Λ(0)
1

μk ≥ λ2.

Proof. There are four possible initial configurations: the conditions in part (a) correspond 
to the initial configuration 1, 2, 3, 4, the ones in part (b) to 1, 2, 3, 4, those in part (c) to 
1, 2, 3, 4, and those in part (d) to 1, 2, 3, 4.
a) The configuration 1, 2, 3, 4 admits seven non-equivalent ordered partitions Π1 accord-
ing to rules R1, R2 and R3: the full one [1, 2, 3, 4]; with two parts: [1, i, 4] [j], with 
{i, j} = {2, 3}, and [1, i] [2, j] with {i, j} = {3, 4}; and with three parts: [1, i] [2] [j], with 
{i, j} = {3, 4}.
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The bracket structure [1, 2, 3, 4] represents the four bracket structures, [[1, 2], [3], [4]], 
[[1, 2], [3, 4]], [[[1, 2], [3]], [4]] and [[1, 2, 3], [4]], which are equivalent according to Defini-
tion 6.3. Similarly, [[1, i], [2, j]] ∼ [[1, i], [2], [j]] ∼ [[[1, i], [2]], [j]], for each {i, j} = {3, 4}.

All the sign conditions of the corresponding nested bracket structure (see Table 2) 
can be reduced to the three conditions in part (a). The remaining sign conditions are 
satisfied due to the zero-trace condition.

The conditions from (a.1) to (a.4) are the merging conditions corresponding to the 
four types of nested bracket structures.
b) In the configuration 1, 2, 3, 4, by rule R3, the part [3, 4] is necessary, then we only 
have two independent ordered partitions Π1: [1, 2] [3, 4] and [1] [2] [3, 4].

In the corresponding bracket structures, when the part [3, 4] is in the middle it 
can be positive or negative, so we have three possible non-equivalent C-realizations: 
[ [1, 2], [3, 4] ], [ [[1], [3, 4]], [2] ] and [ [1], [[3, 4], [2]]]. Note that [ [1], [2], [3, 4] ] ∼ [ [[1], [2]],
[3, 4] ] ∼ [ [1, 2], [3, 4] ].

The sign conditions of the initial configuration 1, 2, 3, 4 are given in (b). The conditions 
from (b.1) to (b.3) include the sign conditions of the part [3, 4] and the merging conditions 
corresponding to the other three nested bracket structures, respectively.
c) The configuration 1, 2, 3, 4 admits five independent ordered partitions Π1 according 
to rules R1, R2 and R3: with two parts: [1] [2, 3, 4] and [1, i] [2, j], with {i, j} = {3, 4}; 
and with three parts: [1] [2, i] [j], with {i, j} = {3, 4}.

The three ordered partitions with two parts clearly determine the corresponding three 
nested bracket structures. However, each one of the partitions with three parts produces 
different nested bracket structures, depending on the sign of the part [2, i]. Note that 
[ [[1], [2, i]], [j] ] ∼ [ [1], [2, i], [j] ].

The sign conditions of the initial configuration 1, 2, 3, 4 are given in (c). In (c.1) we 
give the merging conditions of the first nested bracket structure. Whereas the conditions 
from (c.2) to (c.5) include the sign condition of the part [2, i] and the merging conditions 
corresponding to the other four nested bracket structures, respectively.

d) The necessary sign conditions of the initial configuration 1, 2, 3, 4 and the merging 
conditions of the corresponding bracket structure [ [1], [[2], [3, 4]] ] are included in (d).

Redundant conditions, such as, for instance, 
∑

−μk∈Λ(0)
1

μk −
∑

γ∈Λ(0)
2

γ ≥ λ3 in part (b.1), 

which follows from 
∑

−μk∈Λ(0)
1

μk ≥ λ2, have been removed from the statement. �

Note that, in each ordered partition Π1, the first bracket is always positive and the last 
one always negative. Up to this point, for n ≤ 4, not many ordered partitions had more 
than two brackets. For n ≥ 5, however, many ordered partitions (at different levels in the 
C-realization procedure) have three or more brackets, and the brackets in the middle may 
be either positive or negative, which usually opens several possibilities for consideration. 
For the sake of conciseness, we choose not to write the analogous table and corollary 
corresponding to the case n = 5, which contains 132 non-equivalent nested bracket struc-
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tures. In any case, note that it is easy to obtain the sign and merging conditions associated 
to each particular nested bracket structure. For the initial configuration 1, 2, 3, 4, 5 and 
the ordered partition [1][2, 5][3, 4], for example, there are three different corresponding 
bracket structures, namely [ [1], [2, 5], [3, 4] ], [ [1], [[2, 5], [3, 4]] ] and [ [[1], [3, 4]], [2, 5] ] (no-
tice that [ [[1], [2, 5]], [3, 4] ] ∼ [ [1], [2, 5], [3, 4] ]).

The conditions for the first one are
∑

γ∈Λ(0)
j

γ ≥ 0, j = 1, 2, 3; 
∑

γ∈Λ(0)
j

γ ≤ 0, j = 4, 5; 
∑

γ∈Λ(0)
2

γ +
∑

γ∈Λ(0)
5

γ ≤ 0; 
∑

γ∈Λ(0)
3

γ +

∑
γ∈Λ(0)

4

γ ≤ 0;

∑
−μk∈Λ(0)

2

μk ≥ λ5; 
∑

−μk∈Λ(0)
3

μk ≥ λ4; 
∑

−μk∈Λ(0)
1

μk ≥ λ2,

the conditions for the second one are
∑

γ∈Λ(0)
j

γ ≥ 0, j = 1, 2, 3; 
∑

γ∈Λ(0)
j

γ ≤ 0, j = 4, 5; 
∑

γ∈Λ(0)
2

γ +
∑

γ∈Λ(0)
5

γ ≥ 0;

∑
−μk∈Λ(0)

2

μk ≥ λ5; 
∑

−μk∈Λ(0)
3

μk ≥ λ4; 
∑

−μk∈Λ(0)
2

μk −
∑

γ∈Λ(0)
5

γ ≥ λ3; 
∑

−μk∈Λ(0)
1

μk ≥

λ2,

while the conditions for the third one are
∑

γ∈Λ(0)
j

γ ≥ 0, j = 1, 2, 3; 
∑

γ∈Λ(0)
j

γ ≤ 0, j = 4, 5; 
∑

γ∈Λ(0)
2

γ +
∑

γ∈Λ(0)
5

γ ≤ 0; 
∑

γ∈Λ(0)
3

γ +

∑
γ∈Λ(0)

4

γ ≤ 0;

∑
−μk∈Λ(0)

2

μk ≥ λ5; 
∑

−μk∈Λ(0)
3

μk ≥ λ4; 
∑

−μk∈Λ(0)
1

μk ≥ λ3; 
∑

−μk∈Λ(0)
1

μk −
∑

γ∈Λ(0)
3 ∪Λ(0)

4

γ ≥

λ2.

In the second case, we do not include the sign conditions 
∑

γ∈Λ(0)
3

γ +
∑

γ∈Λ(0)
4

γ ≤ 0 and 

∑
γ∈Λ(0)

2

γ +
∑

γ∈Λ(0)
5

γ +
∑

γ∈Λ(0)
3

γ +
∑

γ∈Λ(0)
4

γ ≤ 0 because they can be deduced from zero trace. 

Analogously, in the third case, we do not include the sign condition 
∑

γ∈Λ(0)
1

γ +
∑

γ∈Λ(0)
3

γ +

∑
(0)

γ ≥ 0.

γ∈Λ4
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Appendix A. Moves of type 2 decrease negative entries

As already mentioned in §3.5, when we perform a move of type 2

{λ1, λ2, . . . , λn} −→ {λ1 + ε, λ2 − ε, . . . , λn},

the entry λ2 which is decreased can be either positive or negative.3 Our goal in this 
appendix is to show that, without loss of generality, we may assume that λ2 is always 
negative. We observe, however, that choosing one sign or the other is not entirely irrele-
vant, in fact one could say it responds to different approaches to C-realization: suppose 
we have a target list {9, −5, −6}, for instance, and we start with a triplet {0, 0, 0} of 
zeros. One possible course of action is to fully realize the negative entries, starting with 
{11, −5, −6}, and then bring down the 11 entry down to 9, applying one or more moves 
of type 2 to a positive entry. Alternatively, one can choose to fully realize the positive 
entry, transforming the triplet into {9, −4, −5} and then bring the two negative entries 
down to −5 and −6 using one or more moves of type 2 on negative entries. This latter 
approach is actually the one which drives our overall strategy throughout this paper. 
We have chosen it because it leads to fewer conflicts with the dominant entries of the 
lists generated throughout the C-realizing procedures, and gives rise to simpler merg-
ing conditions. Below we prove Lemma 3.2, which ensures that any realizing procedure 
performing moves of type 2 on positive λ2s can be replaced by an alternative realizing 
procedure, where all moves of type 2 are performed on negative λ2s.

The proof of Lemma 3.2 below is actually constructive, i.e., we shall see how to modify 
the original C-realizing procedure in order to achieve this. The main idea of the proof 
is to backtrack, tracing the moves of type 2 on positive λ2s back in time, and replacing 
every one of them by another move of type 2 involving an appropriate negative λ2.

Before we present the proof, let us first illustrate the situation with a specific example: 
take the T0-admissible list

Λ̃ = {16, 13, 10, 10, 4, −2, −6, −6, −6, −9, −12, −12},

which is, in spirit, the same list already introduced in (5), only removing the subset 
{8, −3, −5}, which is a neutral target list and, therefore, can be put aside and be C-
realized independently at the very end of the process. We consider the following C-

3 We disregard the case λ2 = 0 because any zero entry throughout the C-realizing procedure can be 
transformed into a negative one by ‘backtracking’ (see below for a detailed description of the ‘backtracking’ 
procedure).
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realizing procedure, which corresponds to the approach of always trying to fully realize 
the negative entries:

{0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
{0, 0, 0} {0, 0} {0, 0} {0, 0} {0, 0, 0}

{11, −2, −9} {12, −12} {6, −6} {12, −12} {12, −6, −6}
{ 11 ,−2, −9 ‖ 12 ,−12 ‖ 6 , −6} { 12 , −12 ‖ 12 , −6, −6}

{ 10 ,−2, −9 ‖ 15 ,−12 ‖ 4 , −6} { 13 , −12 ‖ 11 , −6, −6}

{10,−2, −9 ‖ 15 ,−12 ‖ 4, −6 ‖ 13, −12 ‖ 11 , −6, −6}

Λ = {10,−2, −9 ‖ 16 ,−12 ‖ 4, −6 ‖ 13, −12 ‖ 10 , −6, −6}.

(23)

As before, entries in black have already been realized, while colored entries still need 
to be modified in order to achieve their final value in Λ̃. In this case, such entries are 
colored in blue. Also, double vertical bars separate entries which come from the same 
initial subset in the third line of (23) (in other words, the QCRs at level zero as defined 
in §4). Moves of type 2 are indicated by surrounding the entries affected: the dominant 
entry λ1 is boxed, while the corresponding λ2 is circled. Finally, note that the five target 
lists associated with the procedure (23) above are

Λ(0)
1 = {10, −2, −9}, Λ(0)

2 = {16, −12}, Λ(0)
3 = {4, −6},

Λ(0)
4 = {13, −12}, Λ(0)

5 = {10, −6, −6}.

One can easily see that the procedure above involves three moves of type 2 which 
decrease positive entries. Our goal is to replace, one by one, each of those three moves by 
another move of type 2 which decreases an appropriately chosen negative entry, and still 
leads to the same final list Λ̃. We do this by backtracking from the bottom up: the first 
move of type 2 we find in the procedure from the bottom up is the one transforming the 
dominant entry 15 in line 6 of the procedure into 16, and the positive entry 11 into 10. 
We choose to replace that move by another move of type 2: the change in the dominant 
entry remains unchanged but, instead of taking the entry 10 in line 7 as the result of 
decreasing the entry 11 in line 6, we assume there was already a 10 in line 6, and decrease 
instead a new entry −5 in line 6 into the entry −6 in line 7. We can do this for every 
negative entry within the same double vertical bars as 11. We depict in red those negative 
entries (such as the newly created −5) which have had to be modified in order to achieve 
their final target value. For the sake of consistency, we also depict in red positive entries, 
such as 15, in need of modification on line 6, or below. This allows us to visualize the 
gradual transition from the ‘completely blue’ realizing procedure (where all moves of 
type 2 involve positive λ2) to a hopefully ‘completely red’ procedure (where all moves of 
type 2 involve negative λ2) in the end.
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Of course, it is not enough just to change those few particular entries in lines 6 and 
7: we must also propagate all the ‘repercussions on the past’ of these changes, which 
amount to (i) subtracting one unit from the positive entry within those same vertical 
bars for every single line above it, and (ii) adding one unit to the first negative entry 
on every line within those same vertical bars. Notice that, since we only modify entries 
within the same vertical bars, and the amounts by which we increase and decrease are the 
same, we still get a valid C-realizing procedure. Observe, however, that the new realizing 
procedure contains only two (instead of three) moves of type 2 involving positive λ2:

{0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
{0, 0, 0} {0, 0} {0, 0} {0, 0} {0, 0, 0}

{11, −2, −9} {12, −12} {6, −6} {12, −12} {11, −5, −6}
{ 11 ,−2, −9 ‖ 12 ,−12 ‖ 6 , −6} { 12 , −12 ‖ 11 , −5, −6}

{ 10 ,−2, −9 ‖ 15 ,−12 ‖ 4 , −6} { 13 , −12 ‖ 10 , −5, −6}

{10,−2, −9 ‖ 15 ,−12 ‖ 4, −6 ‖ 13, −12 ‖ 10, −5 , −6}

Λ = {10,−2, −9 ‖ 16 ,−12 ‖ 4, −6 ‖ 13, −12 ‖ 10, −6 , −6}.

In a second stage, we move up in the procedure and replace the move of type 2 which 
increased the dominant entry 12 in line 4 into the entry 15 in line 5, and decreased both 
11 into 10, and 6 into 4. As before, we keep the same change in the dominant entries 
and, instead of decreasing 11, we assume that the entry 10 had already been reached, 
and decrease instead by the exact same amount a negative entry within the same double-
bar-block. For instance, we may take −9 and assume it is the result of decreasing an 
entry −8 above it. Also, instead of decreasing the entry 6 two units into 4, we assume 
that 4 had already been achieved, and −6 is the result of decreasing an entry −4 above 
it. For both changes, we also update their repercussions on the lines above them. As a 
result, we obtain a new procedure

{0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
{0, 0, 0} {0, 0} {0, 0} {0, 0} {0, 0, 0}

{10, −2, −8} {12, −12} {4, −4} {12, −12} {11, −5, −6}

{10,−2, −8 ‖ 12 ,−12 ‖ 4, −4 } { 12 , −12 ‖ 11 , −5, −6}

{10,−2, −9 ‖ 15 ,−12 ‖ 4, −6 } { 13 , −12 ‖ 10 , −5, −6}

{10,−2, −9, ‖ 15 ,−12, ‖ 4, −6, ‖ 13, −12, ‖ 10, −5 , −6}

Λ = {10,−2, −9, ‖ 16 ,−12, ‖ 4, −6, ‖ 13, −12, ‖ 10, −6 , −6},

which is again a completely valid C-realizing procedure for the same list Λ̃, but containing 
one single move of type 2 decreasing a positive entry: the one increasing the entry 12 in 
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line 4 to 13 in line 5, and decreasing 11 to 10. As before, we replace this last move by 
another one which decreases instead one of the negative entries within the same double-
bar-block as 11. Notice that we may either take the −5 as a result of decreasing a −4
in the line above, or the −6 as a result of decreasing a former −5. Either is acceptable. 
If we choose the latter, and backtrack its repercussions, we arrive, as announced, at the 
C-realizing procedure

{0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
{0, 0, 0} {0, 0} {0, 0} {0, 0} {0, 0, 0}

{10, −2, −8} {12, −12} {4, −4} {12, −12} {10, −5, −5}

{10,−2, −8 ‖ 12 ,−12 ‖ 4, −4 } { 12 , −12 ‖ 10, −5, −5 }

{10,−2, −9 ‖ 15 ,−12 ‖ 4, −6 } { 13 , −12 ‖ 10, −5, −6 }

{10,−2, −9, ‖ 15 ,−12, ‖ 4, −6, ‖ 13, −12, ‖ 10, −5 , −6}

Λ = {10,−2, −9, ‖ 16 ,−12, ‖ 4, −6, ‖ 13, −12, ‖ 10, −6 , −6}.

for Λ̃ such that all its moves of type 2 decrease only negative entries.
The same ideas employed in this example lead to a proof for Lemma 3.2:

Proof of Lemma 3.2 in §3.5. Consider a T0-admissible realizable list Λ such that there 
exists a C-realizing procedure for Λ which contains moves of type 2 performed on some 
positive λ2, and consider the tree representation of that C-realizing procedure as de-
scribed in Theorem 3.1. In fact, by appropriately rearranging the QCRs in the second 
row from the top of the tree, we may avoid any ‘crossing arrows’ in the tree, leading 
to an even simpler representation of the C-realizing procedure, where moves of type 3 
always merge sets which are contiguous. Thus, we may condense the procedure into a 
representation, like (23) above, where the entries within the same pair of double vertical 
bars (i.e., those originating in the same QCR at level 0) are stacked vertically on top 
of each other. Thus, as we go down within two pairs of vertical bars we may track the 
evolution of any single specific entry as the procedure advances.

Our goal is to find another C-realizing procedure for Λ, all of whose moves of type 
2 are performed on negative entries. We do this by replacing every single move of type 
2 on a positive λ2 with another move of type 2 on an appropriate negative λ2 leading 
to the same outcome. The keys for doing this are: (i) doing it from the bottom up, (ii) 
choosing the negative entry to be decreased within the same pair of double bars as the 
positive one, and (iii) updating past entries in vertical to compensate for the change. The 
combination of these three actions is what we call backtracking. Moves of type 3 will not 
be changed at all, so without loss of generality, we may even replace the set delimiters 
by double vertical bars, which will make tracking even easier.

For notational purposes, let us denote by Q(0)
1 , Q(0)

2 , . . . , Q(0)
p the QCRs at level zero 

in the third row from the top in a representation of the form (23). Each Q(0)
j is bounded 
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by double vertical bars. Going down the procedure, we denote by Q(l)
k the k-th QCR 

from the left in line l of the procedure. Notice that in this setting all the QCRs Q(l)
k for 

the same k are stacked on top of each other, as in

‖Q(0)
1 ‖Q(0)

2 ‖Q(0)
3 · · · ‖Q(0)

p ‖

‖Q(1)
1 ‖Q(1)

2 ‖Q(1)
3 · · · ‖Q(1)

p ‖

· · ·

‖Q(t)
1 ‖Q(t)

2 ‖Q(t)
3 · · · ‖Q(t)

p ‖

.

We now carefully describe the action of backtracking: suppose the lowest lines con-
taining a move of type 2 which decreases a positive entry are the s-th and the (s +1)-th 
line. Suppose further that the corresponding move decreases a positive entry λ(s)

kr ∈ Q
(s)
k

into another entry λ(s)
kr − δ ∈ Q

(s+1)
k with δ > 0. Then, we first replace the quantity 

λ
(s)
kr in line s with λ(s)

kr − δ, and update accordingly all entries λ(l)
kr , l = 0, 1, 2, . . . , s − 1

stacked above it by subtracting δ from every single one of them. Also, we choose any 
negative entry −μ

(s+1)
kt ∈ Q

(s+1)
k in line s + 1 which has been already realized, and 

replace the corresponding negative entry −μ
(s)
kt ∈ Q

(s)
k in the line above it by the neg-

ative4 entry −μ
(s+1)
kt + δ. Once this change is made, we update accordingly all entries 

−μ
(l)
kt , l = 0, 1, 2, . . . , s − 1 stacked above it by adding δ to every one of them. Schemat-

ically, we replace the procedure

...
...

...
...

Q
(s−2)
k−1 ‖λ(s−2)

kr , . . . ,−μ
(s−2)
kt , . . . ‖ Q

(s−2)
k+1 ‖

Q
(s−1)
k−1 ‖λ(s−1)

kr , . . . ,−μ
(s−1)
kt , . . . ‖ Q

(s−1)
k+1 ‖

Q
(s)
k−1 ‖ λ

(s)
kr , . . . ,−μ

(s)
kt , . . . ‖ Q

(s)
k+1 ‖

Q
(s+1)
k−1 ‖ λ

(s)
kr − δ , . . . ,−μ

(s+1)
kt , . . . ‖ Q

(s+1)
k+1 ‖

by the procedure

4 It may be necessary to modify more than one such negative entry if δ is larger than the absolute value 
of every negative entry in Q(s+1)

k , but this is acceptable as long as all these negative entries belong to the 
same Q(s+1)

k .
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...
...

...
...

Q
(s−2)
k−1 ‖λ(s−2)

kr − δ, . . . ,−μ
(s−2)
kt + δ, . . . ‖ Q

(s−2)
k+1 ‖

Q
(s−1)
k−1 ‖λ(s−1)

kr − δ, . . . ,−μ
(s−1)
kt + δ, . . . ‖ Q

(s−1)
k+1 ‖

Q
(s)
k−1 ‖λ(s)

kr − δ, . . . , −μ
(s+1)
kt + δ , . . . ‖ Q

(s)
k+1 ‖

Q
(s+1)
k−1 ‖λ(s)

kr − δ, . . . ,−μ
(s+1)
kt , . . . ‖ Q

(s+1)
k+1 ‖

(24)

Notice that the (s +1)-th line in both procedures coincides, so if from that point on we 
define the new realizing procedure as the same as the one we started with, then the final 
outcome will be Λ̃ again. Furthermore, the fact of having taken the positive entries λ(∗)

kr

and the negative entries −μ
(∗)
kt from within the same set Q(∗)

k ensures that the procedure 
represented by (24) is a perfectly valid C-realizing procedure, only with one less move of 
type 2 decreasing positive entries than the original procedure.

Repetition of the backtracking step, as described above, as many times as the number 
of moves of type 2 which decrease positive entries leads to the final result. �
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