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1. Introduction

In [3], we considered spectra with 5 real eigenvalues, a repeated positive eigenvalue 
and a repeated negative eigenvalue, that were previously unresolved for the symmetric 
nonnegative inverse eigenvalue problem (S-NIEP). A method was developed that showed 
that a large portion (not all) of these spectra could not be realized. As the nonrealiz-
able spectra form an open set in R5, it must happen that these nonrealizable spectra 
imply that many nearby spectra (with fewer repeated eigenvalues) are also nonrealiz-
able. Unfortunately, it is difficult to explicitly exploit this analytical fact. Here, we refine 
our method and, with additional complication, apply it to real 5-spectra with just one 
repeated eigenvalue. Again, many spectra are excluded, including our prior results as a 
special case. Interestingly, the two cases (a repeated positive eigenvalue, and a repeated 
negative eigenvalue) are analytically different. In all cases, we consider only spectra with 
3 positive eigenvalues (including the Perron root) and 2 negative eigenvalues, as all other 
+/− balances have been resolved. We also restrict attention (primarily) to spectra within 
this case that are not otherwise resolved. As before, the starting point for a proposed 
5-spectrum is to consider, via the interlacing inequalities, the possible spectra of the five 
4-by-4 principal submatrices. In the prior work [3], spectra of the form

1, a, a− (a + d),−(a + d)

were considered, with a, d > 0 and a + d, 2d < 1 < a + 2d (unresolved cases were among 
these). A sufficient condition for nonrealizability was found ([3, Theorem 1]) to be

2(a + d)3 > 1 + a3 + (a + 2d− 1)3.

Note the typo in the statement of the theorem, where ≥ appears instead of >.
Section 2 contains a discussion of the current state of knowledge about the 5-by-5 

S-NIEP with 2 repeated eigenvalues, relative to our work in [3].
Computationally obtained graphical depictions of our results, usually in comparison 

to prior results (primarily of [8]), are given in figures 1-11. These are the primary basis 
for comments in the text about comparison to prior results. Proofs about comparisons 
appear in appendices.

2. 5-spectra with repeated positive and negative eigenvalues

In [3], we considered spectra with 5 real eigenvalues, a repeated positive eigenvalue 
and a repeated negative eigenvalue and we proved:

Theorem 1. ([3, Theorem 1]) Let 0 < a, d satisfy a + d, 2d < 1 < a + 2d. If 2(a + d)3 >

1 + a3 + (a + 2d − 1)3, then 1, a, a, −(a + d), −(a + d) are not the eigenvalues of a 5-by-5 
symmetric nonnegative matrix.
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Fig. 1. Curve 1 ≡ 2(a + d)3 − a3 − (a + 2d − 1)3 = 1, curve 2 ≡ 50(a + d)3 + (1 − 2d)2 − 50a3 = 25, line 3 
≡ 10a − (

√
5 − 5)d = 2

√
5, line 4 ≡ d = 1/4, curve 5 ≡ 4a(a + d) = 1, line 6 ≡ 9a + 2d = 5.

After this result was published, another result appeared about symmetric realization 
of spectra with 5 eigenvalues.

Theorem 2. ([6, Theorem 4]) Let σ = {λ1, . . . , λ5} be a list of monotonically decreasing 
real numbers such that 

∑5
i=1 λi ≥ λ1

2 . Necessary and sufficient conditions for σ to be the 
spectrum of a nonnegative symmetric matrix are:

1. λ1 = maxλ∈σ |λ|,
2. λ2 + λ5 ≤

∑5
i=1 λi,

3. λ3 ≤
∑5

i=1 λi.

And about to appear from the same authors is another paper on the same subject 
[7]. This one primarily deals with realizable spectra and also points out some comments 
made here but with a different parametrization.

A spectrum 1, a, a, −(a + d), −(a + d) under the hypothesis of Theorem 1, clearly sat-
isfies conditions 1 and 2 but not 3 from Theorem 2. Note that in this case 

∑5
i=1 λi ≥ λ1

2
leads us to d ≤ 1

4 . In a, d-space, Fig. 1 describes these results. The grey triangle, with-
out the border, is the domain of Theorem 1. The dashed slightly curved line 1 is the 
exclusionary curve given by Theorem 1. No spectrum corresponding to points above it is 
symmetrically realizable. The dotted curve 2 is an exclusionary boundary deduced from 
a cubic Johnson-Loewy-London necessary condition [2,4]. Line 3 corresponds to constant 
diagonal S-NIEP realizable spectra, deduced from the result of [8]. Any spectrum corre-
sponding to points on the left or on it is symmetrically realizable with constant diagonal. 
Line 4 is d = 1

4 and no spectrum corresponding to points under or on it is symmetrically 
realizable because of Theorem 2. In [5] a family of matrices was exhibited that, when 
translated to our parameters, realizes spectra on the dashdotted curve 5. Since spec-
tra southwest of realizable ones are also realizable, by increasing the Perron root and 
re-scaling, points to the left of this curve are also realizable and this observation was 
claimed in [7], as well. In [7, Theorem 5.1] it was also shown that spectra to the right of 
line 6 on the grey region are not realizable. This reduces the unknown region described 
in [3], but still leaves a region of unresolved spectra, the one with a question mark in 
Fig. 1.
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3. 5-spectra with a repeated positive eigenvalue

Throughout this section, we consider 5-spectra of the form

1, a, a,−(a + d1),−(a + d2)

with a +d2 < 1 because of the Perron condition, 1 > a, d2 > d1 > 0, and 1 < a +d1 +d2, 
as otherwise existence has been characterized [1]. Of course, 1 > d1 + d2, as the trace 
must be positive; the inequality may be taken to be strict, as trace 0 spectra have been 
characterized for n = 5 in the S-NIEP [8].

If these are the eigenvalues of a 5-by-5 symmetric nonnegative matrix A = (aij), then 
we suppose that each 4-by-4 principal submatrix Ai of A, resulting from deleting row 
and column i, has eigenvalues

pi, a, qi,−(a + ci), i = 1, . . . , 5,

in which pi, 1 ≥ pi ≥ a, is the Perron root, a ≥ qi ≥ −(a + d1) and d1 ≤ ci ≤ d2 all by 
interlacing. By Perron-Frobenius pi ≥ a + ci ≥ a + d1 > a, so that 1 ≥ pi > a.

Now, we have 4Tr (A) =
∑5

i=1 Tr (Ai), and, because of nonnegativity

4Tr (A3) =
5∑

i=1
Tr ((A3)i) ≥

5∑
i=1

Tr (A3
i ).

From the latter, we obtain

4(1 + 2a3 − (a + d1)3 − (a + d2)3) ≥
5∑

i=1
p3
i + 5a3 +

5∑
i=1

q3
i −

5∑
i=1

(a + ci)3

which gives, algebraically

5∑
i=1

p3
i +

5∑
i=1

q3
i ≤ 4 + 3a3 − 4(a + d1)3 − 4(a + d2)3 +

5∑
i=1

(a + ci)3. (1)

Via optimization, we also give a lower bound for 
∑5

i=1 p
3
i +

∑5
i=1 q

3
i , so that we can 

compare it to (1) and reach a contradiction, in certain cases.
As in the prior analysis, we will see that qi < 0. Since pi ≥ a +ci by Perron-Frobenius, 

we put

pi = a + ci + ti, with ti ∈ [0, 1 − a− ci], i = 1, . . . , 5.

Now

Tr (Ai) = pi + qi − ci = a + ti + qi ≥ 0.
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Also 0 ≤ aii = Tr (A) − Tr (Ai) = 1 − d1 − d2 − (a + ti + qi), from which we obtain

−(a + ti) ≤ qi ≤ −(a + ti) + 1 − d1 − d2 = 1 − a− d1 − d2 − ti < −ti,

so that qi < 0 and

qi = −(a + ti) + si, with si ∈ [0, 1 − d1 − d2].

From 4Tr (A) =
∑5

i=1 Tr (Ai), we obtain

4(1 − d1 − d2) =
5∑

i=1
(a + ti + qi) =

5∑
i=1

si.

Next, we have

5∑
i=1

p3
i +

5∑
i=1

q3
i =

5∑
i=1

(a + ci + ti)3 +
5∑

i=1
(−(a + ti) + si)3.

Since qi < 0, the minimum is attained when the qi’s are as disparate as possible, namely 
one si = 0 (say s1 = 0) and for the other values of i, si = 1 − d1 − d2 (their upper 
bound). So,

5∑
i=1

p3
i +

5∑
i=1

q3
i =

5∑
i=1

(a + ci + ti)3 − (a + t1)3 −
5∑

i=2
(a + ti − 1 + d1 + d2)3.

This expression is a function of ten variables, f(t1, . . . , t5, c1, . . . , c5), in the compact set 
C given by ti ∈ [0, 1 − a − ci] and ci ∈ [d1, d2]. The partial derivatives with respect to 
the variables ti are

∂f

∂t1
= 3(a + c1 + t1)2 − 3(a + t1)2,

∂f

∂ti
= 3(a + ci + ti)2 − 3(a + ti − 1 + d1 + d2)2, i = 2, . . . , 5.

Since ci > 0 and −1 + di + d2 < 0, all these partial derivatives are positive, so there is 
no local extreme in the interior of the compact set C. As for the frontier of C, it is clear 
that

f(0, . . . , 0, c1, . . . , c5) ≤ f(t1, . . . , t5, c1, . . . , c5), for all (t1, . . . , t5),

and this fact is sufficient to continue with our argument. So

min
( 5∑

p3
i +

5∑
q3
i

)
=

5∑
(a + ci)3 − a3 − 4(a− 1 + d1 + d2)3. (2)
i=1 i=1 i=1
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Fig. 2. d1d2-sections of the domain of Theorem 3, for a = i
10 , i = 1, . . . , 9.

Of course, the proposed spectrum cannot occur if (2) > (1), that is

5∑
i=1

(a+ ci)3 − a3 − 4(a− 1 + d1 + d2)3 > 4 + 3a3 − 4(a+ d1)3 − 4(a+ d2)3 +
5∑

i=1
(a+ ci)3

and, after algebraic reduction, we obtain

(a + d1)3 + (a + d2)3 > 1 + a3 + (a + d1 + d2 − 1)3,

the same condition as in the case d1 = d2 = d studied in [3], see Theorem 1.

Theorem 3. Let a, d1 > 0, d2 > d1 satisfy a + d2, d1 + d2 < 1 < a + d1 + d2. If (a +
d1)3 + (a + d2)3 > 1 + a3 + (a + d1 + d2 − 1)3, then 1, a, a, −(a + d1), −(a + d2) are not 
the eigenvalues of a 5-by-5 symmetric nonnegative matrix.

Note that the sections for a fixed a in d1, d2-space, under the hypothesis of Theorem 3, 
are:

• If 0 < a < 1
2 , the interior of the polygon with vertices (see Fig. 2 and Fig. 3):

(0, 1 − a),
(

1 − a

2 ,
1 − a

2

)
,

(
1
2 ,

1
2

)
and (a, 1 − a).

• If 1
2 ≤ a < 1, the interior of the triangle with vertices (see Fig. 2 and Fig. 3):

(0, 1 − a),
(

1 − a
,
1 − a

)
, and (1 − a, 1 − a).
2 2
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Fig. 3. 3D-sections of the domain of Theorem 3, for a = i
10 , i = 1, . . . , 9.

The spectrum 1, a, a, −(a + d1), −(a + d2) under the hypothesis of Theorem 3, clearly 
satisfies conditions 1 and 2 but not 3 from Theorem 2. Note that in this case 

∑5
i=1 λi ≥ λ1

2
leads us to d1 + d2 ≤ 1

2 . Therefore, no spectrum corresponding to points under or on the 
plane d1 + d2 = 1

2 is symmetrically realizable because of Theorem 2. From the sections 
in Fig. 2, it is clear that for a ≤ 1

2 none of these spectra are in these circumstances, for 
a ≥ 3

4 none of these spectra are symmetrically realizable and for 1
2 < a < 3

4 , the ones 
under or on d1 + d2 = 1

2 are not symmetrically realizable.
The spectrum 1, a, a, −(a + d1), −(a + d2) is symmetrically realizable with constant 

diagonal if and only if the translated spectrum, that has trace zero,

1 − 1 − d1 − d2

5 , a− 1 − d1 − d2

5 , a− 1 − d1 − d2

5 ,

−(a + d1) −
1 − d1 − d2

5 ,−(a + d2) −
1 − d1 − d2

5

is symmetrically realizable. The characterization [8] gives F (a, d1, d2) ≥ 0 where

F (a, d1, d2) =
(

4 + d1 + d2

5

)3

+ 2
(

5a− 1 + d1 + d2

5

)3

+
(
d2 − 5a− 1 − 4d1

5

)3

+
(
d1 − 5a− 1 − 4d2

5

)3

.

The Perron condition for the translated spectrum when F (a, d1, d2) ≥ 0 is given in 
Appendix A. The surface Scd given in Fig. 4 is that portion of the surface Scd ≡
F (a, d1, d2) = 0 lying in the domain of Theorem 3. The points under or on Scd are 
symmetrically realizable with constant diagonal. Notice then, see Fig. 4, that for spectra 
under the hypothesis of Theorem 3 with a ≥ 4

10 this result is not applicable. In fact, 
considering the vertices of the 3D-polygonal sections, 3

10 < a < 4
10 , of the domain of 

Theorem 3 we have:
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Fig. 4. 3D-sections of the domain of Theorem 3, for a = i
10 , i = 1, . . . , 9 and that portion of Scd, the border 

surface for constant diagonal symmetric realization, lying in the domain.

F (a, 0, 1 − a) = −6a(3a2 + 5)
25 < 0

F

(
a,

1 − a

2 ,
1 − a

2

)
= 3(a− 5)(11a2 + 10a− 5)

100

⎧⎪⎪⎨
⎪⎪⎩
> 0 if a <

4
√

5 − 5
11 ≈0.3585701734

≤ 0 if a ≥ 4
√

5 − 5
11

F

(
a,

1
2 ,

1
2

)
= 3 − 6a− 12a2

4

⎧⎪⎪⎨
⎪⎪⎩

> 0 if a <

√
5 − 1
4 ≈ 0.3090169942

≤ 0 if a ≥
√

5 − 1
4

F (a, a, 1 − a) = −6a3 < 0.

Therefore for a ≥ 4
√

5−5
11 none of these spectra are in these circumstances and for a <

4
√

5−5
11 the ones under or on Scd are symmetrically realizable. See Appendix B.
Fig. 5 shows the exclusionary surface S given by Theorem 3, that is that portion of 

the surface S ≡ G(a, d1, d2) = 0 lying in the domain of Theorem 3, where

G(a, d1, d2) = (a + d1)3 + (a + d2)3 − 1 − a3 − (a + d1 + d2 − 1)3.

No spectrum corresponding to points above it is symmetrically realizable. Note that 
there are always points of the domain of Theorem 3 above and under it. In fact, for the 
vertices of the sections of the domain of Theorem 3 we have:

G(a, 0, 1 − a) = 0

G

(
a,

1 − a
,
1 − a

)
= −3(a + 1)(a− 1)2

< 0
2 2 4
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Fig. 5. 3D-sections of the domain of Theorem 3, for a = i
10 , i = 1, . . . , 9 and that portion of the border 

surface S ≡ (a + d1)3 + (a + d2)3 = 1 + a3 + (a + d1 + d2 − 1)3 from Theorem 3 lying in the domain.

G

(
a,

1
2 ,

1
2

)
= 12a2 + 6a− 3

4

⎧⎪⎪⎨
⎪⎪⎩

≤ 0 if a ≤
√

5 − 1
4 ≈ 0.3090169942

> 0 if a >

√
5 − 1
4

G(a, a, 1 − a) = 6a3 > 0

G(a, 1 − a, 1 − a) = 3a(1 − a) > 0.

In summary, for the spectra σ under the hypothesis of Theorem 3 we have:

• If a <
4
√

5 − 5
11 , for some (d1, d2) the spectrum σ is symmetrically realizable with 

constant diagonal, those under or on curve s in Fig. 6. And for others σ is not sym-
metrically realizable by Theorem 3, e.g. those above curve t in Fig. 6. The question 
mark in Fig. 6 means that the region between s and t (including t) is unresolved.

• If 4
√

5 − 5
11 ≤ a ≤ 1

2 , for some (d1, d2) the spectrum σ is not symmetrically realizable 

by Theorem 3, those above curve t in Fig. 6. The question mark in Fig. 6 means that 
the region under or on t is unresolved.

• If 1
2 < a <

3
4 , for some (d1, d2) the spectrum σ is not symmetrically realizable by 

Theorem 3, those above curve t, and for others neither because of Theorem 2, those 
under or on line � in Fig. 6. Since all the section is covered between both, σ is not 
symmetrically realizable.

• If a ≥ 3
4 , the spectrum σ is not symmetrically realizable by Theorem 2, see Fig. 6

and Fig. 2.
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Fig. 6. d1d2-sections of the domain of Theorem 3 with curve s = Scd ∩ {X = a} ≡ F (a, d1, d2) = 0, curve 
t = S∩{X = a} ≡ G(a, d1, d2) = 0 and curve � = {d1+d2 = 1

2} ∩{X = a} for a ∈
{

1
5 ,

3
10 ,

4
√

5−5
11 , 1

2 ,
7
10 ,

3
4

}
.

4. 5-spectra with a repeated negative eigenvalue

Throughout this section, we consider 5-spectra of the form

1, a, a− r,−(a + d),−(a + d)

with a > r > 0, d > 0, a + d < 1, and 1 < a + 2d, as otherwise existence has been 
characterized [1]. Since the trace is 1 − r − 2d, we have 1 > r + 2d, and, again the 
inequality may be taken to be strict, as trace 0 spectra have been characterized [8].

If these are the eigenvalues of a 5-by-5 symmetric nonnegative matrix A = (aij), then 
we suppose that the 4-by-4 principal submatrix Ai of A, resulting from deletion of row 
and column i, has eigenvalues

pi, ai, qi,−(a + d), i = 1, . . . , 5,

in which pi, 1 ≥ pi ≥ a, is the Perron root, a − r ≤ ai ≤ a, and −(a + d) ≤ qi < a − r, 
all because of interlacing. By Perron-Frobenius again, pi ≥ a + d > a.

We have 4Tr (A) =
∑5

i=1 Tr (Ai), and 4Tr (A3) ≥
∑5

i=1 Tr (A3
i ). From the latter, we 

obtain

4(1 + a3 + (a− r)3 − 2(a + d)3) ≥
5∑

i=1
p3
i +

5∑
i=1

a3
i +

5∑
i=1

q3
i − 5(a + d)3

which gives
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5∑
i=1

p3
i +

5∑
i=1

q3
i ≤ 4(1 + a3 + (a− r)3) −

5∑
i=1

a3
i − 3(a + d)3. (3)

Via optimization, we also give a lower bound for 
∑5

i=1 p
3
i +

∑5
i=1 q

3
i , so that we can 

compare it to (3) and reach a contradiction in some cases, thereby ruling such cases out.
We will see that qi < 0. Since pi ≥ a + d by Perron-Frobenius and since, for a given 

total weight among the pi’s, 
∑5

i=1 p
3
i is minimized when the pi’s are equal, we assume 

for minimization that

pi = a + d + t, with t ∈ [0, 1 − a− d]

as was done in [3]. Now

Tr (Ai) = t + ai + qi ≥ 0.

Also 0 ≤ aii = Tr (A) − Tr (Ai) = 1 − r − 2d − (t + ai + qi) from which we obtain

−(ai + t) ≤ qi ≤ −(ai + t) + 1 − r − 2d = 1 − a− 2d + a− r − ai − t,

so that qi < 0 and

qi = −(ai + t) + si with si ∈ [0, 1 − r − 2d].

From 4Tr (A) =
∑5

i=1 Tr (Ai), we obtain

4(1 − r − 2d) =
5∑

i=1
(t + ai + qi) =

5∑
i=1

si.

Next, we have

5∑
i=1

p3
i +

5∑
i=1

q3
i = 5(a + d + t)3 +

5∑
i=1

(si − (ai + t))3.

Since qi < 0, the minimum is attained when the qi’s are as disparate as possible (as 
in the prior section), namely one si = 0 (say s1 = 0) and for the other values of i, 
si = 1 − r − 2d (their upper bound). So,

5∑
i=1

p3
i +

5∑
i=1

q3
i = 5(a + d + t)3 − (a1 + t)3 +

5∑
i=2

(1 − r − 2d− (ai + t))3. (4)

Differentiation with respect to t gives

15(a + d + t)2 − 3(a1 + t)2 − 3
5∑

(1 − r − 2d− (ai + t))2

i=2
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and, since each of the 15 positive terms is greater than each 15 negative terms, the 
minimum of expression (4) occurs when t = 0. So we have

min
( 5∑

i=1
p3
i +

5∑
i=1

q3
i

)
= 5(a + d)3 − a3

1 −
5∑

i=2
(ai − (1 − r − 2d))3. (5)

Of course, the proposed spectrum cannot occur if (5) > (3), or, after algebraic reduction

8(a + d)3 − 4
(
1 + a3 + (a− r)3

)
+

5∑
i=2

a3
i −

5∑
i=2

(ai − (1 − r − 2d))3 > 0. (6)

Now, viewing the ai’s as variables ( (a − r) ≤ ai ≤ a) and because ai ≥ a − r and 
1 < a + 2d we have ai > 1 − r − 2d = Tr (A) > 0, and so all partial derivatives of 
(6) with respect to the variables ai are positive. This means that the expression cannot 
be less than its evaluation at the left hand endpoint ai = a − r. If it is positive, then 
nonexistence is clear, independently of the ai’s. This gives

2(a + d)3 − (1 + a3 + (a− r)3) + (a− r)3 − (a− (1 − 2d))3 > 0

or

2(a + d)3 > 1 + a3 + (a + 2d− 1)3,

the same condition as in the case r = 0 studied in [3], see Theorem 1.

Theorem 4. The spectrum 1, a, a − r, −(a + d), −(a + d) with d, r > 0, a > r and a +
d, r + 2d < 1 < a + 2d is not realizable by a symmetric nonnegative 5-by-5 matrix if

2(a + d)3 > 1 + a3 + (a + 2d− 1)3.

Note that the sections for a fixed a in d, r-space, under the hypothesis of Theorem 4, 
are:

• If 0 < a ≤ 1
2 , the interior of the triangle with vertices (see Fig. 7 and Fig. 8):

(
1 − a

2 , 0
)
,

(
1
2 , 0

)
and

(
1 − a

2 , a

)
.

• If 1
2 < a < 1, the interior of the polygon with vertices (see Fig. 7 and Fig. 8):

(
1 − a

, 0
)
, (1 − a, 0), (1 − a, 2a− 1) and

(
1 − a

, a

)
.
2 2
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Fig. 7. dr-sections of the domain of Theorem 4, for a = i
10 , i = 1, . . . , 9 and line � ≡ r + 2d = 1

2 .

Fig. 8. 3D-sections of the domain of Theorem 4, for a = i
10 , i = 1, . . . , 9.

The spectrum 1, a, a −r, −(a +d), −(a +d) under the hypothesis of Theorem 4, clearly 
satisfies conditions 1 and 2 but not 3 from Theorem 2. Note that in this case 

∑5
i=1 λi ≥ λ1

2
leads us to r + 2d ≤ 1

2 . Therefore, no spectrum corresponding to points under or on the 
plane r+ 2d = 1

2 is symmetrically realizable because of Theorem 2. From the sections in 
Fig. 7, it is clear that for a ≤ 1

2 none of these spectra are in these circumstances and for 
1
2 < a, the ones under or on r + 2d = 1

2 are not symmetrically realizable.
The spectrum 1, a, a − r, −(a + d), −(a + d) is symmetrically realizable with constant 

diagonal if and only if the translated spectrum, that has trace zero,

1−1−r−2d
, a−1−r−2d

, a−r−1−r−2d
,−(a + d)−1−r−2d

,−(a + d)−1−r−2d

5 5 5 5 5
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Fig. 9. 3D-sections of the domain of Theorem 4, for a = i
10 , i = 1, . . . , 9 and that portion of Scd, the border 

surface for constant diagonal symmetric realization, lying in the domain.

is symmetrically realizable. The characterization [8] gives H(a, d, r) ≥ 0 where

H(a, d, r) =
(

4 + r + 2d
5

)3

+
(

5a− 1 + r + 2d
5

)3

+
(

5a− 4r − 1 + 2d
5

)3

+ 2
(
r − 5a− 3d− 1

5

)3

.

The Perron condition for the translated spectrum when H(a, d, r) ≥ 0 appears in Ap-
pendix C. The surface Scd given in Fig. 9 is that portion of the surface Scd ≡ H(a, d, r) =
0 lying in the domain of Theorem 4. The points above or on Scd are symmetrically real-
izable with constant diagonal. Notice then, see Fig. 9, that spectra under the hypothesis 
of Theorem 4 with a ≤ 3

10 are always symmetrically realizable with constant diagonal 
and for other a’s we always have a region with realizable spectra that decreases as a
increases. In fact, considering the vertices of the 3D-polygonal sections of the domain of 
Theorem 4 we have:

H

(
a,

1 − a

2 , 0
)

= 3(a− 5)(11a2 + 10a− 5)
100

⎧⎪⎪⎨
⎪⎪⎩

> 0 if a <
4
√

5 − 5
11 ≈ 0.3585701734

≤ 0 if a ≥ 4
√

5 − 5
11

H

(
a,

1
2 , 0

)
= 3 − 6a− 12a2

4

⎧⎪⎪⎨
⎪⎪⎩

> 0 if a <

√
5 − 1
4 ≈ 0.3090169942

≤ 0 if a ≥
√

5 − 1
4

(It is a vertex for a ≤ 1)
2
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Fig. 10. 3D-sections of the domain of Theorem 4, for a = i
10 , i = 1, . . . , 9 and that portion of the border 

surface S ≡ 2(a + d)3 = 1 + a3 + (a + 2d − 1)3, from Theorem 4, lying in the domain.

H

(
a,

1 − a

2 , a

)
= 3(a + 1)(a− 1)2

4 > 0

H(a, 1 − a, 0) = 6(a− 3)(a2 + 4a− 1)
25

{
> 0 if a <

√
5 − 2 ≈ 0.236067977

≤ 0 if a ≥
√

5 − 2

(It is a vertex for a >
1
2)

H(a, 1 − a, 2a− 1) = 3a(a− 1) < 0 (It is a vertex for a >
1
2).

Therefore the points (a, 1−a
2 , a) are always above the surface Scd, the points (a, 1−a

2 , 0)
are above or on it if and only if a ≤ 4

√
5−5
11 , the points (a, 12 , 0) are above or on it if and 

only if a ≤
√

5−1
4 and the points (a, 1 − a, 0) and (a, 1 − a, 2a − 1) are always under Scd. 

So we can conclude that for a ≤
√

5−1
4 all the spectra are symmetrically realizable with 

constant diagonal. See Appendix D.
Fig. 10 shows the exclusionary surface S given by Theorem 4, that is that portion of 

the surface S ≡ J(a, d, r) = 0 lying in the domain of Theorem 4, where

J(a, d, r) = 2(a + d)3 − 1 − a3 − (a + 2d− 1)3.

No spectrum corresponding to points in front of it is symmetrically realizable. Note then, 
see Fig. 10, that for the spectra under the hypothesis of Theorem 4 with a ≤ 3

10 the 
theorem is not applicable and for a ≥ 4

10 there are always points of the domain behind 
and in front of S. In fact, for the vertices of the sections of the domain of Theorem 4 we 
have:
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Fig. 11. dr-sections of the domain of Theorem 4 with curve s = Scd ∩ {X = a} ≡ H(a, d, r) = 0, curve 
t = S ∩ {X = a} ≡ J(a, d, r) = 0 and curve � = {r + 2d = 1

2} ∩ {X = a} for a ∈
{√

5−1
4 , 1

2 ,
7
10

}
.

J

(
a,

1 − a

2 , 0
)

= J

(
a,

1 − a

2 , a

)
= −3(a + 1)(a− 1)2

4 < 0

J

(
a,

1
2 , 0

)
= 12a2 + 6a− 3

4

⎧⎪⎪⎨
⎪⎪⎩

≤ 0 if a ≤
√

5 − 1
4 ≈ 0.3090169942

> 0 if a >

√
5 − 1
4

(It is a vertex for a ≤ 1
2)

J(a, 1 − a, 0) = J(a, 1 − a, 2a− 1) = 3a(1 − a) > 0 (It is a vertex for a >
1
2).

Therefore for a ≤
√

5−1
4 none of these spectra satisfy Theorem 4. For a >

√
5−1
4 , there 

are spectra, for which Theorem 4 is applicable, those in front of S. The others, for which 
it is not applicable, those behind, or on, S. See Appendix E.

In summary, for the spectra σ under the hypothesis of Theorem 4 we have:

• If a ≤
√

5−1
4 , the spectrum σ is always symmetrically realizable with constant diag-

onal.
• If 

√
5−1
4 < a ≤ 1

2 , for some (d, r) the spectrum σ is symmetrically realizable with 
constant diagonal, those above or on curve s in Fig. 11. And for others σ is not 
symmetrically realizable by Theorem 4, e.g. those on the right hand side of curve t
in Fig. 11. The question mark in Fig. 11 means that the region under s and on the 
left hand side of t (including t) is unresolved.

• If a > 1
2 , for some (d, r) the spectrum σ is symmetrically realizable with constant 

diagonal, those above or on curve s, for others σ is not symmetrically realizable by 
Theorem 4, e.g. those on the right hand side of curve t, and for others neither because 
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of Theorem 2, e.g. those under or on line � in Fig. 11. The question mark in Fig. 11
means that the region among �, t and s (including only t) is unresolved.

Declaration of competing interest
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Appendix A

Let a, d1 and d2 satisfy conditions of the domain of Theorem 3. If F (a, d1, d2) ≥ 0, then 
λ1 + λ5 = 1 − 1−d1−d2

5 − (a + d2) − 1−d1−d2
5 = 3−5a+2d1−3d2

5 ≥ 0.

Proof. Observe that

λ1 + λ5 = 3
5 − a + 2

5d1 −
3
5d2 = 3

5(1 − a− d2) + 2
5(d1 − a) ≥ 0 if d1 ≥ a.

Suppose then, that d1 < a. Let us take for simplicity d1 = d, a = d +x and d2 = d +y with 
x, y > 0. The domain of Theorem 3 with these variables is: 2d + x + y < 1 < 3d + x + y. 
If we assume λ1 + λ5 = 3−6d−5x−3y

5 < 0, that is d > 3−5x−3y
6 , we will arrive at the 

contradiction F (a, d1, d2) = F (d + x, d, d + y) < 0.
Note that F (a, d1, d2) = F (d + x, d, d + y) = Ad3 + Bd2 + Cd + D with

A = −66
25 < 0 C = −

6
(
12y2 + 2(5x + 3)y + 5x2 + 30x− 3

)
25

B = −90x + 54y + 126
25 < 0 D = −12y3+3(15x+3)y2+3(5x2+10x−3)y+60x2−12

25 .

If C ≤ 0 and 3 − 5x − 3y ≥ 0, we have

F (d + x, d, d + y) < F

(
3 − 5x− 3y

6 + x,
3 − 5x− 3y

6 ,
3 − 5x− 3y

6 + y

)

= − (3(1 − x− y) + 2x)3

36 < 0.

If C > 0 and 3 − 5x − 3y ≥ 0, then

F (d + x, d, d + y) < A

(
3 − 5x− 3y

6

)3

+ B

(
3 − 5x− 3y

6

)2

+ C

(
1 − x− y

2

)
+ D

= −
335
9 x3 + 5(11y + 53)x2 + 3(7y2 + 66y − 33)x + 75(1 − y)3

100

< −5(11y + 53)x2 + 3(7y2 + 66y − 33)x + 75(1 − y)3

100

< −5(53)x2 + 3(7y2 + 66y − 33)x + 75(1 − y)3
.
100
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If 7y2 + 66y − 33 ≥ 0, then F (d + x, d, d + y) < 0. Otherway

7y2 + 66y − 33 =
(
7y + 33 − 2

√
330

) (
7y + 33 + 2

√
330

)
7 < 0

⇐⇒ y <
2
√

330 − 33
7 ≈ 0.47 <

1
2 ,

and we have

F (d + x, d, d + y) < −5(53)x2 + 3(−33)x + 75(1 − 1/2)3

100

= −
265

(
x− 99

530
)2 + 273

2120
100 < 0.

Finally, if 3 − 5x − 3y < 0, then C < 0 and D < 0 since x > 3(1 − y)/5 > 0 implies

C < −
6
(

12y2 + 2
(
5
(

3(1−y)
5

)
+ 3

)
y + 5

(
3(1−y)

5

)2
+ 30

(
3(1−y)

5

)
− 3

)
25

= − 18
125

[
13

(
y − 8

13

)2

+ 300
13

]
< 0

D <−
12y3+3

(
15

(
3(1−y)

5

)
+3

)
y2+3

(
5
(

3(1−y)
5

)2
+10

(
3(1−y)

5

)
−3

)
y+60

(
3(1−y)

5

)2
−12

25

= −48(1 − y)3

125 < 0

and hence F (d + x, d, d + y) < 0.

Appendix B

F (a, d1, d2) < 0, for every d1 and d2 under the conditions of the domain of Theorem 3, 
if and only if a ≥ 4

√
5−5
11 .

Proof. Let 1
2 ≤ a < 1. A point of the domain is in the interior of the triangle with 

vertices 
(
a, 1−a

2 , 1−a
2

)
, (a, 1 − a, 1 − a) and (a, 0, 1 − a), i.e., it is a convex combination 

of its vertices:

x

(
a,

1 − a

2 ,
1 − a

2

)
+ y(a, 1 − a, 1 − a) + (1 − x− y)(a, 0, 1 − a)

=
(
a,

(x + 2y)(1 − a)
,
(2 − x)(1 − a)

)

2 2
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with 0 < x, y < 1 and x + y < 1. It can be seen that F
(
a, (x+2y)(1−a)

2 , (2−x)(1−a)
2

)
=

Ax2 + Bx + C with

A = −3(1 − a)2(5 + 7a + 3(1 − a)y)
20 < 0

B = 3(1 − a)2(y − 1)(3(a− 1)y − 7a− 5)
10 > 0

C = 6
25

[
(2y3 − 9y2 + 11y − 3)a3 − (6y3 − 18y2 + 11y)a2

+ (6y3 − 9y2 − 5y − 5)a− (2y3 − 5y)
]

and the discriminant of this polynomial in x is

−27
(
(1−a)2y2+8a(1−a)y+11a2+10a−5

) (
(7
3−y)a+y+ 5

3
)
(1−a)2((1−a)y+5−a)

500 < 0.

Because the discriminant is negative, the sign of Ax2 +Bx +C is the sign of A < 0 and 
we have F (a, d1, d2) < 0.

Let 0 < a < 1
2 . A point of the domain is in the interior of the polygon with vertices (

a, 1−a
2 , 1−a

2
)
, 
(
a, 1

2 ,
1
2
)
, (a, a, 1 − a) and (a, 0, 1 − a), i.e., it is a convex combination of 

its vertices:

x

(
a,

1 − a

2 ,
1 − a

2

)
+ y

(
a,

1
2 ,

1
2

)
+ z(a, a, 1 − a) + (1 − x− y − z)(a, 0, 1 − a)

=
(
a,

(2z − x)a + x + y

2 ,
(x + 2y − 2)a− x− y + 2

2

)

with 0 < x, y, z < 1 and x + y + z < 1. If a < 4
√

5−5
11 , we have seen that 

F
(
a, 1−a

2 , 1−a
2

)
> 0, so because of the continuity of F there are points of the do-

main of Theorem 3 with F (a, d1, d2) > 0. Let 4
√

5−5
11 ≤ a < 1

2 . It can be seen that 
F
(
a, (2z−x)a+x+y

2 , (x+2y−2)a−x−y+2
2

)
= Ax2 + Bx + C with

A = −3(1 − a)2(5 + (3y + 3z + 7)a)
20 < 0

B = 3(1 − a)(1 − y + (y − z − 1)a)(5 + (3y + 3z + 7)a)
10

−100C
3 = a(16a2 − 30a + 15)y3 + (12(1 − z)a3 + 20a2 + 15(z − 3)a + 25)y2

−2(2(3z2 + 14z + 13)a3 − 5(3z2 + 6z + 11)a2 − 10(z + 2)a + 25)y

+8a
(
(2z + 3)(z2 + 3z + 1)a2 + 5(1 − z)

)
and the discriminant of this polynomial in x is
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−9(5+(y+z−1)a)(5+(3y+3z+7)a)(1−a)2((y2+(2z+8)y+z2+8z+11)a2+10a−5)
500 .

Therefore the sign of the discriminant is determined by the sign of the last factor

(y2 + (2z + 8)y + z2 + 8z + 11)a2 + 10a− 5 > 11a2 + 10a− 5 ≥ 0 ⇐⇒ a ≥ 4
√

5 − 5
11 .

Then the discriminant is negative if a ≥ 4
√

5−5
11 , the sign of Ax2 + Bx + C is the sign of 

A < 0 and we have F (a, d1, d2) < 0.

Appendix C

Let a, d and r satisfy conditions of the domain of Theorem 4. If H(a, d, r) ≥ 0, then 
λ1 + λ5 = 1 − 1−r−2d

5 − (a + d) − 1−r−2d
5 = 3−5a+2r−d

5 ≥ 0.

Proof. Observe that

λ1 + λ5 = 3
5 − a + 2

5r −
1
5d = 3

5(1 − a− d) + 2
5(d− (a− r)) ≥ 0 if d ≥ a− r.

Suppose then, that d < a − r. Let us take for simplicity x = a − r − d and y = a − d

with 0 < x < y < 1. The domain of Theorem 4 with the variables x, y and d is: 
2d + y < 1 < 3d + y. If we assume λ1 + λ5 = 3−6d−2x−3y

5 < 0, that is d > 3−2x−3y
6 , we 

will arrive at the contradiction H(a, d, r) = H(y + d, d, y − x) < 0.
Note that H(a, d, r) = H(y + d, d, y − x) = Ad3 + Bd2 + Cd + D with

A = −66
25 < 0 C =

3
(
21x2 − 2(16y + 9)x + y2 − 42y + 6

)
25

B=−9(11y−x+14)
25 < 0 D=

3
(
4x3−3(1−y)x2−(13y2+4y+3)x+6y3−13y2+3y+4

)
25 .

If C ≤ 0 and 3 − 2x − 3y ≥ 0 we have

H(y + d, d, y − x) < H

(
y + 3 − 2x− 3y

6 ,
3 − 2x− 3y

6 , y − x

)

= − (3 − x)(3 − x + 3(y − x))(3(1 − y) + 2x)
36 < 0.

If C > 0 and 3 − 2x − 3y ≥ 0, or equivalently y ≤ (3 − 2x)/3 then x < y ≤ (3 − 2x)/3
implies x < 3/5 and we have

H(y + d, d, y − x) < A

(
3 − 2x− 3y

6

)3

+ B

(
3 − 2x− 3y

6

)2

+ C

(
1
2

)
+ D

= 1 [
54y3 − 27(71x + 59)y2 + 54(8x2 − 71x + 6)y + 556x3 − 198x2 + 891x− 675

]

900
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<
1

900
[
54y3 − 27(71x + 59)y2 + 54(8x2 − 71x + 6)y

+ 556(3/5)3 − 198x2 + 891(3/5) − 675
]

= 1
12500

[
250x2(24y − 11) − 26625xy(y + 2) + 3(250y3 − 7375y2 + 1500y − 94)

]
<

1
12500

[
250x2(24y − 11) − 26625x2(y + 2) + 3(250y2 − 7375y2 + 1500y − 94)

]

= −
125(165y + 448)x2 + 21375

(
y − 2

19
)2 + 858

19
12500 < 0.

Finally, if 3 − 2x − 3y < 0, then C < 0 since 0 < y < 1 and y > (3 − 2x)/3 > 0 implies

C <
3
(
21x2 − 2

(
16

( 3−2x
3

)
+ 9

)
x + 12 − 42

(3−2x
3

)
+ 6

)
25 = 127x2 − 66x− 105

25 < 0,

for 0 < x < 1. Under the hypothesis of Theorem 4 we have d > (1 − y)/3 > 0, and 
3 − 2x − 3y < 0 is equivalent to x > 3(1 − y)/2, so 3(1 − y)/2 < x < y implies y > 3/5. 
Then

H(y + d, d, y − x) < H

(
y + 1 − y

3 ,
1 − y

3 , y − x

)

=
2
(
54x3 + 54(1 − y)x2 − 9

(
3y2 + 14y + 13

)
x− (1 − y)

(
38y2 + 59y − 7

))
225

< 2
(
54x3+54

(
1− 3−2x

3
)
x2−9

(
3
( 3−2x

3
)2+14

( 3−2x
3

)
+13

)
x−(1−y)

(
38

( 3−2x
3

)2+59
( 3−2x

3
)
−7

))
225

=
4
(
351x3 + 4(19y + 116)x2 − 405(y + 2)x− 405(1 − y)

)
2025

<
4x

(
351x2 + 4(19y + 116)x− 405(y + 2)

)
2025

<
4x

(
351(1)2 + 4(19(1) + 116)1 − 405

(3
5 + 2

))
2025 = −8x

25 < 0.

Appendix D

H(a, d, r) ≥ 0, for every d and r under the conditions of the domain of Theorem 4, if 
and only if a ≤

√
5−1
4 .

Proof. If 1
2 < a < 1, we have seen that H(a, 1 − a, 2a − 1) < 0, so, because of the 

continuity of H, there are points of the domain of Theorem 4 with H(a, d, r) < 0.
Let 0 < a ≤ 1

2 . A point of the domain is in the interior of the triangle with vertices (
a, 1

2 , 0
)
, 
(
a, 1−a

2 , a
)

and 
(
a, 1−a

2 , 0
)
, i.e., it is a convex combination of its vertices:

x

(
a,

1
, 0
)

+ y

(
a,

1 − a
, a

)
+ (1 − x− y)

(
a,

1 − a
, 0
)

=
(
a,

1 + (x− 1)a
, ay

)

2 2 2 2
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with 0 < x, y < 1 and x + y < 1. The minimum of H in the previous triangle is attained 
at 

(
a, 1

2 , 0
)

or 
(
a, 1−a

2 , 0
)

if and only if the minimum of fa(x, y) = H
(
a, 1+(x−1)a

2 , ay
)

is 
attained at (x, y) = (1, 0) or (x, y) = (0, 0). Let us see first that fa does not have critical 
points:

∂fa
∂x

(x, y) = 3a
100

[
12a2y2+4a((x−1)a+5)y−(3x2+14x+3)a2−10(x+5)a+5

]
∂fa
∂y

(x, y) = 3a
50

[
a2x2 + 2a((6y − 1)a + 5)x− (24y2 − 48y + 9)a2 + 10a + 15

]
∂fa
∂x

(x, y) = 0 y>0⇐⇒ y =
a(1 − x) − 5 +

√
10
√

(x2 + 4x + 1)a2 + 2(2x + 7)a + 1
6a := y0

∂fa
∂y

(x, y0) = 0 x∈R⇐⇒ x = −
√

3(1 − a) + 2(1 + a)
a

< 0 or x = − (2 +
√

3)a + 2 −
√

3
a

< 0.

Because both values of x are negative, fa has no critical points. Now we study fa on the 
sides of the triangle. On the one hand,

∂fa
∂y

(0, y) = 3a
50

[
15a2 + 10a + 15 − 24a2(1 − y)2

]

≥ 3a
50

[
15 − 24

(
1
2

)2

(1 − 0)2
]
> 0

∂fa
∂x

(x, 1 − x) = −3a
4 (3ax + a + 1)(a(1 − x) + 1) < 0.

Therefore, the function fa is a monotonous function on these sides of the triangle: the 
minimum of fa(0, y) is attained at y = 0 and the minimum of fa(x, 1 − x) at x = 1. On 
the other hand,

∂fa
∂x

(x, 0) = −3a
100

[
3a2x2 + 2a(7a + 5)x + 3a2 + 5(10a− 1)

]
= 0

x>0⇐⇒ x = 2
√

10 − 5 − (7 + 2
√

10)a
3a := x0.

The function fa(x, 0) has a critical point at x0 if and only if a ∈
(

2
√

10−5
10+2

√
10 ,

2
√

10−5
7+2

√
10

)
, 

otherwise there is none. But

fa(x0, 0) − fa(0, 0) = (160
√

10 + 497)(−37a + 65 + 16
√

10)(−3a− 25 + 8
√

10)2

299700 > 0

fa(x0, 0) − fa(1, 0) = (4
√

10 + 5)(−2a + 7 + 2
√

10)(−2a− 3 +
√

10)2

180 > 0,

and



C.R. Johnson et al. / Linear Algebra and its Applications 612 (2021) 75–98 97
min(fa(0, 0), fa(1, 0)) =

⎧⎨
⎩

fa(0, 0) if 0 < a <
√

3245−55
22 ≈ 0.089313703

fa(1, 0) if
√

3245−55
22 ≤ a ≤ 1

2 .

As a conclusion we have

H(a, d, r) ≥ 0 ∀(d, r) ⇐⇒

⎧⎪⎨
⎪⎩

H
(
a, 1−a

2 , 0
)
≥ 0 if 0 < a <

√
3245−55

22
or
H

(
a, 1

2 , 0
)
≥ 0 if

√
3245−55

22 ≤ a ≤ 1
2

.

Note that

H

(
a,

1 − a

2 , 0
)

= 3(a− 5)(11a2 + 10a− 5)
100 ≥ 0 ⇐⇒ a ≤ 4

√
5 − 5
11 ≈ 0.3585701734

H

(
a,

1
2 , 0

)
= 3 − 6a− 12a2

4 ≥ 0 ⇐⇒ a ≤
√

5 − 1
4 ≈ 0.3090169942.

Finally, we have

H(a, d, r) ≥ 0 ∀(d, r) ⇐⇒ a ≤
√

5 − 1
4 .

Appendix E

J(a, d, r) ≤ 0, for every d and r under the conditions of the domain of Theorem 4, if 
and only if a ≤

√
5−1
4 .

Proof. If 1
2 < a < 1, we have seen that J(a, 1 − a, 0) = 3a(1 − a) > 0, so, because of the 

continuity of J , there are points of the domain of Theorem 4 with J(a, d, r) > 0.
Let 0 < a ≤ 1

2 . A point of the domain is in the interior of the triangle with vertices (
a, 1

2 , 0
)
, 
(
a, 1−a

2 , a
)

and 
(
a, 1−a

2 , 0
)
. Let us see that the maximum of J in this triangle 

is attained at (d, r) =
( 1

2 , 0
)
. There are no critical points in the interior of the triangle 

because

∂J

∂d
(a, d, r) = 18(1 − d)

(
d− 1 − 2a

3

)
> 0 for d ∈

(
1 − a

2 ,
1
2

)
.

Now we study J on the sides of the triangle:

J

(
a,

1 − a

2 , r

)
= −3(a + 1)(1 − a)2

4 it is constant

∂J

∂d
(a, d, 0) = ∂J

∂d
(a, d, 1−2d)=18(1−d)

(
d−1−2a

3

)
>0 for d ∈

(
1−a

2 ,
1
2

)
.

Therefore, we need to compare the values:
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J

(
a,

1 − a

2 , r

)
= −3(a + 1)(1 − a)2

4 , for 0 ≤ r ≤ a,

and

J

(
a,

1
2 , 0

)
= 12a2 + 6a− 3

4 .

It is easy to check that

−3(a + 1)(1 − a)2

4 <
12a2 + 6a− 3

4 .

Then the maximum it is attained at (d, r) =
( 1

2 , 0
)
. Finally, we have

J(a, d, r) ≤ 0 ∀(d, r) ⇐⇒ J

(
a,

1
2 , 0

)
≤ 0 ⇐⇒ a ≤

√
5 − 1
4 .
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