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Abstract. The nonnegative inverse eigenvalue problem (NIEP) asks which
lists of n complex numbers (counting multiplicity) occur as the eigenvalues of
some n-by-n entry-wise nonnegative matrix. The NIEP has a long history and
is a known hard (perhaps the hardest in matrix analysis?) and sought after
problem. Thus, there are many subproblems and relevant results in a variety
of directions. We survey most work on the problem and its several variants,
with an emphasis on recent results, and include 130 references. The survey
is divided into: a) the single eigenvalue problems; b) necessary conditions; c)
low-dimensional results; d) sufficient conditions; e) appending 0’s to achieve
realizability; f) the graph NIEP’s; g) Perron similarities; and h) the relevance
of Jordan structure.
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1. Introduction

The Nonnegative Inverse Eigenvalue Problem (NIEP) asks which collections of
n complex numbers (counting multiplicities) occur as the eigenvalues of an n-by-n
matrix, all of whose entries are nonnegative real numbers. This is a long stand-
ing problem that is very difficult and, perhaps, the most prominent problem in
matrix analysis. Unlike many other inverse eigenvalue problems, tools are limited,
and seemingly small results are very welcome. Nonetheless, the problem is very
attractive and has been attacked by many excellent researchers (see references).
There have been prior surveys of work on the NIEP ([4, 7, 21, 28, 93, 118, 129]),
but none recently. With a great deal of important recent activity, a new survey,
emphasizing this activity, will be welcome to anyone considering inquiry in this
area. Our intent here is to be broad and informal.
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200 C.R. Johnson, C. Marijuán, P. Paparella and M. Pisonero

Another intriguing aspect of the NIEP is how many avenues can be taken
to gain insight into it. Thought about it spawns endless challenging and worthy
specific questions. An example is how many interesting variations there are. The
real NIEP (R-NIEP) restricts the question to real spectra, and the symmetric
NIEP (S-NIEP) further restricts to real spectra that are realizable by symmetric
nonnegative matrices. It is known [49] that the row stochastic NIEP (restriction
to nonnegative matrices with row sums 1) is equivalent to the general NIEP, but
the doubly stochastic NIEP (DS-NIEP), restriction to matrices with both row and
column sums 1, is properly more restrictive, but no less difficult. Of course, there
are variations on the DS-NIEP, as well: the real DS-NIEP and the symmetric DS-
NIEP. The Jordan NIEP (J-NIEP) asks about possible Jordan canonical forms,
when there are repeated eigenvalues, and the diagonalizable NIEP (D-NIEP) is
the special case in which the realizing matrix is diagonalizable. Finally, there are
graph NIEP’s when we consider only nonnegative matrices with a given (directed
or undirected) graph G (G-NIEP), or only matrices subordinate to same 0-pattern.
Further particularizations may also be imagined, but these are the primary ones,
so far. We should also mention that the NIEP and each variation also has a trace
0 version. This considers only spectra, the sum of whose elements is 0, or, equiv-
alently, nonnegative matrices, each of whose diagonal entries is 0. In some cases,
this is sufficiently restrictive, so as to make the problem easier.

We denote by NIEPn the set of all spectra enjoyed by some n-by-n nonneg-
ative matrix. Such a spectrum is called realizable and a nonnegative matrix with
the spectrum is called a realization or realizing matrix. The notation and termi-
nology are similar for NIEP variants. A solution to the NIEP (or variants), for a
particular n, is an “explicit” description of NIEPn, viewed as a subset of vectors
in Cn. NIEPn is a closed set that is connected, and even star-shaped from the
origin (or from the all 1’s vector e). The set is also semi-algebraic, but is not gen-
erally convex. If Λ = {λ1, . . . , λn} is a proposed spectrum, we denote by Tr(Λ) the
sum of its components, counting multiplies. Other power sums sk(Λ) =

∑n
i=1 λ

k
i ,

called kth moments, are also important, and we usually reserve λ1 as the spectral
radius of Λ.

The Perron–Frobenius theory of nonnegative matrices (e.g., [44]) provides
several simple, but important, necessary conditions for the NIEP (and variations).
These basic necessary conditions are presented in Section 3, followed by several
more subtle necessary conditions. The “JLL” conditions are now essential to work
on the problem.

The NIEP has a long history since its proposal by Kolmogorov [63], and there
are many substantial results. We begin at the natural starting point of the single
eigenvalue problem (Section 2) for both the row stochastic NIEP and the DS-
NIEP: which individual complex numbers occur in the spectra of row stochastic
and of doubly stochastic matrices. The former is solved, but there have been
important advances in the description of the solution and in realizations. The latter
is unsolved, beyond n = 4, though there have been important recent developments.
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Section 4 summarizes low-dimensional complete results for certain NIEP vari-
ants. General sufficient conditions for the realizability of spectra are given in Sec-
tion 5. It has long been known that n-fold spectra that meet simple necessary
conditions, but are not realizable, may be made realizable by appending of 0
eigenvalues. Information about this phenomenon is given in Section 6. We turn to
what is known about the graph-NIEP’s in Section 7. The new idea of Perron simi-
larities – studying the diagonalizable NIEP’s via the diagonalizing similarities – is
discussed in Section 8, and the role of Jordan structure in the NIEP and R-NIEP
in Section 9.

2. The Single Eigenvalue Problems

In [63], Kolmogorov posed the problem, denoted by SISEP (Stochastic Inverse
Single Eigenvalue Problem), of characterizing the subset of the complex plane,
denoted by Θn, consisting of the individual eigenvalues of all n-by-n stochastic
matrices.

It can easily be verified that for each n ≥ 2, the region Θn is closed, inscribed
in the unit-disc, star-convex (with star-centers at zero and one), and symmetric
with respect to the real-axis. Furthermore, it is clear that Θn ⊆ Θn+1, ∀n ∈ N.
In view of these properties, each region Θn is determined by its boundary, which
consists of so-called extremal numbers, i.e., ∂Θn = {λ ∈ Θn : αλ �∈ Θn, ∀α > 1}.

In pursuit of characterizing Θn, Dmitriev and Dynkin [25] (and independently
Karpelevich [58]) showed that if λ = a+ bi ∈ Θn and b �= 0, then

a+ |b| tan
(π
n

)
≤ 1.

Let A be a nonnegative matrix of order n with spectral radius ρ and associated
directed graph G. Let m be the length of the longest simple circuit of G. Kellogg
and Stephens [60, Theorem 1] showed that if m = 2, all eigenvalues of A are real.
If 2 < m ≤ n, and if λ = a+ bi is an eigenvalue of A, then

a+ |b| tan
( π

m

)
≤ ρ.

For further results on this topic, see [50].

Karpelevich [58, Theorem B], expanding on the work of Dmitriev and Dynkin
in [26], resolved SISEP by showing that the boundary of Θn consists of curvilinear
arcs (called K-arcs), whose points satisfy a polynomial equation that is determined
by the endpoints of the arc (which are consecutive roots of unity). The statement
of this theorem is unwieldy, but Ito [47, Theorem 2] provides a useful simplification
of the result.

Noticeably absent in the Karpelevich Theorem (and other works) are realiz-
ing-matrices (i.e., a matrix whose spectrum contains a given eigenvalue) for points
on the K-arcs. Dmitriev and Dynkin [26, Basic Theorem] give a schematic descrip-
tion of such matrices for points on the boundary of Θn\Θn−1 and Swift [129, §2.2.2]
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provides such matrices for 3 ≤ n ≤ 5. Recently, Johnson and Paparella [56] pro-
vide, for every n and for each K-arc, a single parametric stochastic matrix that
realizes the entire K-arc as the parameter runs from 0 to 1.

For n ∈ N, denote by Πn the convex-hull of the nth roots-of-unity, i.e.,

Πn =

{
n−1∑
k=0

αk exp (2πik/n) ∈ C : αk ≥ 0,

n−1∑
k=0

αk = 1

}
.

Denote by Ωn the subset of the complex-plane containing all single eigenvalues of
all n-by-n doubly stochastic matrices. Perfect and Mirsky [103] conjectured that
Ωn =

⋃n
k=1 Πk and proved their conjecture when 1 ≤ n ≤ 3. Levick et al. [76]

proved the Perfect–Mirsky conjecture when n = 4 but a counterexample when
n = 5 was given by Mashreghi and Rivard [88]. Recently, Levick et al. conjectured
that Ωn = Θn−1 ∪ Πn ([76, Conjecture 1]), but there is computational evidence
that suggests that the n = 5 case is either a rare exception, or the only exception,
to Perfect–Mirsky.

3. Necessary conditions for the NIEP’s

For a proposed spectrum Λ = {λ1, λ2, . . . , λn}, repeats allowed, to be (NIEP-)
realizable, a number of necessary conditions are known. The most basic of these
follow from the fact that a nonnegative matrix has real entries and nonnegative
trace, and from the Perron–Frobenius theory of nonnegative matrices. (We assume
the reader is familiar with the Perron–Frobenius theory, which is recounted, for
example in [44].) For simplicity, we label these according to simple titles. Since a
nonnegative matrix is real, it must have the eigenvalues of a real matrix, i.e., the
characteristic polynomial must have real coefficients, or, as a list

(Reality) Λ̄ = Λ.

Since the trace of a matrix is the sum of the eigenvalues and the trace of a non-
negative matrix is nonnegative, we also have

(Trace) Tr Λ =
n∑

i=1

λi ≥ 0.

Of course, it follows that if Λ is realizable and Tr (Λ) = 0, then all diagonal entries
of any realizing matrix must be 0. Higher power sums are also nonnegative as they
are traces of positive integral powers of nonnegative matrices:

(kth moment) sk(Λ) = λk
1 + · · ·+ λk

n ≥ 0, k ≥ 1.

According to the Perron–Frobenius theory, the spectral radius of a nonnega-
tive matrix must, itself, be an eigenvalue, so among the eigenvalues Λ must be a
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nonnegative one, at least as big in absolute value as any others. Without loss of
generality, this one may be taken to be λ1. So, we have

(Perron) λ1 ≥ |λi|, i = 2, . . . , n,

and if any of the other eigenvalues are the same as λ1, any realizing matrix must
be reducible. Moreover, if all the inequalities are strict, any irreducible realizing
matrix must be primitive.

The above conditions are necessary for all the NIEP’s, but there are some
necessary conditions for particular NIEP’s.

Further necessary conditions are more subtle, but many have been noticed.
The most ubiquitous of these was noticed independently in [49] and in [78] and
is usually referred to as the JLL conditions. They generalize the trace condition
and follow from the fact that every power of a nonnegative matrix is nonnegative
and that positive diagonal entries must contribute to positive diagonal entries in
powers (e.g., sp(Λ) > 0 implies spq(Λ) > 0 for integers p ≥ 1 and q ≥ 1). The
general (quantitative) version is

(JLL) (sk(Λ))
m ≤ nm−1skm(Λ), k, m = 1, 2, . . . .

Let A be an n-by-n real matrix with spectrum Λ = {λ1, . . . , λn}. Denote the
principal submatrix of A lying in the rows and columns given by the index set
α ⊆ {1, . . . , n} by A[α]. Define the kth elementary symmetric function

Ek(Λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik

and the kth Newton coefficient

ck(Λ) =
Ek(Λ)(

n
k

) , k = 1, . . . , n, with c0 ≡ 1.

Since Ek(Λ) =
∑

|α|=k detA[α], as well, ck(Λ) may be viewed as the average value

of the k-by-k principal minors of A. The spectrum Λ is called Newton if

ck(Λ)
2 ≥ ck−1(Λ)ck+1(Λ), k = 1, . . . , n− 1,

and these inequalities are referred to as the Newton inequalities [43, 52].

They hold for Λ ≥ 0 [97], Λ ⊂ R [81], and they are valid for real diagonal
matrices, diagonalizable matrices with real spectra (the ck are invariant under
similarity), and matrices with real spectra. In [43] it was proved that the Newton
inequalities also hold for M -matrices and, thus, inverse M -matrices and it was
observed that ifA is a nonnegative matrix with spectral radius ρ(A), then ρ(A)I−A
is an M-matrix and, therefore, must satisfy the Newton inequalities. If we denote
its spectrum {ρ(A)−λ1, . . . , ρ(A)−λn} by ρ(A)−Λ, then we have new necessary
conditions:

(H) ck(ρ(A)− Λ)2 ≥ ck−1(ρ(A)− Λ)ck+1(ρ(A) − Λ), k = 1, . . . , n− 1.
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In [130] the authors did not focus the attention directly on the spectrum but
on the coefficients of the characteristic polynomial. Thus, the NIEP that they con-
sider is: given real numbers k1, k2, . . . , kn, find necessary and sufficient conditions
for the existence of a nonnegative matrix of order n with characteristic polynomial
xn + k1x

n−1 + k2x
n−2 + · · ·+ kn.

The coefficients of the characteristic polynomial are closely related to the
cyclic structure of the weighted digraph associated with the matrix A, as estab-
lished by the Coefficients Theorem [23, Theorem 1.3*]. The authors [130] introduce
graphic tools to study the NIEP from the characteristic polynomial and use the
following method: if P (x) is a realizable polynomial, in the sense that there exists
a nonnegative matrix with characteristic polynomial P (x), we try to maximize
each coefficient kj as a function of the previous coefficients, preserving the real-
izability for a polynomial of degree n with the same previous coefficients. Note
that kj is a continuous function (sum of determinants) of the entries of a nonnega-
tive matrix A realizing the polynomial P (x) and that, as the previous coefficients
are bounded above, then the entries of A involved in the expression of kj are
also bounded above (Coefficients Theorem); therefore, this maximum is attained.
In this way, new necessary conditions on the three first coefficients are obtained
[130, Theorem 3]:

k1 ≤ 0;

(TAAMP) k2 ≤ n− 1

2n
k21 ;

k3 ≤

⎧⎪⎨
⎪⎩

n−2
n

(
k1k2 +

n−1
3n

((
k21 − 2nk2

n−1

) 3/2

− k31

))
if (n−1)(n−4)

2(n−2)2 k21 < k2,

k1k2 − (n−1)(n−3)
3(n−2)2 k31 if k2 ≤ (n−1)(n−4)

2(n−2)2 k21 .

Another necessary condition in terms of the kth moments sk = Tr (Ak),
k = 1, 2, 3, is obtained in [22, Theorem 3]:

(CL) Φ := n2s3 − 3ns1s2 + 2s31 +
n−2√
n−1

(ns2 − s21)
3/2 ≥ 0.

The necessary conditions previous to (JLL) are not independent. In fact, (kth
moment) implies (Perron) [34] and also (Reality) [78]. For k = 1, (JLL) is reduced
to (s1(Λ))

m ≤ nm−1sm(Λ), and so, if s1(Λ) ≥ 0, then (JLL) implies (kth moment).
On the other hand, if we denote the two bounds given for the coefficient k3

in (TAAMP) by kmax1
3 and kmax2

3 , we can use the Newton identities

sm + k1sm−1 + · · ·+ km−1s1 + kmm = 0, k,m = 1, 2, 3, (1)

to rewrite the condition (CL) in the form

Φ = 3n2(kmax 1
3 − k3).

In the first case, i.e., if k2 > (n−1)(n−4)
2(n−2)2 k21 , we have that Φ ≥ 0 implies kmax1

3 ≥ k3.

In the contrary case, Φ = 3n2(kmax 1
3 −k3) ≥ 3n2(kmax 2

3 −k3) ≥ 0. So, in any case,
the condition on the coefficient k3 is stronger than the condition (CL).
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In [43] it was proved that (kth moment), (JLL) and (H) are mutually indepen-
dent. In [84, Theorem 11] that (JLL) for k = 1 and m = 2, s1(Λ)

2 ≤ ns2(Λ), the
first (H), c1(ρ−Λ)2 ≥ c2(ρ−Λ), and (TAAMP) over the second coefficient, k2(Λ) ≤
n−1
2n k1(Λ)

2, are equivalent. But, in general, at least (JLL) and (TAAMP) are inde-
pendent of the others, and this tandem implies (kth moment). Some examples: the

spectra {20,−18, 5
√
2± 5

√
2i} and {1, 1, 1, 0, 0} satisfy (JLL), (H) and (CL), but

not (TAAMP); the spectra {2,−2,−2, 1 ± i} and {3, 1, 1, 1, 1, 1,−2,−2,−2,−2}
satisfy (H) and (TAAMP), but not (JLL). That the necessary conditions (JLL),
(H) and (TAAMP) are not sufficient for the NIEP is proved by the non-realizable

list {3, 3,−√
3± i}.

Conjecture. (JLL) and (TAAMP) imply all known necessary conditions. (It is
enough to prove that (JLL) and (TAAMP) imply (H).)

In [69] a necessary condition for trace 0 and n, odd was obtained, given by

(LM) (s2(Λ))
2 ≤ (n− 1)s4(Λ).

This condition has been generalized in terms of the coefficients by the follow-
ing result [130, Lemma 37]: if xn + kpx

n−p + · · ·+ k2px
n−2p + · · ·+ kn, kp �= 0, is

the characteristic polynomial of a nonnegative matrix, then

k2p ≤ 1

2

(
1− 1

�n/p
)
k2p. (2)

We can use the Newton identities (1) to express the inequality (2) in terms of the
kth moments: if s1 = · · · = sp−1 = 0, we have the more general condition

s2p ≤ p
⌊n
p

⌋
s2p, p = 1, . . . ,

n

2

that coincides with (LM) in the particular case p = 2 and n odd.
Note also that the (JLL) condition for m = 2 is s2p ≤ ns2p, and that

p
⌊
n
p

⌋
≤ n. Then the expression (2) is a restricted refinement of the (JLL) condi-

tions.

4. Low-dimensional results

The NIEP for n ≤ 3 was solved independently by Oliveira [98, Theorem (6.2)] and
Loewy–London [78]. For the non-real case:

{λ, z, z̄} is NIEP-realizable ⇐⇒ z ∈ λΠ3 = {λz′ : z′ ∈ Π3}
Meehan [90] solved the NIEP for n = 4 in terms of the kth moments, and Torre–
Mayo et al. [130] in terms of the coefficients of the characteristic polynomial using
the necessary conditions (TAAMP). For n ≥ 5 it remains unsolved.

The R-NIEP for n ≤ 4 was solved independently by Perfect [100], Oliveira
[98, §9] and Loewy–London [78]; in these cases the necessary conditions (Trace)
and (Perron) are also sufficient.
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Perfect [102, Theorem 4] solved the R-NIEP for n = 3 with fixed diagonal
entries: {d1, d2, d3} is the diagonal of a 3-by-3 nonnegative matrix with spectra
{λ1, λ2, λ3}, where λ1 ≥ λ2 ≥ λ3, if and only if

0 ≤ di ≤ λ1;

3∑
i=1

di =

3∑
i=1

λi;
∑
i�=j

didj ≥
∑
i�=j

λiλj ; max{di} ≥ λ2.

The S-NIEP and the R-NIEP are equivalent for n ≤ 4, and remain unsolved
for n ≥ 5. Fiedler [33, Theorem 4.8] solved the S-NIEP in the case n = 3 with fixed
diagonal entries: {d1, d2, d3}, with d1 ≥ d2 ≥ d3 ≥ 0, is the diagonal of a 3-by-3
symmetric nonnegative matrix with spectra {λ1, λ2, λ3}, where λ1 ≥ λ2 ≥ λ3, if
and only if {λ1, λ2, λ3} majorizes {d1, d2, d3} and d1 ≥ λ2.

Johnson–Laffey–Loewy [51] showed that the R-NIEP and the S-NIEP are
different, and Egleston–Lenker–Narayan [28] proved that they are different for
n ≥ 5.

The S-NIEP for n = 5 has been widely studied [28, 79, 89], but not fully
resolved. It is common to study it considering the number of positive eigenval-
ues. When there are 1, 4 or 5 positive eigenvalues the answer for the S-NIEP is
straightforward. Recently, Johnson–Marijuán–Pisonero [54] resolved all cases with
2 positive eigenvalues, and they give a method, based upon the eigenvalue inter-
lacing inequalities for symmetric matrices, to rule out many unresolved spectra
with 3 positive eigenvalues. In particular, this method shows that the nonnegative
realizable spectrum {6, 3, 3,−5,−5} is not symmetrically realizable.

Also recently, Loewy–Spector [80, Theorem 4] characterize the case n = 5 in a
particular case: Λ = {λ1, λ2, . . . , λ5}, where λ1 ≥ λ2 ≥ · · · ≥ λ5 and 2s1(Λ) ≥ λ1,
is (S-NIEP) realizable if and only if (Perron), λ2+λ5 ≤ Tr (Λ), λ3 ≤ Tr (Λ). This
last condition is implied by the constraint 2s1(Λ) ≥ λ1.

The trace 0 NIEP has also been extensively studied. Reams [107] solved
the case n = 4: {λ1, λ2, λ3, λ4} is trace 0 (NIEP)-realizable if and only if s1 =
0, s2, s3 ≥ 0 and s22 ≤ 4s4. The case n = 5 was first studied by Reams [107] and
he gave a sufficient condition. The case n = 5 was finally solved by Laffey–Meehan
[70]: {λ1, . . . , λ5} is trace 0 (NIEP)-realizable if and only if s1 = 0, s2, s3 ≥ 0, s22 ≤
4s4 and 12s5 + 5s3

√
4s4 − s22 ≥ 5s2s3.

Torre–Mayo et al. [130] generalize these solutions in terms of the coefficients
of the characteristic polynomial: the polynomial xn + kpx

n−p + · · ·+ kn−1x+ kn,
with 2 ≤ p ≤ n ≤ 2p+ 1, is (NIEP)-realizable if and only if

kp, . . . , k2p−1 ≤ 0; k2p ≤ k2
p

4 ;

k2p+1 ≤
⎧⎨
⎩

kpkp+1 if k2p ≤ 0,

kp+1

(
kp

2 −
√

k2
p

4 − k2p

)
if k2p > 0.

Spector [127] characterized trace 0 S-NIEP realizability for n = 5 by the
conditions λ2 + λ5 ≤ 0 and s3 ≥ 0.
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5. Sufficient conditions

The first known sufficient condition for the NIEP, that in fact is for the R-NIEP,
was announced by Sulěımanova [128] in 1949 and proved by Perfect [101] in 1953:

Λ = {λ1, . . . , λn} real, λ1 ≥ |λ| for λ ∈ Λ

and λ1 +
∑

λi<0 λi ≥ 0

}
=⇒ Λ is realizable.

Several other proofs have been given, e.g., [99]. There are several sufficient condi-
tions for the R-NIEP that are checkable in a straightforward way, that is, one only
needs to check a few algebraic inequalities, perhaps after ordering the spectrum.
The authors of them are: Ciarlet in 1968 [20], Kellogg in 1971 [59], Salzmann in
1972 [112] and Fiedler in 1974 [33]. Borobia in 1995 [6] extended Kellogg’s condi-
tion by grouping negative eigenvalues.

Other sufficient conditions for the R-NIEP involve partitions of the spectra
considered, such as an immediate piece-wise extension of the Sulěımanova condi-
tion. We will name this condition Sulěımanova–Perfect [101, 128]:

Λ = {λ1, λ11, . . . , λ1t1 , . . . , λr, λr1, . . . , λrtr} real,

λ1 ≥ |λ| for λ ∈ Λ

and λj +
∑

λji<0

λji ≥ 0 for j = 1, . . . , r

⎫⎪⎪⎬
⎪⎪⎭ =⇒ Λ is realizable.

Other sufficient conditions of this type are more elaborate and we will name them
by their authors: Perfect 1 in 1953 [101], Soto 2 in 2003 [115] or its extension Soto
p in 2013 [119].

Some of the sufficient conditions besides partitions involve the knowledge of
the diagonal entries of a realization of part of the spectrum. The first condition of
this type is due to Perfect in 1955 [102]:

Λ = {λ1, . . . , λr}
∪{λ11, . . . , λ1t1} ∪ · · · ∪ {λr1, . . . , λrtr}

{λ1, . . . , λr} the spectrum of a nonnegative

matrix with diagonal d1, . . . , dr,

λji ≤ 0 for j = 1, . . . , r and i = 1, . . . , tj ,

λ1 ≥ |λ| for λ ∈ Λ ,
∑
λ∈Λ

λ ≥ 0 ,

and dj +
∑

1≤i≤tj

λji ≥ 0 , j = 1, . . . , r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒ Λ is realizable.

When λj ≥ 0, for j = 1, . . . , r, we call this condition Perfect 2+ (see [86]). There
are two equivalent conditions that extend this condition: Soto–Rojo in 2006 [122]
and Soto–Rojo–Manzaneda in 2011 [123].

Other well-known sufficient conditions manipulate certain spectra to get a
new realizable spectrum: Guo in 1997 [41, Theorems 2.1 and 3.1] or C-realizability
[11] that we name the game condition [85].
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In order to construct a map of sufficient conditions for the R-NIEP, Marijuán–
Pisonero–Soto compared these conditions and established inclusion relations or
independence relations between them, [85, 86]:

CSu

Sa
F

SP P1

K

B

Sp

P2+ [6] Borobia = B
[20] Ciarlet = C
[33] Fiedler = F
[59] Kellogg = K

[101] Perfect 1 = P1
[102] Perfect 2+ = P2+

[112] Salzmann = Sa
[119] Soto p = Sp

[122] Soto–Rojo = SR
[123] Soto–Rojo–Manzaneda = SRM
[128] Sulěımanova = Su
[101] Sulěımanova–Perfect = SP

[6] Borobia = B
[102] Perfect 2+ = P2+

[119] Soto p = Sp

[119] Soto p + 1 = Sp+1

[119] Sotos =
⋃
p≥2

Soto p

The first known sufficient condition for the S-NIEP is due to Perfect–Mirsky
in 1965 [103] for doubly stochastic matrices, and Fiedler in 1974 [33] gave the first
one for symmetric nonnegative matrices. Several sufficient conditions which were
first obtained for the R-NIEP have later been shown to be valid also for the S-
NIEP as well. Fiedler [33], Radwan [106] and Soto [117] showed, respectively, that
Kellogg [59], Borobia [6] and Soto 2 [115] are also symmetric sufficient conditions.

Soules in 1983 [126] gave two constructive sufficient conditions for symmetric
realization. The inequalities that appear in these conditions are obtained by re-
quiring the diagonal entries of the matrix Rdiag(λ1, . . . , λn)R

T to be nonnegative,
in which R is an orthogonal matrix with a certain pattern. For a particular R, this
condition is the Perfect–Mirsky condition.

Soto–Rojo–Moro–Borobia gave in 2007 [124] a symmetric version of the Soto–
Rojo condition. Soto p [119] and Soto–Rojo–Manzaneda [123] have also symmetric
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versions. Laffey–Šmigoc in 2007 [72] gave the symmetric realizability of a spectrum
by manipulating two spectra.

Again in order to construct a map of sufficient conditions for the S-NIEP,
Marijuán–Pisonero–Soto [87] compared these conditions and established inclusion
relations or independence relations between them:

Sotos

CSu

Sa

F

SP
P1

KB
Sp

SRM SRMB

*

LS **

[6] Borobia = B
[20] Ciarlet = C
[33] Fiedler = F
[59] Kellogg = K
[72] Laffey–Šmigoc = LS

[101] Perfect 1 = P1
[103] Perfect–Mirsky = �������
[112] Salzmann = Sa
[119] Soto p = Sp

[119] Sotos =
⋃
p≥2

Soto p

[123] Soto–Rojo–Manzaneda
= SRM

[124] Soto–Rojo–Moro–Borobia
= SRMB

[126] Soules 1 = �
[126] Soules 2 = ∗∗
[126] Soules 2 corollary =∗
[128] Sulěımanova = Su
[101] Sulěımanova–Perfect = SP

The discontinuous line for Soules 2 in the map means that we only conjecture this
position for this sufficient condition.

Recently, Ellard–Šmigoc [30] have modified the Laffey–Šmigoc condition and
the Soules 2 condition and they have proved the following equivalence:

Soules 2 modified ⇐⇒ Laffey–Šmigoc modified ⇐⇒ game ⇐⇒ Sotos.

This implies the symmetric realizably of the game condition and resolves the ques-
tion on the RNIEP diagram about whether there exists something between Sotos
and game.

There are also some sufficient conditions for the NIEP. Guo in 1997 [41,
Theorems 2.1 and 3.1] gave results about changing a realizable spectrum to obtain
a realizable spectrum. Šmigoc in 2004 [113, Theorems 10 and 14] gave other such
results. Finally, let us mention some generalizations of the Sulěımanova condition:
Laffey–Šmigoc in 2006 [71, Theorems 1 and 3] and Borobia–Moro–Soto in 2008
[11, Theorem 3.3].



210 C.R. Johnson, C. Marijuán, P. Paparella and M. Pisonero

6. Embedding spectra, by adding 0’s, to achieve realizability

Consider now spectra that meet the most basic necessary conditions for NIEP-
realizability: (Perron), (Trace) and (Reality). Even when these conditions are

strictly met, the proposed spectrum, σ, need not be realizable (e.g., {3,3,−√
3± i}).

This raises the natural question of whether the spectrum may be embedded in
a larger one, that is realizable, by appending some additional eigenvalues, e.g.,
σ ↪→ σ ∪ τ . If we are too liberal about what eigenvalues may be appended, this
question becomes trivial. For example, realizability may always be achieved by ap-
pending a single, sufficiently large, positive eigenvalue; the Perron and trace condi-
tions may be arbitrarily improved. Thus, some condition must be placed upon the
appended eigenvalues. A natural one is that only 0 eigenvalues may be appended;
now, the Perron and trace conditions are not enhanced – but, the dimension is
increased. (Intermediate restrictions seem not yet to have been considered.) The
increase in dimension does improve the possibility of meeting the JLL conditions.

The notion of appending 0’s to “repair” a nonrealizable spectrum may and
has often been viewed another way: what collections of complex numbers occur as
the “nonzero part” of the spectrum of an entry-wise nonnegative matrix. It turns
out that this question is quite different from and more tractable than the classical
NIEP.

The first to show that appending 0’s can help was [49], in which it was shown
that the spectrum

1,

√
3

8
i,−

√
3

8
i

is not realizable in dimension 3 (because the single eigenvalue conditions [58] are
not met, or the JLL conditions are not met), but the spectrum

1,

√
3

8
i,−

√
3

8
i, 0

is realizable in dimension 4 by the matrix⎛
⎜⎜⎝

1/4 0 3/4 0
1/4 1/4 0 1/2
0 3/4 1/4 0

7/24 0 11/24 1/4

⎞
⎟⎟⎠ .

Later in [12], it was shown, remarkably, that if a spectrum (with no 0’s)
meets the basic necessary conditions strictly, then it is the nonzero part of the
spectrum of a nonnegative matrix. Sufficiently many 0’s may be appended to
achieve realizability. Of course, the number of 0’s that need be added may be very
large (not uniformly bounded in terms of n) because of JLL. Interestingly, the
newish method of symbolic dynamics was used in an import way, though many
easily proven matricial lemmas were needed as well. Specifically the result is

Theorem 1. The list of nonzero complex numbers Λ = {λ1, λ2, . . . , λn} is the
nonzero spectrum of a primitive matrix if and only if
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1. strict Perron condition: Λ contains a positive eigenvalue of multiplicity one
that is greater in absolute value than all other λ′

is;

2. reality condition: p(t) =
n∏

i=1

(t− λi) has real coefficients;

and

3. extended trace condition:
n∑

i=1

λmk
i ≥ 0 for all k and

n∑
i=1

λk
i > 0 implies

n∑
i=1

λmk
i > 0 for all m.

The necessity of these conditions is easily verified (the last one via JLL, for
example), and the interesting point is that necessary conditions become sufficient
when primitivity is the goal and the dimension may be arbitrarily increased. When
the Perron condition is not strict it may not be possible to “save” a spectrum
meeting obvious necessary conditions. The familiar example 3, 3,−2,−2,−2 is not
only not realizable, but is never the nonzero part of the spectrum of a nonnegative
matrix. However, both 3 + ε, 3,−2,−2,−2 and 3 + ε, 3 − ε,−2,−2,−2 are both
the nonzero parts of the spectra of primitive matrices for arbitrarily small ε > 0
(though they are not realizable for ε small).

More recently there have been further developments about realizability after
appending 0’s to a spectrum. In [66] there is matricial proof of key results from [12],
which is much more explicit. Though the number of 0’s needed to make a spectrum
realizable may be very large (and not easy to estimate from [12]), estimates have
recently been given under some circumstances by bringing s2(Λ), as well as the
trace, into play [71].

7. The graph NIEP

Not surprisingly, realizable spectra that are, in some way extremal, are often re-
alizable by nonnegative matrices with many 0 entries, as are many non-extremal
spectra. This raises the question that, if we fix the 0-pattern of a nonnegative
matrix, how is the NIEP restricted, i.e., which realizable spectra occur? A natural
way to describe a particular 0-pattern is via a graph, which could be directed or
undirected. For a particular graph G on n vertices, consider the set of nonnegative
n-by-n matrices N(G) for which A = (aij) satisfies aij > 0 if and only if (i, j)
is a directed edge, i �= j, of G. (Here, we consider an undirected edge {i, j}, if
G is undirected, to consist of two directed edges (i, j) and (j, i).) For simplicity
we consider graphs without loops, and no restriction is placed by the graph upon
the diagonal entries, other than nonnegativity. The G-NIEP then just asks which
spectra occur among matrices in N(G)? (if we wish to emphasize the dimension,
which we generally take to be implicit, we may write Nn(G).) Of course the NIEP
is just the union of the solutions to the G-NIEP’s, over all directed graphs G.
The same is true for various variations upon the NIEP. For example, the solution
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to the S-NIEP is just the solution to the G-NIEP, restricted to symmetric matri-
ces, over all undirected graphs. Thus far, the G-NIEP has been considered only
for undirected graphs G, symmetric matrices and real eigenvalues. This seems a
fertile area for future work.

A prototype of the G-NIEP, though not presented in graph terms, appeared
in [35], in which tridiagonal matrices were considered. Notice that the spectrum of
a nonnegative tridiagonal matrix is not only necessarily real but also the spectrum
of a symmetric tridiagonal nonnegative matrix. Also, tridiagonal matrices are the
case in which G is a path (and an edge only requires nonnegativity of the entry);
off-diagonal 0 entries are important. We say that a matrix A is subordinate to a
graph G if G(A) has the same vertices as G and the edges of G(A) are contained
among those of G; equivalently, for A = (aij), aij �= 0 implies {i, j} is an edge of
G. The main result of [35] is for the path P on n vertices. Then, for λ1 ≥ λ2 ≥
· · · ≥ λn, there is an n-by-n nonnegative matrix AT = A subordinate to P and
with eigenvalues λ1, λ2, . . . , λn if and only if

λi + λn−i+1 ≥ 0

i = 1, 2, . . . , n. Additional conditions, when the graph is precisely P , are also
discussed, but the results are incomplete.

In [49, 75], the observation of [35] is dramatically generalized. Recall that a
path is a tree and that all trees are bipartite (but many non-trees are bipartite as
well). All bipartite graphs are considered in [75]. The main result is that λ1 ≥ · · · ≥
λn are the eigenvalues of an n-by-n nonnegative symmetric matrix A subordinate
to a given bipartite graph G on n vertices if and only if

λ1 + λn ≥ 0

λ2 + λn−1 ≥ 0

...

λm + λn−m+1 ≥ 0

λm+1 ≥ 0

...

λn−m ≥ 0

in whichm is the matching number of G. (Note that �n
2  is the matching number of

a path on n vertices, so that the result of [35] is a special case.) Further observations
about the S-NIEP for matrices subordinate to a given graph G are also made.

8. Perron similarities

If S is an invertible matrix and there is a real, diagonal, nonscalar matrix D
with SDS−1 ≥ 0, then S is called a Perron similarity. Perron similarities were
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introduced by Johnson and Paparella to study the diagonalizable R-NIEP and the
S-NIEP.

Perron similarities were characterized in several ways in [55] and it was shown
that C(S) := {x ∈ Rn : SDxS

−1 ≥ 0} is a polyhedral cone, i.e., a convex cone in
Rn with finitely-many extremals. This was called the (Perron) spectracone of S,
and a certain cross-section, a polytope called the (Perron) spectratope of S, was
also discussed.

These polyhedral sets were used to verify the known necessary and sufficient
conditions for the R-NIEP and the S-NIEP for orders up to four. For orders 1, 2,
and 4, it is shown that a finite number of Perron similarities are required to cover
the realizable region, whereas when n = 3, it is shown, via the relative gain array
(see, e.g., [45]), that an uncountable number of Perron similarities is required to
cover the realizable region.

For every n ≥ 1, the spectracone and spectratope of Hn were characterized,
where Hn denotes the canonical Hadamard matrix of order 2n. More specifically,
the spectracone ofHn is the conical hull of its rows and the spectratope ofHn is the
convex hull of its rows. The spectratope of a general, normalized Hadamard matrix
was used to give a constructive proof, for Hadamard orders, of a result by Fiedler
[33], that every Sulěımanova spectrum is the spectrum of a symmetric nonnegative
matrix (in fact, this result was strengthened to show that the constructed realizing
matrix is also doubly stochastic). It is still an open problem to find a constructive
proof that every Sulěımanova spectrum is SNIEP-realizable. A constructive proof
of the Boyle–Handelman theorem for Sulěımanova spectrum: augmenting any such
spectrum with zeros up to a Hadamard order yields a spectrum realizable by a
nonnegative matrix that is symmetric and doubly stochastic.

9. Jordan structure and the NIEP’s

When there are repeated eigenvalues in a proposed spectrum, a natural question
is whether Jordan structure for the repeated eigenvalues can play a role in re-
alizability. The J-NIEP asks which particular Jordan canonical forms occur for
n-by-n nonnegative matrices and the D-NIEP is the special case of which spectra
occur among diagonalizable n-by-n nonnegative matrices. Of course, the D-NIEP
and the NIEP are the same for spectra with distinct eigenvalues. It is also a sim-
ple exercise that any spectrum that is D-NIEP realizable by a positive matrix is
also J-NIEP realizable for any Jordan canonical form possible for its eigenvalues.
However, whether D-NIEP realizability always implies J-NIEP realizability for any
possible Jordan form is unclear. This is so for Sulěımanova spectra [15, 24, 121].

There are spectra that are realizable (in fact, R-NIEP realizable), but are
not diagonalizably realizable. The smallest dimension in which this occurs is 5.
For n ≤ 4, any realizable spectrum with (non-real) complex eigenvalues is diag-
onalizably realizable (the only difficulty could come from a multiple Perron root
and that is easily handled by a reducibility argument). For n ≤ 4, R-NIEP and
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S-NIEP realizability are the same, which settles the matter. However, for n = 5,
the spectrum

3 + t, 3− t,−2,−2,−2

is realizable for t > (16
√
6)1/2 − 39 ≈ 0.437 . . ., [70]. However, it is diagonalizably

realizable iff t ≥ 1 (in which case it is also symmetrically realizable). Thus, for
0.437 . . . < t < 1, this 5-spectrum is realizable, but not diagonalizable so. This
suggests that this phenomenon is fairly common.
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[67] T.J. Laffey, R. Loewy, and H. Šmigoc, Nonnegative matrices that are similar to
positive matrices. SIAM J. Matrix Anal. Appl. 31 (2009), 629–649.
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[113] H. Šmigoc, The inverse eigenvalue problem for nonnegative matrices. Linear Alge-
bra Appl. 393 (2004), 365–374.
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