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1. Introduction

A digraph is strongly connected or (simply) strong (SD) if every pair of vertices are 
joined by a directed path. An SD is minimal (MSD) if it loses the strong connection 
property when any of their arcs is suppressed. This class of digraphs has been considered 
under different points of view. See, for instance, [2,5,6,8,10–15].

It is well known that a digraph is SD if and only if its adjacency matrix is irre-
ducible [6]. The set of SDs of order n with vertex set V can be partially ordered by the 
relation of inclusion among their sets of arcs. Then, the MSDs are the minimal elements 
of this partially ordered set. Analogously, the set of irreducible (0, 1)-matrices of order 
n with zero trace can be partially ordered by means of the coordinatewise ordering. 
The minimal elements of this partially ordered set are nearly reducible matrices. Hence, 
nearly reducible matrices are irreducible matrices which cease to be so if we make any of 
their 1-entries zero, and so a digraph is an MSD if and only if its adjacency matrix is a 
nearly reducible matrix [6,15]. Hartfiel [13] gives a remarkable canonical form for nearly 
reducible matrices.

We are also interested in the following nonnegative inverse eigenvalue problem [18]: 
given real numbers k1, k2, . . . , kn, find necessary and sufficient conditions for the exis-
tence of a nonnegative matrix A of order n with characteristic polynomial xn+k1x

n−1 +
k2x

n−2 + · · · + kn. The coefficients of the characteristic polynomial are closely related 
to the cycle structure of the weighted digraph with adjacency matrix A by means of the 
Theorem of the coefficients [7], and the irreducible matricial realizations of the polyno-
mial are identified with strongly connected digraphs [6]. The class of strong digraphs can 
easily be reduced to the class of minimal strong digraphs, so we are interested in any 
theoretical or constructive characterization of these classes of digraphs.

In [10], a sequentially generative procedure for the constructive characterization of the 
classes of MSDs is given. In addition, algorithms to compute unlabeled MSDs and their 
isospectral classes are described. These algorithms have been implemented to calculate 
the said classes of digraphs up to order 15, classified by their order and size [20]. We are 
also interested in properties regarding the spectral structure of this class of digraphs, 
mainly about the coefficients of the characteristic polynomial.

MSDs can be seen as a generalization of trees, as we pass from simple graphs to 
directed graphs. Although the structure of MSDs is much richer than that of trees, many 
analogies remain between the properties of both families. Other properties, nevertheless, 
undergo radical changes when passing from trees to MSDs.

In this article, we focus on structural properties of MSDs. We carry out a comparative 
study of properties of MSDs versus trees. For some of the properties, we also give an 
interpretation in terms of nearly reducible matrices, via the adjacency matrices. We also 
conjecture a generalization of the bounds on the coefficients of characteristic polynomials 
of trees to MSDs. As a particular case, the independent coefficient of the characteristic 
polynomial of a tree or an MSD must be −1, 0 or 1. For trees, this means that a tree 
has at most one perfect matching; for MSDs, it means that an MSD has at most one 
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covering by disjoint cycles. Finally, we use the properties described to give two possible 
representations of an MSD: every MSD can be factored into a rooted spanning tree and 
a forest of reversed rooted trees; and also as a double directed tree whose vertices are 
connected Hasse diagrams. In our opinion, the analogies described suppose a significative 
change in the traditional point of view about this class of digraphs.

The outline of the article is as follows: In section 2, we set up some notations and 
recall basic properties of MSDs. In section 3, we study structural analogies and differences 
between MSDs and trees. In section 4, we establish sharp bounds for the coefficients of the 
characteristic polynomials of trees, and we conjecture a generalization of these bounds 
for MSDs. In section 5, we describe the two distinct representations of MSDs.

2. Notations and basic properties

In this paper we use some standard basic concepts and results about graphs. We list 
them now, so as to fix the notations.

A digraph D is a pair D = (V, A), where V is a finite nonempty set and A ⊂ V ×V −
{(v, v) : v ∈ V }. Elements in V and A are called vertices and arcs, respectively, and |V |
and |A| are the order and size of D. If u, v ∈ V we denote (u, v) by uv and we write 
D − uv for the digraphs (V, A − {(u, v)}). For a vertex v ∈ V , the subdigraph D − v

consists of all vertices of D except v and all arcs of D except those incident with v. 
A path in D is a sequence of distinct vertices v1v2 . . . vq, q ≥ 2, such that vivi+1 is an arc 
for i = 1, 2, . . . , q − 1. We denote a path from the vertex u to the vertex v by uv-path. 
A cycle of length q or a q-cycle is a path v1v2 . . . vq closed by the arc vqv1. It is denoted 

by Cq. A double directed tree is the digraph 
↔
T obtained from a tree T by replacing each 

edge {u, v} with the two arcs (u, v) and (v, u) (we follow the notation introduced in [6], 
but keep the term “directed tree” to have its usual meaning). The linear graph Ln is 
the undirected path over n vertices. The corresponding double directed tree is denoted 

by 
↔
Ln. A perfect matching in a graph G is a set of mutually non-adjacent edges of G

covering all vertices of G.
A cut vertex in a graph or digraph is a vertex whose deletion increments the number 

of connected components. An edge of a graph (or an arc of a digraph) is a cut if its 
deletion increments the number of connected components. A 2-cut is a pair of edges (or 
arcs) whose concurrent deletion increments the number of connected components.

We now record a number of basic facts about the strong digraphs (see [10] and the 
references therein). In an SD of order n ≥ 2, the indegree and outdegree of the vertices 
are bigger than or equal to 1. A vertex is linear if it has indegree and outdegree equal 
to 1. Equivalently, in a (0, 1)-irreducible matrix, the index i is linear if the row and the 
column i have only one 1-entry. In a tree, the leaves are also linear vertices by considering 
the edges as two arcs.

If D is an MSD and there is an arc uv in D, then there cannot be another uv-path 
joining the vertex u to the vertex v. In general, an arc uv in a digraph D is transitive if 
there is another uv-path distinct from the arc uv. The semicycle consisting of a uv-path 
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together with the arc uv is a pseudocycle. So an MSD has no transitive arcs or pseudocy-
cles; moreover, this condition characterizes the minimality of the strong connection (see 
[11,14]). In matrix terms, A = (aij) is a nearly reducible matrix if and only if aij = 1
implies a(l)

ij = 0, for all l ≥ 2, being Al =
(
a
(l)
ij

)
. Consequently, if D is an MSD then so 

is every strong subdigraph of D. Furthermore, every subdigraph that is an MSD is an 
induced subdigraph.

The contraction of a cycle of length k in a strong digraph consists of the reduction of 
the cycle to a unique vertex, so that k − 1 of its vertices and its k arcs are eliminated. 
The contraction obviously preserves the SD property.

Lemma 1. (Berge [2]) The contraction of a cycle in an MSD preserves the minimality, 
that is, it produces another MSD.

Lemma 2. (Gupta [12]) The size of a minimal strong digraph D of order n ≥ 2 satisfies 
n ≤ |A| ≤ 2(n − 1). The size of D is n if and only if D is an n-cycle. The size of D is 
2(n − 1) if and only if D is a double directed tree.

Brualdi and Hedrick [5] also proved that there exists an MSD of order n ≥ 2 and size 
m if and only if n ≤ m ≤ 2(n −1) and characterized the MSDs of order n and size 2n −3.

The next result was first proved by Dirac [8] and independently by Plummer [17] in 
the context of minimal two connected graphs and by Berge and by Brualdi and Ryser [6]
for MSDs. A simplified proof by induction over the order n is given in [10].

Lemma 3. Every MSD of order n ≥ 2 has at least two linear vertices.

The following results will be useful tools in the proofs of the results of this paper.
An ear decomposition [1, 7.2] of a strong digraph D = (V, A) is a sequence of digraphs 

P0, P1, · · · , Pk, where P0 = (V0, A0) is a cycle and each Pi = (Vi, Ai), 1 ≤ i ≤ k, is a 
path or a cycle with the following properties:

(a) Pi and Pj are arc-disjoint if i �= j.
(b) For each i = 1, . . . , k: if Pi is a cycle, then it has just one vertex in common with 

∪i−1
j=0Vj . Otherwise the end-vertices of Pi are distinct vertices of ∪i−1

j=0Vj and no other 
vertex of Pi belongs to ∪i−1

j=0Vj .
(c) ∪k

i=0Ai = A.

Each Pi is called an ear.
Such a decomposition exists for every SD. In fact, for every vertex u and every cycle 

C through u, C is P0 for certain ear decompositions [1, Theorem 7.2.2]. MSDs satisfy 
that every ear has at least a new vertex and two arcs. Lemmas 1 and 2 can be proven in 
a relatively simple fashion by using this kind of decomposition.

The Theorem of the coefficients [7]. Let D be a digraph with characteristic polynomial 
xn + k1x

n−1 + k2x
n−2 + · · · + kn−1x + kn. Then
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ki =
∑

CS∈Li

(−1)P (CS), i = 1, . . . , n

where CS denotes a cyclic structure i.e., a set of disjoint unlabeled cycles of D, Li =
{CSs covering i vertices of D}, and P (CS) is the number of cycles in CS.

3. Minimal strong digraphs versus trees

Trees and MSDs are defined in a similar way. They are minimal connected graphs 
and minimal strong digraphs respectively, such that, in every case, the deletion of any 
edge and arc, respectively, implies strong connectivity loss. Despite the analogy in the 
definition, it is expected that the properties of these two kinds of graphs are very different 
because, while trees have no cycles, in every MSD, each arc belongs to a cycle.

However, surprisingly, there are many analogies between these two families of graphs. 
We explore the properties of both kind of graph, so as to deeply understand the structure 
of MSDs, by using the very well-known structure of trees.

(i) Trees and MSDs have a linear number m of edges and arcs respectively, related to 
the number of vertices n. The order n of a tree determines the number of edges, 
m = n − 1, whereas this does not hold for MSDs. In this case, the number of arcs 
satisfies n ≤ m ≤ 2(n − 1).
So, the number of arcs of a (double-directed) n-tree is the maximum size of an 
MSD of order n.
As a consequence of Lemma 2, considering the adjacency matrix of an MSD with 
maximal number of arcs m = 2(n − 1) (which must be a double directed tree), we 
can state the following property:

Corollary 4.
1. If m is an integer, then there exists an n × n nearly reducible matrix of size m

if and only if n ≤ m ≤ 2(n − 1).
2. Every n × n nearly reducible matrix with just n 1-entries is permutation con-

gruent to an n-cycle matrix.
3. An n × n nearly reducible matrix has just 2(n − 1) 1-entries if and only if it is 

symmetric.

(ii) There is an equivalent definition of trees: they are connected graphs with n − 1
edges. This fact is related to the following property of MSDs: a strong digraph 
with n arcs is an MSD (Lemma 2).

(iii) Furthermore, the two families of graphs (with at least two vertices) satisfy that 
they have at least two linear vertices, i.e. vertices with degree one (the leaves of 
the tree) and indegree and outdegree one (Lemma 3), respectively.

(iv) In both cases, there are configurations with a maximum number of linear vertices 
related to the order: tree stars have n −1 linear vertices and directed cycles have n.
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(v) Also, in both cases, there are configurations with a vertex with maximum degree: 
both tree and MSD stars.

(vi) On the other hand, there is a unique tree of order n with minimum number of 
linear vertices: the linear graph Ln. The MSDs with just two linear vertices are 
also linear configurations, in the following sense.

Definition 5. An MSD is simple linear if it is the cycle C2, the MSD C3C3 with 
a common arc, or it is composed of a sequence of p ≥ 3 cycles C3C4C4 · · ·C4C3, 
where each C4 cycle shares two disjoint arcs with the preceding and the following 
cycle, respectively, in the sequence. An MSD is linear if it can be obtained from 
the linear graph Ln by the substitution of each edge by a simple linear MSD, 
identifying the endpoints of each edge with the linear vertices of the simple linear 
MSD.

Lemma 6. In an MSD with just two linear vertices, each of them belongs to a 
unique cycle. Furthermore, these cycles are C2 or C3.

Proof. Let D be an MSD with just two linear vertices. Let u be one of them, and 
let C be a cycle containing u. If the other linear vertex belongs to C, then D = C

(otherwise, the contraction of C would result in an MSD with only one linear 
vertex). Hence, D is a cycle with exactly two linear vertices, that is, D = C2.
Assume now that the other linear vertex of D does not belong to C. The contraction 
of C into a vertex z implies that z is a linear vertex in the contracted MSD D′

(otherwise, D′ has only one linear vertex). Let v1 and v2 be the vertices in C
incident with the two arcs through z. As u is the only linear vertex in the cycle, 
C must be either the 3-cycle uv1v2u (or uv2v1u), or the 2-cycle uv1u, if v1 = v2.
The uniqueness of the cycle holds trivially. �
Theorem 7. An MSD is linear if and only if it has just two linear vertices.

Proof. Let D be an MSD. If D is linear, then D has just two linear vertices. For 
the reciprocal, we shall prove it by induction on the number n of vertices.
If n = 2, then D = C2 is a simple linear MSD.
If n > 2, let D be an MSD with n + 1 vertices, and with just two linear vertices, 
u and w. By the Lemma above, u belongs to a unique cycle C2 or C3.
If u belongs to a 2-cycle uvu, then v is a linear vertex in D′ = D−u, and the cycle 
uvu is a simple linear MSD. By the induction hypothesis, D′ is a linear MSD and, 
hence, so is D.
If u belongs to a 3-cycle uv1v2u, then the MSD D′, obtained from D by the 
contraction of the 3-cycle into the vertex z, has just two linear vertices, z and w. 
Hence, by the induction hypothesis, D′ is a linear MSD. Then, two cases are 
possible, as illustrated in Fig. 2. This cycle C3 belongs to a linear MSD of the 
form C3C3 · · · or C3C4 · · · . In both cases, it is clear that D is linear. �
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Fig. 1. A linear MSD composed by five simple linear MSDs.

Fig. 2. The two cases in proof of Theorem 7.

As a consequence of the two previous results we have:

Corollary 8.
1. If an MSD has a linear vertex in a q-cycle with q ≥ 4, then it has at least three 

linear vertices.
2. If an MSD has a q-cycle with q ≥ 5, then it has at least three linear vertices.

Note that the vertices of a linear MSD can be labeled so that the corresponding 
adjacency matrix is pentadiagonal (see the labeling of the linear MSD in Fig. 1). 
Hence, we can state the following property:

Corollary 9. A nearly reducible matrix with only two linear indices is permutation 
congruent to a pentadiagonal matrix.

(vii) In a tree, each vertex belongs to a 2-cycle (considering the edges as two arcs), and 
hence it is either linear or a cut vertex. In a linear MSD, each vertex contained in a 
2-cycle is either linear or a cut vertex. Even more, for every 3-cycle in a linear MSD, 
exactly one of its vertices is either linear or a cut vertex. And for every 4-cycle in 
a linear MSD, exactly two of its vertices have indegree 2 and outdegree 1, while 
the other two have indegree 1 and outdegree 2. None of them is a cut vertex.

(viii) In a tree, every edge is a cut. In the associated double directed tree, the arcs of 
each 2-cycle constitute a 2-cut. For MSDs, the situation is as follows:

Theorem 10. Each cycle in an MSD has a 2-cut.
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Proof. Let D be an MSD. We shall prove the result by induction on the number 
n of vertices of D.
If n = 2, then D = C2, and its arcs are a 2-cut.
If n > 2, and D is a double directed tree, then the result is known.
In any other case, there exists in D a cycle Cq with q > 2. If D = Cq, then any 
pair of arcs is a 2-cut.
In addition, there exists another cycle C sharing some vertices (and maybe arcs) 
with Cq. Let D′ be the digraph obtained from D by the contraction of C on 
a vertex z. Then Cq is transformed into one or several cycles with a common 
vertex z. We choose one of those cycles and, by induction hypothesis, it has a 
2-cut, that is, there exist two arcs u′

1v
′
1 and u′

2v
′
2 such that D′ − u′

1v
′
1 − u′

2v
′
2

has two connected components, say D′
1 and D′

2. The vertex z lies in one of the 
components. If u′

j , v
′
j �= z for j = 1, 2, then u′

j = uj and v′j = vj are vertices of D, 
and the original arcs u1v1, u2v2 are a 2-cut. If u′

j = z (resp. v′j = z) for j = 1, 2
or both, then there is only one vertex wj in C such that wjvj (resp. ujwj) is an 
arc in Cq. The couple of arcs given by the appropriate ujvj , wjvj or ujwj (for 
j = 1, 2) constitute a 2-cut. �
In general, every nearly reducible matrix is permutation congruent to a matrix 
with the form (

∗ Eij

∗ ∗

)
,

where Eij is a matrix with its (i, j)-entry equal to 1, and the rest equal to 0. 
This is consequence of the fact that the vanishing of any 1-entry makes the matrix 
reducible.
By considering the adjacency matrix of an MSD, Theorem 10 may be stated as 
follows:

Corollary 11. A nearly reducible matrix with a cycle submatrix C is permutation 
congruent to a matrix of the form

(
∗ Eij

Ekl ∗

)
,

where the 1-entries of the blocks Eij and Ekl correspond to arcs in C. Hence, 
making these two entries zero, we obtain a totally reducible matrix (i.e., a matrix 
which is permutation congruent to a nontrivial block diagonal matrix).

(ix) Given two vertices u and v in any tree, there is a unique path connecting them. We 
generalize this fact as path-tree property for both graphs and digraphs: for every 
two vertices u and v in a graph (resp. a digraph) there is a unique path connecting 
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them (resp. a unique directed path from u to v). Then trees satisfy the path-tree 
property, while MSDs do not. If uv is an arc in an MSD then this path is the 
unique path connecting the vertex u to the vertex v, but we cannot say the same 
if the arc uv does not belong to the MSD. Nevertheless, there exists a subfamily 
of the MSD class where the property holds. It is defined below.
In the following definition, a topological cycle means a cycle in the graph obtained 
by the substitution of every arc by an edge.

Definition 12. A directed cycle digraph is an SD in which every topological cycle 
comes from a directed cycle.

Clearly, every directed cycle digraph is an MSD. However, we also prove below 
that the class of MSDs satisfying the path-tree property is just the directed cycle 
digraph class.

Theorem 13. A strong digraph satisfies the path-tree property if and only if it is a 
directed cycle digraph.

Proof. Let D be an SD. We first prove that if D is a directed cycle digraph then 
D satisfies the path-tree property. Suppose that D does not satisfy the path-tree 
property. Let u and v be vertices between which there are two different directed 
paths. Without loss of generality, we can assume that the paths only match at the 
end vertices. Therefore, they constitute a topological cycle that is not a directed 
cycle in D.
Let D now be an SD that satisfies the path-tree property. Let us consider an ear 
decomposition of D. Then the end vertices of any ear are equal, or else there would 
be two directed paths between them. We conclude that in D there are no other 
topological cycles than the ears. Therefore D is a directed cycle digraph. �

(x) Another meaningful difference between trees and MSDs is the complexity of the 
following algorithmic problem: Given a weighted connected graph and a weighted 
strong digraph, find a minimal spanning tree (MST) and a minimal spanning strong 
subdigraph (MSSS), respectively. While there are many polynomial algorithms to 
solve the MST problem [4], the MSSS problem belongs to the NP-hard class (see [1]
and the references therein), even when all weights are one.

(xi) Every tree has at most one perfect matching. We prove below that an MSD has 
at most one covering by disjoint cycles. This property becomes the previous one if 
we consider each edge in the tree as two arcs.

Theorem 14. An MSD has at most one covering by disjoint cycles.

Proof. Let D be an MSD. Suppose that D has two different coverings by disjoint 
cycles, C1 and C2. Without loss of generality, we can suppose that C1 and C2 have 
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no common cycles: if there were any common cycles, we could iteratively delete 
the vertices of each cycle, and then reset the strong connection, while preserving 
the minimality, by adding non-transitive arcs.
Let us denote the order of D by n, the size by m, the number of cycles in C1

by k1, the number of cycles in C2 by k2 and suppose, without loss of generality, 
that k1 ≤ k2. Contracting the cycles of D belonging to C1 we can conclude that 
m ≤ n +2(k1 − 1), since the number of vertices n is also the number of contracted 
arcs, and there are k1 vertices in the contracted digraph D′ and hence, at most, 
another 2(k1 − 1) arcs in D. On the other hand, the cycles of C1 have altogether 
exactly n arcs and each cycle in C2 adds at least two new arcs. Hence, it holds 
that m ≥ n + 2k2. Finally, we obtain the contradiction: m ≤ n + 2(k1 − 1) <
n + 2k2 ≤ m. �
In terms of the adjacency matrix of D, we can state it as follows:

Corollary 15. The determinant of a nearly reducible matrix is 1, −1 or 0.

(xii) The covering of a strong digraph D with α cycles, not necessarily disjoint, where 
α is the stability number or the independence number of D, constitutes the Gallai 
conjecture [9]. This was proved by Bessy and Thomassé [3] and the proof also 
applies to MSDs and trees if we consider, in the last case, that edges are equivalent 
to two arcs. There are examples of MSDs and trees where α cycles are needed in 
order to cover the corresponding digraph: MSD and tree stars.

(xiii) The covering of a strong digraph D with α−1 disjoint paths, where α is, as above, 
the stability number or the independence number of D, constitutes the Las Vergnas 
conjecture [16]. This was proved by Thomassé [19] and the proof also applies to 
MSDs and trees if we consider, in the last case, that edges are equivalent to two 
arcs. There are examples of MSDs and trees where α− 1 disjoint paths are needed 
in order to cover the corresponding digraph: MSD and tree stars.

(xiv) The next property will be developed in the next section. Given the characteristic 
polynomial corresponding to the adjacency matrix of a tree or an MSD, xn +
k1x

n−1 + k2x
n−2 + · · ·+ kn, we prove, for trees, that the coefficients are bounded 

as follows:

km = 0 if m is odd, km ≤

⎛
⎝n− m

2
m

2

⎞
⎠ if m is even.

For MSDs, we conjecture that km ≤

⎛
⎜⎝n−

⌈m
2

⌉
⌊m

2

⌋
⎞
⎟⎠.
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4. Bounds on the coefficients of the characteristic polynomials of MSDs

4.1. Double directed trees

Let 
↔
T= (V, A) be a double directed tree with n vertices and let km(

↔
T ) be the coefficient 

of xn−m in the monic characteristic polynomial of the adjacency matrix of 
↔
T .

As double directed trees have only cycles of length 2, it follows, by the Theorem of 
the coefficients, that km(

↔
T ) = 0 for m odd; if m is even, all possible cycle structures 

covering m vertices have exactly m/2 disjoint 2-cycles, and hence all their contributions 
to km(

↔
T ) have the same sign. So, for m even, |km(

↔
T )| is the number of coverings of m

vertices of 
↔
T by m/2 disjoint 2-cycles. For any m (even or odd), we denote the number 

of coverings of m vertices of 
↔
T by disjoint 2-cycles by Km(

↔
T ).

Theorem 16. Let T be a tree with n vertices, n ≥ 2. Then:

1. Km(
↔
T ) = 0 for all m odd such that 1 ≤ m ≤ n.

2. Km(
↔
T ) ≤

(
n− m

2
m
2

)
for all m even such that 2 ≤ m ≤ n.

3. Km(
↔
T ) =

(
n− m

2
m
2

)
for all m even such that 2 ≤ m ≤ n if and only if T is the 

linear graph Ln.

4. If T �= Ln, then Km(
↔
T ) <

(
n− m

2
m
2

)
for some m ≥ 4.

Proof. As stated above, the case m odd is straightforward. The case m even remains to 
be studied. We shall prove the result by induction on n, the number of vertices.

a) n = 2 and n = 3.

1. If n = 2, then m = 2 and K2(
↔
T ) = 1 =

(
1
1

)
holds.

2. If n = 3, then m = 2 and K2(
↔
T ) = 2 =

(
2
1

)
holds.

b) Let n ≥ 3 and assume (induction hypothesis) that for all 2 ≤ l ≤ n, all m even such 
that 2 ≤ m ≤ l and all double directed trees with l vertices, the following inequality 
holds:

Km(
↔
T ) ≤

(
l − m

2
m
2

)
.

Let 
↔
T= (V, A) be a double directed tree with n + 1 vertices and let m be even with 

2 ≤ m ≤ n + 1.
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Fig. 3. K1 and K2.

Fig. 4. Joining all the vertices adjacent to w by means of a path of 2-cycles.

We consider a linear vertex v ∈ V , and the vertex w that forms a 2-cycle C with v. 
We denote by K1

m(
↔
T ) and K2

m(
↔
T ) the number of coverings of m vertices of 

↔
T by 

m/2 disjoint 2-cycles including and excluding C, respectively (see Fig. 3).
Clearly, Km(

↔
T ) = K1

m(
↔
T ) + K2

m(
↔
T ).

If we consider the double directed tree 
↔
T ′, obtained from 

↔
T by deleting v and w and 

joining all the vertices adjacent to w by means of a path of 2-cycles (see Fig. 4), then 

K1
m(

↔
T ) ≤ Km−2(

↔
T ′) and hence

K1
m(

↔
T ) ≤

(
n− 1 − m−2

2
m−2

2

)
=

(
n− m

2
m
2 − 1

)

for m ≥ 4 and also for m = 2 as, in this case, K1
m(

↔
T ) = 1.

For the double directed tree 
↔
T ′′=

↔
T −v, we have that K2

m(
↔
T ) = Km(

↔
T ′′) and hence:

K2
m(

↔
T ) ≤

(
n− m

2
m
2

)
, if m ≤ n, and K2

m(
↔
T ) = 0, if m = n + 1.

Finally, we complete the induction step by studying the following two cases:

1. If m = n + 1: Km(
↔
T ) ≤

(
n− n+1

2
n+1

2 − 1

)
+ 0 = 1 =

(
n + 1 − n+1

2
n+1

2

)
.

2. If m ≤ n: Km(
↔
T ) ≤

(
n− m

2
m
2 − 1

)
+
(
n− m

2
m
2

)
=

(
n + 1 − m

2
m
2

)
.
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To prove (3), if T is the linear graph Ln = v1 · · · vn, we denote the consecutive sequence 

of 2-cycles of the directed tree 
↔
T by C1, · · · , Cn−1, where Ci = vivi+1vi, i = 1, · · · , n −1. 

Then Km(
↔
T ) is the number of cycle structures {Ci1 , Ci2 , · · · , Cim/2} ∈ Lm such that 

i1, i2, · · · , im/2 is an increasing sequence of non consecutive terms of {1, 2, · · · , n −1} with 
1 ≤ i1 and im/2 ≤ n −1 or, equivalently, such that i1, i2 −1, i3 −2, · · · , im/2 − (m/2 −1)
is an increasing sequence of distinct terms with 1 ≤ i1 and im/2 ≤ n − 1 − ((m/2 − 1)) =

n −m/2, and hence Km(
↔
T ) =

(
n− m

2
m
2

)
.

Finally, let us prove (4). Let T = (V, E) �= Ln. We consider the case m = 4, and 

we shall prove that K4(
↔
T ) <

(
n−2

2
)
. It is not difficult to obtain the closed formula 

K4(
↔
T ) = 1

2
∑

v1v2∈E (n− deg(v1) − deg(v2)), from which the following formula can be 

derived:

K4(
↔
T ) = 1

2

(
n(n− 1) −

∑
v∈V

(deg(v))2
)
.

We claim that the strict maximum of this expression, constrained to the condition 
1
2
∑

v∈V deg(v) = n − 1, is attained for the following sequence of degrees of T : 
2, 2, 2, . . . , 2, 1, 1; that is, for T = Ln. Indeed, if we consider a different degree sequence, 
we could increase the value of the corresponding K4 by decreasing by 1 a degree a and 
increasing by 1 another degree b, such that a − b ≥ 2 (note that, for any tree other 
than Ln, there is at least one vertex va with a = deg(va) ≥ 3, and also there are leaves 
vb, with b = deg(vb) = 1, so there exist degrees a, b such that a − b ≥ 2). The value of 
K4 would thus increase by 2(a − b − 1). Repeated application of this procedure yields 
that the strict maximum of K4 is attained for the degree sequence of Ln. �
Corollary 17. The independent term kn of the characteristic polynomial of a double di-
rected tree 

↔
T of order n satisfies kn ∈ {−1, 0, 1} and

i) kn = 0 if and only if there is no perfect matching in T .
ii) kn = 1 if and only if there is a perfect matching in T and n = 4p, for some integer p.
iii) kn = −1 if and only if there is a perfect matching in T and n = 4p + 2, for some 

integer p.

Corollary 18 (from Theorem 14). The independent term kn of the characteristic polyno-
mial of an MSD D of order n satisfies kn ∈ {−1, 0, 1} and

i) kn = 0 if and only if there is no covering of D by disjoint cycles.
ii) kn = 1 if and only if there is a covering of D with an even number of disjoint cycles.
iii) kn = −1 if and only if there is a covering of D with an odd number of disjoint cycles.
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4.2. General case

Let D = (V, A) be an MSD with n vertices, n ≥ 2, and m be an integer with 2 ≤
m ≤ n. We denote by Km(D) the number of cycle structures covering m vertices of D. 
Obviously, |km(D)| ≤ Km(D), km(D) being the coefficient of xn−m in the characteristic 
polynomial of the adjacency matrix of D.

We conjecture that the upper bound on the value Km(D) for double directed trees 
(m even) also holds for MSDs, both for even and odd m.

Conjecture 19. Let D be an MSD with n vertices, n ≥ 2, and m an integer such that 
2 ≤ m ≤ n. Then the following inequality holds:

Km(D) ≤
(
n− 	m2 

�m

2 �

)

Using the generative procedure for MSDs described in [10], whose results are listed 
in [20], we have obtained the maxima of the absolute value of km(D) for all MSDs D
of order n, for n ≤ 15. In the following table, we give these maxima and, when it is 
different, the upper bound given by Conjecture 19 (in brackets).

n |kn| |kn−1| |kn−2| |kn−3| |kn−4| |kn−5| |kn−6|
2 1
3 1 2
4 1 2 3
5 1 3 3 4
6 1 3 6 4 5
7 1 4 5 (6) 10 5 6
8 1 4 10 8 (10) 15 6 7
9 1 5 9 (10) 20 11 (15) 21 7
10 1 5 15 16 (20) 35 15 (21) 28
11 1 6 14 (15) 35 26 (35) 56 19 (28)
12 1 6 21 30 (35) 70 40 (56) 84
13 1 7 20 (21) 56 55 (70) 126 57 (84)
14 1 7 28 50 (56) 126 91 (126) 210
15 1 8 27 (28) 84 105 (126) 252 147 (210)

n |kn−7| |kn−8| |kn−9| |kn−10| |kn−11| |kn−12| |kn−13|
9 8
10 8 9
11 36 9 10
12 24 (36) 45 10 11
13 120 29 (45) 55 11 12
14 78 (120) 165 35 (55) 66 12 13
15 330 105 (165) 220 41 (66) 78 13 14

5. Representations of MSDs

The fact that a double directed tree has 2(n −1) arcs suggests that we can decompose 
it into two directed trees, each of them having n −1 arcs. Furthermore, this decomposition 



J. García-López et al. / Linear Algebra and its Applications 540 (2018) 203–220 217
is a factorization, and it can be done in such a way that, given any vertex u, the first 
directed tree is a rooted tree with root u and the second is a reversed rooted tree with 
root u. By a reversed rooted tree we mean the resulting directed tree after reversing the 
orientation of all arcs in a rooted tree.

This property can be generalized to MSDs but, in general, the factorization cannot 
yield two directed trees, because an MSD can have less than 2(n −1) arcs. The Theorem 
below establishes said generalization.

Theorem 20. An MSD factors into a rooted spanning tree and a forest of reversed rooted 
trees.

Proof. Let D be an MSD. Let us consider an ear decomposition of D, E = {P0, . . . , Pk}. 
Since D is an MSD, each ear Pj (1 ≤ j ≤ k) contains at least one new vertex and two 
new arcs, with respect to 

⋃j−1
i=0 Vi and 

⋃j−1
i=0 Ai, respectively.

The first ear is a cycle, P0 = v0
0v

0
1 · · · v0

s0−1v
0
0 . Let T be the path v0

0v
0
1 · · · v0

s0−1 and 
let F be the arc v0

s0−1v
0
0 . Then, T is a rooted tree, with root v0

0 , and F is a reversed 
rooted tree, with reversed root v0

0 . For each ear Pj = vj0v
j
1 · · · vjsj , 1 ≤ j ≤ k, we add 

the path vj0v
j
1 · · · v

j
sj−1 to T and the arc vjsj−1v

j
sj to F . Note that all the new vertices of 

Pj are added to T , they are connected to T only by the first vertex of the path vj0 and 
they have indegree one. Note also that the arc vjsj−1v

j
sj is joined to one of the connected 

components of F , if the vertex vjsj belongs to F , and it constitutes a new connected 
component, if vjsj does not belong to F . Then it is clear, by construction, that T is a 
rooted spanning tree, with root v0

0 , and that F is a forest of reversed rooted trees. �
Note that this factorization depends on the labeling of the first ear P0. In fact, there 

exist s0 possible different factorizations, s0 being the length of the cycle P0.
For the next theorem, we need to introduce Hasse diagrams. A Hasse diagram is an 

acyclic digraph with no transitive arcs. The contraction of a Hasse diagram as a subdi-
graph consists on its reduction to a unique vertex (in a similar way to the contraction 
of a cycle).

In every MSD of order n, an underlying double directed tree exists, with k ≤ n vertices; 
and k disjoint Hasse diagrams, contained in the MSD, whose contraction generates a 
vertex of the double directed tree. The arcs of the 2-cycles of the underlying double 
directed tree come from the arcs of the 2-cuts of cycles in the MSD. In the case of the 
MSD being a double directed tree, the underlying double directed tree is the MSD itself, 
and each Hasse diagram is just a vertex. We show in the Fig. 5 two different underlying 
double directed trees for the same MSD.

Theorem 21. An MSD has an underlying double directed tree whose vertices are given by 
the contraction of connected Hasse diagrams.

Proof. Let D be an MSD. We describe a process to depict D as a double directed tree of 
Hasse diagrams. We shall recursively construct a double directed tree 

↔
T= (V, A), whose 



218 J. García-López et al. / Linear Algebra and its Applications 540 (2018) 203–220
Fig. 5. Two different underlying double directed trees for the same MSD.

vertices are connected subdigraphs of D. We initialize 
↔
T with vertex set V = {D} and 

arc set A = ∅, and then we perform the following decomposition with every vertex N of 
↔
T which is cyclic:

1. Take a cycle C from N .
2. Choose two arcs u1u2, v2v1 in C that build up a 2-cut of D (using Theorem 10). Let 

N1, N2 be the intersection of N with the two connected components of D−u1u2−v2v1

(ui, vi ∈ Ni, for i ∈ {1, 2}). We claim that N1, N2 are connected. Let C1 and C2

be the paths resulting from the cycle C after deleting u1u2 and v2v1. Then, every 
vertex of N belongs either to the connected component of C1 or to the connected 
component of C2, as the connection of N implies that N is connected to C. Hence, 
the deletion of u1u2, v2v1 generates exactly two connected components in N : one 
containing C1 and the other containing C2.

3. Update 
↔
T as follows: delete N from V , and add N1 and N2; add the arcs N1N2 and 

N2N1 to A (they correspond to the arcs u1u2 and v2v1, respectively).
4. Also, all the arcs in A having N as an endpoint have to be updated. Let M ∈ V , 

NM, MN ∈ A, corresponding to the arcs w1w
′
1 and w′

2w2 in D (w1, w2 ∈ N , 
w′

1, w
′
2 ∈ M). Without loss of generality, assume that w1 ∈ N1. We claim that 

then w2 ∈ N1. Otherwise, as M is connected, we could construct an undirected path 
in M joining w′

1 to w′
2, and hence we would have an undirected path—disjoint to 

the cycle C—joining w1 and w2. This contradicts the fact that u1u2, v2v1 in C are 
a 2-cut of D. As a consequence, we can substitute the arcs NM, MN ∈ A by N1M , 
MN1, corresponding to the same original arcs w1w

′
1 and w′

2w2 of D.

We continue this process until no cyclic digraphs are left in V . The final result of this 
procedure is a double directed tree whose vertices are connected acyclic digraphs. These 
vertices are also Hasse diagrams, as none of their arcs can be transitive. �
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Remark 22. In the representation of an MSD as a double directed tree of connected Hasse 
diagrams given by Theorem 21, the Hasse diagrams fulfill the following properties:

1. The maximals of the Hasse diagrams are initial vertices of the arcs of the underlying 
double directed tree.

2. The minimals of the Hasse diagrams are final vertices of the arcs of the underlying 
double directed tree.

3. The Hasse diagrams corresponding to linear vertices of the underlying double directed 
tree have exactly one minimal and one maximal.

4. For every linear MSD, the underlying double directed tree is unique, because for 
every cycle, the arcs of the 2-cuts are uniquely determined. The underlying double 

directed tree is 
↔
Lj+1, where j is the number of cycles of the linear MSD.

6. Final remarks

Every digraph can be seen as an acyclic digraph whose vertices are the strongly 
connected components of the digraph: the condensation digraph. Every SD vertex of 
the condensation digraph can be generated from an MSD by adding the corresponding 
transitive arcs. Consequently, it seems very important to undertake a deeper study of 
the structural properties of MSDs.

In this paper, we have looked at MSDs as a generalization of trees. We have studied 
the analogies and differences between both of them, and we have started a promising 
research on the coefficients of the characteristic polynomials of these digraphs.

We have also considered other representations of MSDs, whose study can be helpful to 
understand the acyclic order structure (condensation digraph) and the cyclic structure 
of a digraph.
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