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1. Introduction

The real nonnegative inverse eigenvalue problem (hereafter RNIEP) is the problem of 
characterizing all possible real spectra of entrywise nonnegative matrices. This problem 
remains unsolved. A complete solution is known only for spectra of size n ≤ 4. A number 
of realizability criteria or sufficient conditions for the existence of a nonnegative matrix 
with a given real spectrum have been obtained, from different points of view. In [12]
the authors construct a map of sufficient conditions for the RNIEP, in which they show 
inclusion or independence relations between these conditions.

If in the RNIEP we require that the nonnegative matrix be symmetric, we have 
the symmetric nonnegative inverse eigenvalue problem (hereafter SNIEP). For a long 
time it was thought that the RNIEP and the SNIEP were equivalent, but in [8] it was 
proved that both problems are different and in [5] that they are different for n ≥ 5. 
Both problems, RNIEP and SNIEP, are equivalent for n ≤ 4 and remain open for 
n ≥ 5.

The first known sufficient condition for the SNIEP is due to Perfect and Mirsky [14] for 
doubly stochastic matrices and Fiedler [7] gave the first symmetric realizability criterion 
for nonnegative matrices. Several realizability criteria which were first obtained for the 
RNIEP have later been shown to be realizability criteria for the SNIEP as well. Fiedler 
[7], Radwan [15] and Soto [18] showed, respectively, that the Kellogg [9], Borobia [1]
and Soto 2 [17] criteria are also symmetric realizability criteria. In [22,10,19] the authors 
propose, directly, symmetric realizability criteria.

There are in the literature some other criteria for the SNIEP based on a theorem 
from Rado, see Soto–Rojo–Moro–Borobia [21] and Soto–Rojo–Manzaneda [20]. These 
criteria trivially contain, by their own definition, any other sufficient condition, and for 
this reason we will leave them out of the analysis. Their interest lies in providing different 
procedures to realize certain lists.

The paper is organized as follows: Section 2 contains the list of all sufficient conditions 
that we shall consider, in chronological order, and some technical results that we will use 
in the next section. In Section 3 we construct a map of symmetric realizability criteria, 
establishing inclusion or independence relations between these criteria.

2. Sufficient conditions for the SNIEP

In this paper, by a list we understand a collection Λ = {λ1, . . . , λn} of real numbers 
with possible repetitions. By a partition of a list Λ we mean a family of sublists of Λ
whose disjoint union is Λ. As is commonly accepted, we understand that a summatory 
is equal to zero when the index set of the summatory is empty.

We will say that a list Λ is (symmetrically) realizable if it is the spectrum of an 
entrywise (symmetric) nonnegative matrix A. In this case A is said to be a realizing 
matrix.
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The RNIEP and the SNIEP have an obvious solution when only nonnegative real 
numbers are considered, so the interest of both problems is when there is at least one 
negative number in the list.

In what follows we list the sufficient conditions, or realizability criteria, that we are 
going to consider, in chronological order. The first result in this area was announced by 
Sulěımanova in 1949 and proved by Perfect in 1953.

Theorem 1. (Sulěımanova [23], 1949) Let Λ = {λ0, λ1, . . . , λn} satisfy

λ0 ≥ |λ| for λ ∈ Λ and λ0 +
∑
λi<0

λi ≥ 0, (1)

then Λ is realizable.

Theorem 2. (Sulěımanova–Perfect [23,13], 1949, 1953) Let Λ = {λ0, λ01, . . . , λ0t0 , λ1,

λ11, . . . , λ1t1 , . . . , λr, λr1, . . . , λrtr} satisfy

λ0 ≥ |λ| for λ ∈ Λ and λj +
∑
λji<0

λji ≥ 0 for j = 0, 1, . . . , r, (2)

then Λ is realizable.

Theorem 3. (Perfect 1 [13], 1953) Let

Λ = {λ0, λ1, λ11, . . . , λ1t1 , . . . , λr, λr1, . . . , λrtr , δ},

where

λ0 ≥ |λ| for λ ∈ Λ,
∑
λ∈Λ

λ ≥ 0, δ ≤ 0,

λj ≥ 0 and λji ≤ 0 for j = 1, . . . , r and i = 1, . . . , tj .

If

λj + δ ≤ 0 and λj +
tj∑
i=1

λji ≤ 0 for j = 1, . . . , r, (3)

then Λ is realizable.

Theorem 4. (Perfect–Mirsky [14], 1965) Let Λ = {λ1, . . . , λn} with λ1 ≥ |λ| for λ ∈ Λ
and λi ≥ λi+1 for i = 1, . . . , n − 1. If

λ1

n
+ λ2

n(n− 1) + · · · + λn

2 · 1 ≥ 0, (4)

then Λ is symmetrically realizable.
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Remark 1. In [14, Theorem 8], the previous result is given with λ1 = 1 and asserts that Λ
is realized by a doubly stochastic matrix. Reading the proof, one can see, as the authors 
point out, that in fact Λ is realized by a symmetric doubly stochastic matrix.

Theorem 5. (Ciarlet [4], 1968) Let Λ = {λ0, λ1, . . . , λn} satisfy

|λj | ≤
λ0

n
, j = 1, . . . , n, (5)

then Λ is realizable.

Theorem 6. (Kellogg [9], 1971) Let Λ = {λ0, λ1, . . . , λn} with λ0 ≥ |λ| for λ ∈ Λ and 
λi ≥ λi+1 for i = 0, . . . , n − 1. Let M be the greatest index j (0 ≤ j ≤ n) for which 
λj ≥ 0 and K = {i ∈ {1, . . . , �n/2�} / λi ≥ 0, λi + λn+1−i < 0}. If

λ0 +
∑

i∈K, i<k

(λi + λn+1−i) + λn+1−k ≥ 0 for all k ∈ K, (6)

and

λ0 +
∑
i∈K

(λi + λn+1−i) +
n−M∑

j=M+1
λj ≥ 0, (7)

then Λ is realizable.

Theorem 7. (Salzmann [16], 1972) Let Λ = {λ0, λ1, . . . , λn} with λi ≥ λi+1 for i =
0, . . . , n − 1. If ∑

0≤j≤n

λj ≥ 0, (8)

and

λi + λn−i

2 ≤ 1
n + 1

∑
0≤j≤n

λj , i = 1, . . . , �n/2�, (9)

then Λ is realizable by a diagonalizable nonnegative matrix.

Theorem 8. (Fiedler [7], 1974) Let Λ = {λ0, λ1, . . . , λn} with λi ≥ λi+1 for i = 0, . . . , n −
1. If

λ0 + λn +
∑
λ∈Λ

λ ≥ 1
2

∑
1≤i≤n−1

|λi + λn−i|, (10)

then Λ is symmetrically realizable.
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Soules in 1983 gave two constructive sufficient conditions for symmetric realization. 
The inequalities that appear in these conditions are obtained by imposing the diagonal 
entries of the matrix Rdiag(λ1, . . . , λn)Rt to be nonnegative, where R is an orthogonal 
matrix with a certain pattern. For a particular R, this criterion is the Perfect–Mirsky 
criterion.

Theorem 9. (Soules 1 [22], 1983) Let Λ = {λ1, . . . , λn} with λi ≥ λi+1 for i = 1, . . . , n −1
and let x = (x1, . . . , xn) > 0. If

di = x2
iλ1

n∑
j=1

x2
j

+
n∑

k=i+1

(xixk)2λn−k+2(
k−1∑
j=1

x2
j

)(
k∑

j=1
x2
j

) +

i−1∑
j=1

x2
jλn−i+2

i∑
j=1

x2
j

≥ 0 , (11)

for i = 1, . . . , n, then there exists a symmetric nonnegative matrix with the ith diagonal 
entry di, spectrum Λ and x an eigenvector associated to λ1. Further, if 0 < x1 ≤ x2 ≤
· · · ≤ xn, then d1 ≤ d2 ≤ · · · ≤ dn.

The next result is a generalization of Theorem 9.

Theorem 10. (Soules 2 [22], 1983) Let Λ = {λ1, . . . , λn} with λi ≥ λi+1 for i = 1, . . . , n −1
and let x = (x1, . . . , xn) > 0. Let {i1, . . . , im} ∪ {j1, . . . , jn−m} and {k1, . . . , km−1}
∪{l1, . . . , ln−m−1} be partitions of {1, . . . , n} and {3, . . . , n}, respectively. If

dp =
x2
ip
λ1

n∑
r=1

x2
r

+
x2
ip

(
n−m∑
r=1

x2
jr

)
λ2(

n∑
r=1

x2
r

)(
m∑
r=1

x2
ir

) +
m∑

t=p+1

(
xipxit

)2
λkm−t+1(

t−1∑
r=1

x2
ir

)(
t∑

r=1
x2
ir

) +

p−1∑
r=1

x2
ir
λkm−p+1

p∑
r=1

x2
ir

≥ 0

and

dm+q =
x2
jq
λ1

n∑
r=1

x2
r

+
x2
jq

(
m∑
r=1

x2
ir

)
λ2(

n∑
r=1

x2
r

)(
n−m∑
r=1

x2
jr

) +
n−m∑
t=q+1

(
xjqxjt

)2
λln−m−t+1(

t−1∑
r=1

x2
jr

)(
t∑

r=1
x2
jr

)

+

q−1∑
r=1

x2
jr
λln−m−q+1

q∑
r=1

x2
jr

≥ 0

for p = 1, . . . , m and q = 1, . . . , n −m, then there exists a symmetric nonnegative matrix 
with the ith diagonal entry di, spectrum Λ and x an eigenvector associated to λ1.
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Remark 2. If in the previous theorem we take {i1, . . . , im} = {1, . . . , m} and 
{j1, . . . , jn−m} = {m + 1, . . . , n} we have an equivalent condition, although in this 
case the realizing matrix has its columns permuted.

Remark 3. Note that in Theorems 9 and 10 we have 
n∑

i=1
di =

n∑
i=1

λi. So, if this sum is 

zero, then every di is zero.

Corollary 1. ([22], 1983) Let Λ = {λ1, . . . , λn} with λi ≥ λi+1 for i = 1, . . . , n − 1 and 
let n = 2m + 2 (n even) or n = 2m + 1 (n odd). If

λ1

n
+ (n−m− 1)λ2

n(m + 1) +
m∑

k=1

λn−2k+2

(k + 1)k ≥ 0, (12)

then Λ is symmetrically realizable.

Theorem 11. (Borobia [1], 1995) Let Λ = {λ0, λ1, . . . , λn} with λi ≥ λi+1 for i =
0, . . . , n − 1 and let M be the greatest index j (0 ≤ j ≤ n) for which λj ≥ 0. If there 
exists a partition J1 ∪ · · · ∪ Jt of {λM+1, . . . , λn} such that{

λ0 ≥ λ1 ≥ · · · ≥ λM >
∑
λ∈J1

λ ≥ · · · ≥
∑
λ∈Jt

λ

}
(13)

satisfies the Kellogg condition, then Λ is realizable.

Theorem 12. (Soto 2 [17], 2003) Let Λ be a list that admits a partition

{λ11, . . . , λ1t1} ∪ · · · ∪ {λr1, . . . , λrtr}

with λ11 ≥ |λ| for λ ∈ Λ, λij ≥ λi,j+1 and λi1 ≥ 0 for i = 1, . . . , r and j = 1, . . . , ti − 1. 
For each list {λi1, . . . , λiti} of the partition we define

Sij = λij + λi,ti−j+1 for j = 2, . . . , �ti/2�
Si,(ti+1)/2 = min{λi,(ti+1)/2, 0} if ti is odd for i = 1, . . . , r,

and

Ti = λi1 + λiti +
∑

Sij<0
Sij for i = 1, . . . , r.

Let

L = max{−λ1t1 −
∑

S1j , max
2≤i≤r

{λi1}}. (14)

S1j<0
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If

λ11 ≥ L−
∑

Ti<0, 2≤i≤r

Ti, (15)

then Λ is realizable.

The following result gives a sufficient condition for the existence of an n-by-n sym-
metric nonnegative matrix with eigenvalues λ1, . . . , λn and diagonal entries ω1, . . . , ωn.

Lemma 1. (Fiedler [7], 1974) Let λ1 ≥ · · · ≥ λn, with λ1 ≥ |λn|, and ω1 ≥ · · · ≥ ωn ≥ 0
satisfy

i)
s∑

i=1
λi ≥

s∑
i=1

ωi for s = 1, . . . , n − 1;

ii)
n∑

i=1
λi =

n∑
i=1

ωi;

iii) λi ≤ ωi−1 for i = 2, . . . , n − 1.

Then there exists an n-by-n symmetric nonnegative matrix with eigenvalues λ1, . . . , λn

and diagonal entries ω1, . . . , ωn.

Remark 4. Note that if conditions i), ii) and iii) of the previous lemma are satisfied for 
λ1 ≥ · · · ≥ λn and for a family of ω’s unordered, they are also satisfied for the sequence 
of ω’s ordered. Let suppose ωk < ωk+1 for a certain k and that conditions i), ii) and iii) 
are satisfied for ω1, . . . , ωn. It is clear that conditions ii) and iii) and condition i) but for 
s = k are also satisfied for ω1, . . . , ωk−1, ωk+1, ωk, ωk+2, . . . , ωn. If condition i) for s = k

were not true, that is λ1+· · ·+λk < ω1+· · ·+ωk−1+ωk+1, we will reach a contradiction:

λ1 + · · · + λk < ω1 + · · · + ωk−1 + ωk+1
λk+1 ≤ ωk

}
⇒

k+1∑
i=1

λi <
k+1∑
i=1

ωi .

Theorem 13. (Laffey–Šmigoc [10], 2007) Let Λ1 = {λ1, . . . , λn} and Λ2 = {μ1, . . . , μm}
with λ1 ≥ |λ| for λ ∈ Λ1 and μ1 ≥ |μ| for μ ∈ Λ2. Suppose that Λ1 is the spectrum of 
an irreducible nonnegative symmetric matrix with a diagonal element c and Λ2 is the 
spectrum of a nonnegative symmetric matrix.

(1) If μ1 ≤ c, then {λ1, . . . , λn, μ2, . . . , μm} is symmetrically realizable.
(2) If c ≤ μ1, then {λ1 + μ1 − c, λ2, . . . , λn, μ2, . . . , μm} is symmetrically realizable.

Remark 5. In order to apply this sufficient condition we will assume n > 1. Other-
wise every symmetrically realizable spectrum Λ = {λ1, . . . , λm}, with λ1 ≥ λj for 
j = 2, . . . , m, would be realizable by this criterion: with Λ1 = {λ1}, c = λ1 and 
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Λ2 = {μ1 = λ1, λ2, . . . , λm}. This also means that every spectrum realizable by this 
criterion should have at least three elements.

Note that lists with only one nonnegative element and satisfying Sulěımanova are 
always realized by irreducible nonnegative symmetric matrices (the Frobenius normal 
form of any symmetric nonnegative realization has only one irreducible block matrix on 
the diagonal).

Note also that lists with the biggest element repeated and the other elements negative 
cannot be realized by Laffey–Šmigoc: Suppose {λ1, . . . , λn}, with λ1 = λ2 ≥ 0 > λ3 ≥
· · · ≥ λn and n ≥ 3, is realized by Laffey–Šmigoc, then there exist Λ1 = {λ̃1, λi1 , . . . , λip}
realized by an irreducible nonnegative symmetric matrix with a diagonal element c (note 
c < λ̃1) and Λ2 = {μ1, λ2, λj1 , . . . , λjq} with μ1 ≥ λ2 symmetrically realizable such that 
one of the next two situations is satisfied:

(1) If μ1 ≤ c, then {λ1, λ2, λ3, . . . , λn} = {λ̃1, λi1 , . . . , λip , λ2, λj1 , . . . , λjq} is symmetri-
cally realizable with λ̃1 = λ1. This is not possible because λ1 = λ2 ≤ μ1 ≤ c < λ̃1 =
λ1.

(2) If c ≤ μ1, then {λ1, λ2, λ3, . . . , λn} = {λ̃1 + μ1 − c, λi1 , . . . , λip , λ2, λj1 , . . . , λjq}
is symmetrically realizable with λ̃1 + μ1 − c = λ1. This is not possible because 
λ1 = λ̃1 + μ1 − c ≥ λ̃1 + λ2 − c = λ̃1 + λ1 − c implies c ≥ λ̃1.

This will be a source of examples not satisfying Laffey–Šmigoc for Section 3.

The following criterion requires the concepts of negativity and realizability margin. 
Let K be a realizability criterion. If a list of real numbers satisfies the sufficient condition 
K we say that the list is K realizable. We denote the set of K realizable lists as

RK = {Λ ⊂ R : Λ is K realizable}.

In this paper K will be the surname of an author(s). For example, a list satisfying 
Theorem 1 will be said to be Sulěımanova realizable. Following the definitions in [2, 
Section 4] we define the K negativity of a list Λ = {λ1, λ2, . . . , λn} of real numbers, with 
λ1 ≥ λj for j = 2, . . . , n, as:

NK(Λ) =

⎧⎪⎨⎪⎩+∞ if {λ1 + δ, λ2, . . . , λn} is
not K realizable ∀δ ≥ 0

min{δ ≥ 0 : {λ1 + δ, λ2, . . . , λn} is K realizable} otherwise

and when Λ is K realizable we define the K realizability margin of Λ as the number:

MK(Λ) = max
{
ε ≥ 0 : {λ1 − ε, λ2, . . . , λn} is K realizable

and λ1 − ε ≥ |λj | for j = 2, . . . , n

}
.
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Note that the K negativity of a list measures, in a certain sense, how far the list 
is from being K realizable. A similar interpretation can be given for the concept of K
realizability margin of a K realizable list. For properties, closed expressions or bounds 
of these concepts see [11].

Based on a Brauer’s result, Soto [19] gives a family of symmetric realizability criteria 
denoted by Soto p, p = 1, 2, . . . . These criteria are defined recursively, starting from 
p = 1, which is equivalent to the Fiedler condition given in Theorem 8, see [12].

Theorem 14. (Soto p [19], 2013) Let p be an integer with p ≥ 2. Let Λ be a list that 
admits a partition

{λ11, . . . , λ1t1} ∪ · · · ∪ {λr1, . . . , λrtr}

with λ11 ≥ |λ| for λ ∈ Λ, λij ≥ λi,j+1 and λi1 ≥ 0 for i = 1, . . . , r and j = 1, . . . , ti − 1, 
and {λ11, . . . , λ1t1} Soto p-1 realizable. Let NSp−1(Λi) be the Soto p-1 negativity of Λi =
{λi1, . . . , λiti} and MSp−1(Λi) the Soto p-1 realizability margin of Λi. Let

γ = max{λ11 −MSp−1(Λ1), max
2≤i≤r

{λi1}}. (16)

If

λ11 ≥ γ +
∑

Λi /∈RSp−1

NSp−1(Λi), (17)

then Λ is (symmetrically) realizable.

Note that the Soto 2 condition given in Theorem 12, is equivalent to Theorem 14 with 
p = 2, see [19].

In practice, it is not necessary to know the margin of realizability of a list to use the 
previous theorem. It is enough to know a nonnegative lower bound of it, under certain 
circumstances, as it shows the following result:

Lemma 2. Let Λ be a list that admits a partition Λ = {λ11, . . . , λ1t1} ∪· · ·∪{λr1, . . . , λrtr}
with λ11 ≥ |λ| for λ ∈ Λ, Λi = {λi1, . . . , λiti}, λij ≥ λi,j+1 and λi1 ≥ 0 for i = 1, . . . , r
and j = 1, . . . , ti − 1, and Λ1 Soto p-1 realizable with p ≥ 3. Let 0 ≤ ε ≤ MSp−1(Λ1)
and

γ̂ = max{λ11 − ε, max
2≤i≤r

{λi1}}

such that

λ11 ≥ γ̂ +
∑

Λi /∈RSp−1

NSp−1(Λi),

then Λ is Soto p and MSp(Λ) ≥ γ̂ +
∑

Λi /∈RSp−1

NSp−1(Λi).
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Proof. Let us see that Λ =
r⋃

i=1
Λi satisfies inequality (17). Depending on the values of γ

and γ̂ we have the following cases:

γ̂ = λ11 − ε ≥ λ11 −MSp−1(Λ1) = γ,

γ̂ = λ11 − ε ≥ max
2≤i≤r

{λi1} = γ or γ̂ = max
2≤i≤r

{λi1} = γ,

and in all of them it is clear that (17) is satisfied. �
3. A map of sufficient conditions for the SNIEP

It is well known that the Sulěımanova and Kellogg criteria are symmetric realizability 
criteria, see [7], as well as the Borobia criterion, see [15]. Then Sulěımanova–Perfect, 
Ciarlet, Salzmann and Perfect 1 are sufficient conditions for the SNIEP too, because 
all of them imply Borobia, see [12]. We need to know what the relations are between 
Perfect–Mirsky, Soules conditions, Laffey–Šmigoc and Soto conditions.

In the next results we will use the following equality, which can be easily proved by 
induction,

n−1∑
k=1

1
(k + 1)k = n− 1

n
. (18)

Lemma 3. Let Λ = {λ1, . . . , λn} with λ1 ≥ |λ| for λ ∈ Λ, λi ≥ λi+1 for i = 1, . . . , n −1 and 
let p be the greatest index j (1 ≤ j ≤ n) for which λj ≥ 0. If Λ satisfies Perfect–Mirsky, 
then {λ1, λp+1, . . . , λn} also satisfies Perfect–Mirsky.

Proof. Let us see that

λ1

n
+ λ2

n(n− 1) + · · · + λn

2 · 1 ≤ λ1

n− p + 1 + λp+1

(n− p + 1)(n− p) + · · · + λn

2 · 1 .

To prove this inequality is equivalent to prove

λ2

n(n− 1) + · · · + λp

(n− p + 2)(n− p + 1) ≤ (p− 1)λ1

n(n− p + 1) . (19)

On the one hand we have

λ2

n(n− 1) + · · · + λp

(n− p + 2)(n− p + 1)

≤ λ1

(
1

n(n− 1) + · · · + 1
(n− p + 2)(n− p + 1)

)
and on the other hand, the repeated use of equality (18) gives
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1
n(n− 1) + · · · + 1

(n− p + 2)(n− p + 1) = n− 1
n

− n− p

n− p + 1 = p− 1
n(n− p + 1) ,

and the inequality (19) is proved. �
The following result relates Perfect–Mirsky with other symmetric criteria.

Theorem 15.

1. Ciarlet implies Perfect–Mirsky and the inclusion is strict.
2. Perfect–Mirsky implies Sulěımanova and the inclusion is strict.
3. Salzmann and Perfect 1 are independent of Perfect–Mirsky.

Proof. 1. Let λ1 ≥ · · · ≥ λn satisfy Ciarlet: λ1

n− 1 ≥ |λj | , j = 2, . . . , n. We have

λ1

n
+ λ2

n(n− 1) + · · · + λn

2 · 1 ≥ λ1

n
− |λ2|

n(n− 1) − · · · − |λn|
2 · 1 ≥

λ1

n
− max

2≤j≤n
|λj |

(
1

n(n− 1) + · · · + 1
2 · 1

)
= λ1

n
− max

2≤j≤n
|λj |

(
n− 1
n

)
where the equality is due to (18). Finally

λ1

n
− max

2≤j≤n
|λj |

(
n− 1
n

)
= n− 1

n

(
λ1

n− 1 − max
2≤j≤n

|λj |
)

which is nonnegative because of the Ciarlet condition and then the list satisfies Perfect–
Mirsky. The inclusion is strict as shows the list {1, 1, −1}.

2. Because of the previous lemma, it is enough to prove the result for lists with 
only one nonnegative element. Let {λ1, . . . , λn}, with λ1 ≥ 0 > λ2 ≥ · · · ≥ λn, satisfy 
Perfect–Mirsky:

λ1

n
+ λ2

n(n− 1) + · · · + λn

2 · 1 ≥ 0.

Let us see that

λ1

n
+ λ2

n(n− 1) + · · · + λn

2 · 1 ≤ λ1 + · · · + λn

n
,

or equivalently

n∑(
1

(n− j + 2)(n− j + 1) − 1
n

)
λj ≤ 0 . (20)
j=2
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Note that the coefficients of the λj’s in (20) increase with j and use (18) to see that 
their sum is zero. Let

q = max
{
j : 1

(n− j + 2)(n− j + 1) − 1
n
< 0

}
.

We have

q∑
j=2

(
1

(n− j + 2)(n− j + 1) − 1
n

)
= −

n∑
j=q+1

(
1

(n− j + 2)(n− j + 1) − 1
n

)
.

Then

q∑
j=2

(
1

(n− j + 2)(n− j + 1) − 1
n

)
λj ≤ λq

q∑
j=2

(
1

(n− j + 2)(n− j + 1) − 1
n

)
=

−λq

n∑
j=q+1

(
1

(n− j + 2)(n− j + 1) − 1
n

)

and the inequality (20) is satisfied because

n∑
j=2

(
1

(n− j + 2)(n− j + 1) − 1
n

)
λj ≤

n∑
j=q+1

(
1

(n− j + 2)(n− j + 1) − 1
n

)
(λj − λq)

≤ 0.

The inclusion is strict as shows the list {2, 0, −2}.
3. The list {1, 1, −1} satisfies Perfect–Mirsky but not Salzmann nor Perfect 1. The 

list {5, 2, −2, −3} satisfies Salzmann and Perfect 1 but not Perfect–Mirsky. �
Soules [22] proves that Perfect–Mirsky implies Soules 1 for x = (1, . . . , 1), and that the 

inclusion is strict: the list {5, 0, −2, −2} is Soules 1 for x = (2, 2, 2, 1) but not Perfect–
Mirsky. In [22], it is also proved that Soules 1 implies Kellogg. The list {2, 0, −2}, given 
in the proof of the next theorem, proves that the inclusion is strict.

Theorem 16.

1. Soules 1 implies Sulěımanova and the inclusion is strict.
2. Perfect 1 and Salzmann are independent of Soules 1.

Proof. 1. Let Λ = {λ1, . . . , λn} with λi < 0 for i = 2, . . . , n. If Λ satisfies Soules 1, then 
the sum, for i = 1, . . . , n, of the inequalities (11) gives λ1 + · · · + λn ≥ 0 and so Λ is 
Sulěımanova.
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Let Λ = {λ1, . . . , λn} with λ1 ≥ · · · ≥ λp ≥ 0 > λp+1 · · · ≥ λn. If Λ satisfies Soules 1, 
then the inequalities (11) are also true if we change λi, for 2 ≤ i ≤ p, by λ1. Now, the 
sum of these new inequalities gives λ1 + λp+1 + · · · + λn ≥ 0.

The list {2, 0, −2} satisfies Sulěımanova but not Soules 1: let x = (x1, x2, x3) > 0, 
then

d1 = 2
(

x2
1

x2
1 + x2

2 + x2
3
− x2

2
x2

1 + x2
2

)
, d2 = 2

(
x2

2
x2

1 + x2
2 + x2

3
− x2

1
x2

1 + x2
2

)
,

so

d1 + d2 = 2
(

x2
1 + x2

2
x2

1 + x2
2 + x2

3
− 1

)
< 0

which is impossible for d1, d2 ≥ 0.
2. The list {1, 1, −1, −1} satisfies Perfect 1 and Salzmann but not Soules 1 because 

it does not satisfy Sulěımanova. The list {1, 1, −1} satisfies Soules 1 because it satisfies 
Perfect–Mirsky but not Perfect 1 nor Salzmann. �

Soules [22] proves that Soules 2 does not imply Kellogg (so neither Sulěımanova, 
Salzmann or Fiedler): the family of lists {3 − t, 1 + t, −1, −1, −1, −1}, t ∈ (0, 1), sat-
isfies Corollary 1 but not Kellogg. This list does not satisfy Sulěımanova–Perfect or 
Perfect 1.

The next result relates Soules 2 with the other symmetric criteria.

Theorem 17.

1. Soules 2 is independent of Sulěımanova, Sulěımanova–Perfect, Perfect 1, Salzmann, 
Fiedler and Kellogg.

2. Borobia does not imply Soules 2.
3. Corollary 1 is strictly contained in Soules 2.

Proof. 1. The list {2, 0, 0, −1, −1} is Sulěımanova (so Sulěımanova–Perfect, Fiedler and 
Kellogg), Perfect 1 and Salzmann but not Soules 2: with the convention of Remark 2, 
for any vector x = (x1, x2, x3, x4, x5) > 0 and any partition of {3, 4, 5}, we have

d5 = 2x2
5

x2
1 + x2

2 + x2
3 + x2

4 + x2
5
> 0

which contradicts Remark 3. This, together with the comments prior to the theorem, 
prove the independency.

2. The list {2, 0, 0, −1, −1} is Sulěımanova (so Borobia) but not Soules 2, as was 
proved in 1..
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3. The list {2, 1, −1, −2} is Soules 2 with x = (1, 1, 1, 1), {i1, . . . , im} = {1, 2}, 
{j1, . . . , j4−m−1} = {3, 4}, {k1, . . . , km−1} = {3} and {�1, . . . , �4−m−1} = {4}, but not 
Corollary 1. �
Remark 6. In order to explain the map given at the end of this section we would like to 
enumerate some results relative to Corollary 1, the corollary of the Soules 2 condition. 
It can be proven:

1. Perfect–Mirsky implies Corollary 1 and the inclusion is strict.
2. Corollary 1 is independent of Sulěımanova, Sulěımanova–Perfect, Perfect 1, Salz-

mann, Fiedler, Kellogg and Soules 1.
3. Corollary 1 implies Borobia and the inclusion is strict.
4. Corollary 1 implies Soto 2 and the inclusion is strict.

We omit the details of this proof because the one we know is too long.

The next result relates Laffey–Šmigoc with the other symmetric criteria.

Theorem 18.

1. Ciarlet implies Laffey–Šmigoc and the inclusion is strict.
2. Laffey–Šmigoc is independent of Sulěımanova, Sulěımanova–Perfect, Perfect 1, 

Perfect–Mirsky, Salzmann, Fiedler, Kellogg, Soules 1, Soules 2, Corollary 1 and 
Borobia.

Proof. 1. Let Λ = {λ1, · · · , λn}, with λ1 ≥ · · · ≥ λn, satisfy Ciarlet:

λ1

n− 1 ≥ |λj | , j = 2, . . . , n.

We assume n ≥ 3, see Remark 5. It can happen that:

• λ2 ≥ 0 and λn < 0. In this case we take

Λ1 = {λ1} ∪ {λj : λj < 0}
Λ2 = {μ1 = λ2} ∪ {λj : λj ≥ 0, j ≥ 2}

c = λ1 +
∑
λj<0

λj .

Note that Λ1 is the spectrum of an irreducible symmetric matrix, see Remark 5, and 
we can take the diagonal as c, 0, . . . , 0 because the sufficient conditions of Lemma 1
are satisfied. Also Λ2 is symmetrically realizable. Let p be the number of negative 
elements in Λ. Note that 1 ≤ p ≤ n − 2. Let us see that μ1 ≤ c:
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c = λ1 +
∑
λj<0

λj = λ1 −
∑
λj<0

|λj | ≥ λ1 −
∑
λj<0

λ1

n− 1 = n− 1 − p

n− 1 λ1

≥ (n− 1 − p)λ2 ≥ λ2 = μ1.

Then Λ satisfies Laffey–Šmigoc.
• λ2 < 0. In this case we take

Λ1 = {λ1, λ2, . . . , λn−1}

Λ2 = {μ1 = −λn, λn}

c = λ1 +
n−1∑
j=2

λj .

Now we have

λ1 +
n∑

j=2
λj ≥ 0 =⇒ c = λ1 +

n−1∑
j=2

λj ≥ −λn = μ1

and the same argument as before gives that Λ satisfies Laffey–Šmigoc.
• λn ≥ 0. In this case we take

Λ1 = {λ1, λ2}

Λ2 = {μ1 = λ2, λ3, . . . , λn}

c = λ1

n− 1 .

Because of the Ciarlet condition, Λ1 is the spectrum of the irreducible nonnegative 
symmetric matrix⎛⎜⎜⎜⎜⎝

λ1

n− 1

√
n− 2
n− 1

(
λ1

n− 1 − λ2

)
λ1√

n− 2
n− 1

(
λ1

n− 1 − λ2

)
λ1

n− 2
n− 1λ1 + λ2

⎞⎟⎟⎟⎟⎠
and μ1 = λ2 ≤ λ1

n− 1 = c, so Λ satisfies Laffey–Šmigoc.

The list {7, 5, 0, −4, −4, −4} satisfies Laffey–Šmigoc, see [10], but not Ciarlet.
2. The list {7, 5, 0, −4, −4, −4} satisfies Laffey–Šmigoc, see [10], but not any of 

the other conditions. The list {2, 2, −1, −1} satisfies Perfect–Mirsky and Salzmann (so 
Sulěımanova, Sulěımanova–Perfect, Fiedler, Kellogg, Soules 1, Soules 2, Corollary 1 and 
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Borobia) but not Laffey–Šmigoc, see Remark 5. Finally, the list {1, 1, −1, −1} satisfies 
Perfect 1 but not Laffey–Šmigoc. �

The following results relate the Kellogg and Borobia realizability criteria with the 
Soto p criteria.

Theorem 19. If Λ is Kellogg realizable, then Λ is Soto p realizable for some p (p depends 
on Λ).

Proof. Let Λ = {λ0, λ1, . . . , λn} satisfy Kellogg: λ0 ≥ · · · ≥ λn, λ0 ≥ |λn|, K = {i ∈
{1, . . . , �n/2�} / λi ≥ 0, λi + λn+1−i < 0}, M = max{j ∈ {0, . . . , n} / λj ≥ 0} and the 
conditions

λ0 +
∑

i∈K, i<k

(λi + λn+1−i) + λn+1−k ≥ 0 for all k ∈ K

and

λ0 +
∑
i∈K

(λi + λn+1−i) +
n−M∑

j=M+1
λj ≥ 0.

Suppose K = {k1, . . . , kp}, with ki ≤ ki+1 for i = 1, . . . , p − 1, and define

Λ0 = {λ0, λM+1, . . . , λn−M} , S = −
n−M∑

j=M+1
λj ,

Λi = {λki
, λn+1−ki

} for i = 1, . . . , p ,

Λp+1 = Λ − Λ0 −
p⋃

i=1
Λki

,

and

Γi = Λ0 ∪

⎛⎝ p⋃
j=p+1−i

Λj

⎞⎠ for i = 1, . . . , p .

Note that, with the notations of Theorems 12 and 14, we have

Ti = λki
+ λn+1−ki

= −NSj(Λi) for i = 1, . . . , p and ∀j ≥ 1 .

Now, Kellogg’s conditions become

C1 : λ0 +
t−1∑
i=1

Ti + λn+1−kt
≥ 0 for t = 1, . . . , p

C2 : λ0 +
p∑

Ti − S ≥ 0 .

i=1
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We see first that Λ0 is Fiedler (equivalent to Soto 1, see [12]):

λ0 + λn−M +
∑
λ∈Λ0

λ− 1
2

n−M−1∑
j=1

|λM+j + λn−M−j |

= 2 (λ0 − S) ≥ 2
(
λ0 +

p∑
i=1

Ti − S

)
C2
≥ 0 .

If K = ∅, that is p = 0, then Λ = Λ0 ∪ Λ1 is Soto 2 because

λ0 − max{S, λ1} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ0 − S = λ0 +

n−M∑
j=M+1

λj ≥ 0,

or
λ0 − λ1 ≥ 0 .

In this case the result is proved.
Suppose now that K = ∅. We will proceed in the following steps:

1. Γ1 = Λ0 ∪ Λp is Soto 2 and MS2(Γ1) ≥ λ0 − L + Tp with L = max{S, λkp
}.

It is enough to prove the inequality λ0 − L + Tp ≥ 0. Depending on the values of L
we have

λ0 − L + Tp =

⎧⎨⎩ λ0 − S + Tp ≥ λ0 +
p∑

i=1
Ti − S

C2
≥ 0 ,

λ0 − λkp
+ Tp = λ0 + λn+1−kp

≥ 0 ,

and the claim is proved.
2. Γ2 = Γ1∪Λp−1 is Soto 3 and MS3(Γ2) ≥ λ0−γ̂1+Tp−1 with γ̂1 = max{L −Tp, λkp−1}.

By Lemma 2, it is enough to prove λ0 − γ̂1 + Tp−1 ≥ 0. Depending on the values of 
γ̂1 we have

λ0 − γ̂1 + Tp−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ0 − S + Tp + Tp−1 ≥ λ0 +
p∑

i=1
Ti − S

C2
≥ 0 ,

λ0 − λkp
+ Tp + Tp−1 = λ0 + Tp−1 + λn+1−kp

≥ λ0 +
p−1∑
i=1

Ti + λn+1−kp

C1
≥ 0 ,

λ0 − λkp−1 + Tp−1 = λ0 + λn+1−kp−1 ≥ 0 ,

and the claim is proved.
3. Γ3 = Γ2 ∪ Λp−2 is Soto 4 and MS4(Γ3) ≥ λ0 − γ̂2 + Tp−2 with γ̂2 = max{γ̂1 −

Tp−1, λkp−2}.
Again, by Lemma 2, it is enough to prove λ0 − γ̂2 + Tp−2 ≥ 0. Depending on the 
values of γ̂2, we have
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λ0 − γ̂2 + Tp−2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ0 − S + Tp + Tp−1 + Tp−2 ≥ λ0 +
p∑

i=1
Ti − S

C2
≥ 0 ,

λ0 + Tp−1 + λn+1−kp
+ Tp−2 ≥ λ0 +

p−1∑
i=1

Ti + λn+1−kp

C1
≥ 0 ,

λ0 + λn+1−kp−1 + Tp−2 ≥ λ0 +
p−2∑
i=1

Ti + λn+1−kp−1

C1
≥ 0 ,

λ0 − λkp−2 + Tp−2 = λ0 + λn+1−kp−2 ≥ 0 ,

and the claim is proved.

The same type of argument, with more combinatorics, proves that Γj−1 = Γj−2 ∪ Λp−j

is Soto j and

MSj(Γj−1) ≥ λ0 − γ̂j−2 + Tp−(j−2)

with

γ̂j−2 = max{γ̂j−3 − Tp−(j−3), λkp−j
} for j = 5, . . . , p + 1.

In particular, Γp = Γp−1 ∪ Λ1 is Soto p + 1 and

λ0 − L + T1 ≥ 0 if p = 1,

λ0 − γ̂p−1 + T1 ≥ 0 if p ≥ 2.

Finally, we prove that Λ is also Soto p + 1 if k1 = 1 or Soto p + 2 if k1 = 1.
If k1 = 1, it is clear that Λ, with the partition

Λ = Γp−1 ∪ Λ1 ∪

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

i ∈ {1, . . . , �n/2�}
i /∈ K

{λi, λn+1−i}

⎞⎟⎟⎟⎟⎟⎟⎠ ,

is Soto p +1 because the lists added are Soto p due to the fact that they are Sulěımanova.
If k1 = 1, that is 1 /∈ K, for the partition of Λ

Γp ∪

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

i ∈ {1, . . . , �n/2�}
i /∈ K

{λi, λn+1−i}

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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we obtain (note the lists added are Soto p + 1)

λ0 − max{L− T1, λ1} =

⎧⎪⎨⎪⎩
λ0 − L + T1 ≥ 0
or
λ0 − λ1 ≥ 0

⎫⎪⎬⎪⎭ if p = 1,

λ0 − max{γ̂p−1 − T1, λ1} =

⎧⎪⎨⎪⎩
λ0 − γ̂p−1 + T1 ≥ 0
or
λ0 − λ1 ≥ 0

⎫⎪⎬⎪⎭ if p ≥ 2.

Now, by Lemma 2, we have that Λ is Soto p + 2. �
Remark 7. Note that we have proved that if Λ is Kellogg and p = #K with K the set 
defined in Theorem 6, then Λ is Soto p + 1 if 1 ∈ K and Soto p + 2 if 1 /∈ K.

Theorem 20. If Λ is Borobia realizable, then Λ is Soto p realizable for some p (p depends 
on Λ).

Proof. Let Λ = {λ0, λ1, . . . , λn} satisfy Borobia: λ0 ≥ · · · ≥ λn, λ0 ≥ |λn|, M = max{j ∈
{0, . . . , n} /λj ≥ 0} and there exists a partition J1∪ · · ·∪Jt of {λM+1, . . . , λn} such that 
the list {

λ0 ≥ λ1 ≥ · · · ≥ λM ≥
∑
λ∈J1

λ ≥ · · · ≥
∑
λ∈Jt

λ

}

is Kellogg realizable. We can apply Theorem 19 to this new list.
Going through the proof of the previous theorem we have that the original list Λ is 

Soto p +1 or Soto p +2, with p = #K, depending on the fact that 1 ∈ K or 1 /∈ K. This 
is possible because all the inequalities related to the Soto’s criteria take the same value 
for both lists. Note that only the negative eigenvalues of the original list are modified by 
addition, the nonnegative eigenvalues remain equal. �
Theorem 21.

1. Soto p−1 is strictly contained in Soto p, for p ≥ 3.
2. Kellogg and Borobia are independent of Soto p, for p ≥ 3.
3. Soto p does not imply Soules 2, for p ≥ 2.
4. Laffey–Šmigoc is independent of Soto p, for p ≥ 2.

Proof. 1. Let

Λ3 = {9, 7, 4,−3,−3,−6,−8}
Λ4 = {9.01, 8.1, 7, 4,−3,−3,−6,−8,−8.11}
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and for p ≥ 5

Λp =

⎛⎝Λp−1 −

⎧⎨⎩9 +
p−4∑
j=1

10−2j

⎫⎬⎭
⎞⎠ ∪

⎧⎨⎩9 +
p−3∑
j=1

10−2j , 8 +
2p−7∑
j=1

10−j ,−8 −
2p−6∑
j=1

10−j

⎫⎬⎭ .

The list Λp satisfies Soto p and not Soto p−1, for p ≥ 3. For p = 3 see [19].
First we see that Λ4 satisfies Soto 4 for the partition

Λ4 = Λ41 ∪ Λ42 with Λ41 = {9.01,−8.11} and Λ42 = {8.1, 7, 4,−3,−3,−6,−8}.

Clearly MS3(Λ41) = 0.9 and since Λ42 = (Λ3−{9}) ∪{8.1} then NS3(Λ42) = 9 −8.1 = 0.9. 
Therefore

λ1 − γ −NS3(Λ42) = 9.01 − 8.1 − 0.9 ≥ 0,

so Λ4 is Soto 4 but does not satisfy Soto 3 for no partition.
Finally, for p ≥ 5, we see that Λp satisfies Soto p with the partition

Λp = Λp1 ∪ Λp2 with Λp1 =

⎧⎨⎩9 +
p−3∑
j=1

10−2j ,−8 −
2p−6∑
j=1

10−j

⎫⎬⎭ and

Λp2 =

⎧⎨⎩8 +
2p−7∑
j=1

10−j

⎫⎬⎭ ,Λp−1 −

⎧⎨⎩9 +
p−4∑
j=1

10−2j

⎫⎬⎭
because

γ = max{λ1 −MSp−1(Λp1)} = −λn

and

λ1 − γ −NSp−1(Λp2) = MSp−1(Λp1) −NSp−1(Λp2) =⎛⎝9 +
p−3∑
j=1

10−2j − 8 −
2p−6∑
j=1

10−j

⎞⎠−

⎛⎝9 +
p−4∑
j=1

10−2j − 8 −
2p−7∑
j=1

10−j

⎞⎠ = 0.

And Λp does not satisfy Soto p−1 for no partition.
2. The list Λp just defined satisfies Kellogg but not Soto p. The list {25, 21, 18, 16, −10,

−10, −10, −10, −10, −10, −10, −10} is Soto 3 but not Kellogg nor Borobia, see [19] for 
details.

3. The list {2, 0, 0, −1, −1} is Sulěımanova so Soto p, for p ≥ 2, but not Soules 2 (see 
the proof of Theorem 17).
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4. The list {7, 5, 0, −4, −4, −4} satisfies Laffey–Šmigoc, see [10], but not Soto p, for 
p ≥ 2. The list {2, 2, −1, −1} satisfies Soto p, for p ≥ 2, but not Laffey–Šmigoc, see 
Remark 5. �
Conjecture. Soules 2 is strictly contained in Borobia and Soto 2.

Next we show a map with all the relations between the symmetric conditions studied.

The discontinuous line for Soules 2 in the map means that we only conjecture this 
position for this sufficient condition.

Recently, Ellard–Šmigoc [6], via a recursive approach to the SNIEP, have established 
the equivalence of several of the most general sufficient conditions for the SNIEP. They 
have modified the Laffey–Šmigoc condition (Ellard–Šmigoc, see [6, Section 3]) and the 
Soules 2 condition (piecewise Soules, see [6, Definition 2.8]). They also relate these criteria 
with Sotos criteria and C-realizability (see [3]). Explicitly they prove, [6, Theorem 4.1]:

piecewise Soules ⇐⇒ Ellard–Šmigoc ⇐⇒ C-realizability ⇐⇒ Sotos.

As a consequence of this result it is obtained that the C-realizability is also a symmetric 
sufficient condition, something which was not previously known.
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