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ABSTRACT

A sufficient condition for symmetric nonnegative realizability of a
spectrum is given in terms of (weak) majorization of a partition of
the negative eigenvalues by a selection of the positive eigenvalues. If
there aremore than twopositive eigenvalues, an additional condition,
besides majorization, is needed on the partition. This generalizes
observations of Suleı̌manova and Loewy about the cases of one and
two positive eigenvalues, respectively. It may be used to provide
insight into realizability of 5-element spectra and beyond.
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We say that a collection of n real (complex) numbers (repeats allowed) is realizable if
they occur as the spectrum of an n-by-n nonnegative matrix. The collection is further
called symmetrically realizable if the nonnegative matrix may be taken to be symmetric.
Of course, realizability requires the Perron condition that the largest of the absolute values
of the numbers be in the collection and the trace condition that the sum of the numbers be
nonnegative. These conditions are not generally sufficient and a complete description of
the realizable real spectra or the symmetrically realizable spectra is far from known. Since
they are necessary, we assume the Perron and trace conditions on a proposed spectrum
throughout the following discussion.

In [1], it was pointed out (without proof) that when the collection contains just one
positive number, the trace condition is equivalent to realizability and in [2], etc., that it is
symmetrically realizable.

In the next case, in which there are just two positive eigenvalues, a sufficient condition
for symmetric realizability was given. If the Perron and trace condition are met, and the
negative eigenvalues may be partitioned into two parts, in each of which the sum of the
absolute values is not more than the Perron root, then symmetric realizability follows.
This statement, properly attributed to Loewy, was reported in [3] without proof, and in
[4] with Loewy’s proof. Notice that, in this case, because of the trace condition, the two
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positive eigenvalues weakly majorize the two partial absolute sums of the negative spectral
elements. Notice also that additional nonnegative spectral elements could be appended
and symmetric realizability would still hold.

Our purpose here is to note a broad generalization of the Sulěımanova/Loewy ob-
servations when there are s positive eigenvalues. The focus is upon (weak) majorization
(Theorem 3), which remains sufficient with a slight additional condition when there are
more than two positive eigenvalues. First we need some prior results (Theorems 1 and
2), and then we use the ideas to make several observations, including about symmetric
realizability in the 5-by-5 case. Examples are given that limit possible weakening of our
conditions.

Theorem 1 (Kellogg [5], 1971): Let � = {λ0, λ1, . . . , λn} with λ0 ≥ |λ| for λ ∈ � and
λi ≥ λi+1 for i = 0, . . . , n − 1. Let M be the greatest index j (0 ≤ j ≤ n) for which λj ≥ 0
and K = {i ∈ {1, . . . , �n/2�} / λi ≥ 0, λi + λn+1−i < 0}. If

λ0 +
∑

i∈K , i<k
(λi + λn+1−i) + λn+1−k ≥ 0 for all k ∈ K , (1)

and

λ0 +
∑
i∈K

(λi + λn+1−i) +
n−M∑

j=M+1

λj ≥ 0, (2)

then � is realizable.

Note that if� verifies the Kellogg condition, then the spectrum obtained from� taking
out the eigenvalues involved in the set {λi + λn+1−i = 0, i ∈ {1, . . . , �n/2�}}, if there is
any, also verifies the Kellogg condition.

Theorem 2 (Borobia [6], 1995): Let� = {λ0, λ1, . . . , λn}withλi ≥ λi+1 for i = 0, . . . , n−
1 and let M be the greatest index j (0 ≤ j ≤ n) for which λj ≥ 0. If there exists a partition
J1 ∪ · · · ∪ Jt of {λM+1, . . . , λn} such that

λ0 ≥ λ1 ≥ · · · ≥ λM >
∑
λ∈J1

λ ≥ · · · ≥
∑
λ∈Jt

λ (3)

satisfies the Kellogg condition, then � is realizable.

Fiedler [2] proves that the Kellogg condition guarantees symmetric realizability, and
Radwan [3] proves that the Borobia condition also guarantees symmetric realizability.

Suppose that we have s positive real numbers α1 ≥ α2 ≥ · · · ≥ αs > 0 and t nonpositive
real numbers 0 ≥ −β1 ≥ −β2 ≥ · · · ≥ −βt , repeats allowed. If we partition the β ’s
into k nonempty parts (k ≤ s) P1, . . . ,Pk, we refer to the sum of β ’s in part Pi as Pi,
i = 1, . . . , k. We adopt the convention that the parts of the partition are ordered so that
P1 ≥ P2 ≥ · · · ≥ Pk ≥ 0. Recall that real numbers γ1 ≥ γ2 ≥ · · · ≥ γk ≥ 0 are said to
weakly majorize P1 ≥ P2 ≥ · · · ≥ Pk if
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γ1 ≥ P1
γ1 + γ2 ≥ P1 + P2

...

γ1 + · · · + γk ≥ P1 + · · · + Pk .

If the last inequality is an equality, the term majorization is used. We may now give
a sufficient condition for symmetric realizability that includes the observations of both
Sulěımanova and Loewy.
Theorem 3: The collection of real numbers

α1 ≥ α2 ≥ · · · ≥ αs , αs > 0 ,

together with

−β1 ≥ −β2 ≥ · · · ≥ −βt , 0 ≥ −β1 ,

is symmetrically realizable if there is a selection of k of the α’s

αi1 ≥ αi2 ≥ · · · ≥ αik > 0

and a partition of the β ’s into k parts with

P1 ≥ P2 ≥ · · · ≥ Pk ≥ 0

so that αi1 , . . . ,αikweakly majorize P1, . . . , Pk and whenever αij0 − Pj0−1 > 0 for j0 ∈
{2, . . . , k} then αij − Pj−1 > 0 for all j with j0 < j ≤ k.

Proof: First note that any collection of real numbers verifying Theorem 2 is symmetrically
realizable. Second note that if the collection of real numbers

αi1 ≥ · · · ≥ αik > −Pk ≥ · · · ≥ −P1

verifies the Kellogg condition, then

{αi1 , . . . ,αik} ∪ ∪k
j=1{−βi / βi ∈ Pj}

verifies Theorem 2. Third, we can assume αij − Pj−1 �= 0, for j = 1, · · · , k, because of the
comment after Theorem 1. So it is enough to prove that

αi1 ≥ · · · ≥ αik > −Pk ≥ · · · ≥ −P1, with αij − Pj−1 �= 0, j = 1, · · · , k

verifies the Kellogg condition. For

K = {j ≥ 2 / αij − Pj−1 < 0},

and under our hypothesis, it can happen that either:
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• K = ∅, in which case, the inequality (2)

αi1 − Pk ≥ 0

is true; or
• K = {2, . . . , r} �= ∅, in which case, the inequalities (1)

αi1 +
q−1∑
j=2

(αij − Pj−1) − Pq−1 ≥ 0 2 ≤ q ≤ r

are true because of the weak majorization hypothesis. Inequality (2) is also true

αi1 +
r∑

j=2

(αij − Pj−1) − Pk ≥ 0

because of −Pk ≥ −Pr and of the weak majorization hypothesis.

Theorem 3 gives a sufficient condition for symmetric realizability in terms of (weak)
majorization of partitioned sums of the negative eigenvalues by a selection of positive
eigenvalues. However, there is an extra condition (besides majorization). When s = 1 or
2, the extra condition disappears, so that the Sulěımanova and Loewy observations are
special cases.When k ≥ 3 for the theorem to apply in the trace 0 case, the hypothesis of the
extra condition must never be met as the consequent of the extra condition cannot hold,
because of trace 0 and majorization (αk > Pk−1 ≥ Pk). Furthermore in the interesting case
in which the Pj’s are relatively large (i.e. αij ≤ Pj−1), the extra conditions are vacuously
met. We note that, for s positive eigenvalues, it is always possible to partition the negative
eigenvalues into at most 2s− 1 parts for which the Pj’s are≤ the Perron root: to obtain the
Pj’s add the two smallest β ’s if their sum is ≤ α1 and reorder them; repeat this procedure
and stop when this is not possible. The number of elements of this partition is ≤ 2s − 1,
other way we would go against the trace condition. Note that even with this partition, the
positive eigenvalues may not majorize the Pj’s (e.g. {10, 5, 5,−3,−8,−8}).

When two positive and several negative eigenvalues, meeting the trace and Perron
conditions, are given, it is not difficult to see that a negative eigenvalue may be subdivided
into two negative eigenvalues, whose sum is the original eigenvalue, in such a way that the
partition condition of Theorem 3 is met:
Corollary 4: If the eigenvalues α1 ≥ α2 > 0 ≥ −β1 ≥ −β2 ≥ · · · ≥ −βt meet the Perron
and the trace conditions, then there is an index q, 1 ≤ q ≤ t, and a subdivision of βq into
βq1 + βq2 = βq, βq1 ,βq2 ≥ 0, so that the spectrum : α1,α2,−β1 . . . ,−βq−1,−βq1 ,−βq2 ,
−βq+1, . . . ,−βt is symmetrically realizable. Moreover, there are also indices j �= q, 1 ≤
j, q ≤ t and a shift δ, 0 ≤ δ ≤ βq, such that the proposed spectrum, with βj and βq replaced
by βj + δ,βq − δ is symmetrically realizable.
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Proof: Let suppose the set

⎧⎨
⎩j ∈ {1, · · · , t} : α1 −

j∑
i=1

βi < 0

⎫⎬
⎭

is not empty, other way the result is clear. For the first statement take

q = max

⎧⎨
⎩j ∈ {1, · · · , t} : α1 −

j∑
i=1

βi < 0

⎫⎬
⎭ ,

βq1 = α1 −
q−1∑
i=1

βi and βq2 =
q∑

i=1

βi − α1.

For the second statement take the same q, j = q + 1 and δ = ∑q
i=1 βi − α1 .

In case s = 1 (Sulěımanova), and s = 2 and t = 2, the condition given is known to be
necessary and sufficient, see [7,8].We also point out that it is necessary and sufficient when
s = 2 and t = 3 (see comments previous to Example 6). Recall that symmetric realizability
of five-element spectra with trace 0 were characterized in [4] (and realizability with trace
0 in [9]). No characterization of symmetric realizability, or of (real) realizability, is known
in a richer case.

Theorem 5 (Spector [4], 2011): Let σ = {λ1, λ2, λ3, λ4, λ5} and sk = ∑5
i=1 λki . Suppose

λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5 ≥ −λ1 and s1 = 0. Then σ is symmetrically realizable if and
only if the following conditions hold:

(1) λ2 + λ5 ≤ 0,
(2) s3 ≥ 0.

In case there is one positive eigenvalue (Sulěımanova) λ2 + λ5 ≤ 0 is guaranteed, but
symmetric realizability follows without any condition besides trace 0. In the case of two
positive eigenvalues, λ2 + λ5 ≤ 0 is equivalent to λ1 + λ3 + λ4 ≥ 0 and is thus (along
with the Perron condition) equivalent to Loewy’s condition (or Theorem 3 with s = 2).
This means that in the symmetric, trace 0 case, with one or two positive eigenvalues, only
the condition λ1 + λ3 + λ4 ≥ 0 (equivalently λ2 + λ5 ≤ 0) is necessary and sufficient for
symmetric realizability; the additional condition s3 ≥ 0 comes for free. And, the condition
of Theorem 3 (which is just Sulěımanova/Loewy in this case) is necessary, as well as
sufficient. When there are 3 positive eigenvalues (4 or 5 cannot occur), only the condition
s3 ≥ 0 is relevant; λ2 + λ5 ≤ 0 comes for free. Note also that in the n-by-n case, with
two positive eigenvalues, λ1 + λ3 + · · · + λn−1 ≥ 0, along with the Perron and the trace
conditions, is sufficient for symmetric realizability.

For n = 5, not necessarily trace 0, λ2 + λ5 > 0 may happen, but using observations
in [10], also mentioned in [11], λ1 + λ3 + λ4 ≥ 0 remains necessary and sufficient for
symmetric realizability when there are no more than two positive eigenvalues. Four or five
positive eigenvalues are trivially symmetrically realizable, which means that only the case
of three positive eigenvalues need be characterized in order to complete characterization
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of symmetric realizability when n = 5. Then, the question is what replaces s3 ≥ 0 from the
trace 0 case?

We now mention examples that limit possible generalizations of what we have said.
Example 6: For s ≥ 3, the weak majorization condition, without qualification, of The-
orem 3 is not sufficient. For n = 6 and the spectrum: {4, 4, 1,−3,−3,−3}, majorization
holds with each part of the partition consisting of one negative eigenvalue. However, the
spectrum is neither symmetrically realizable, nor realizable, as any realizing matrix would
have to be reducible into two blocks, each with Perron root 4. But, this cannot happen,
as two of the −3’s would have to be paired with either 4, or 4 and 1. The difficulty is that
α2 > P1, but α3 < P2.
Example 7: The partition condition of Theorem 3, or Loewy’s condition, is not necessary
for real, not necessarily symmetric, realizability, evenwhen s = 2 and t = 3. The spectrum:
{7, 5,−4,−4,−4} is realizable by

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
61/2 0 1 0 0
0 0 0 1 0
0 0 0 0 1
566 73/4 92 61/2 0

⎞
⎟⎟⎟⎟⎠

and, of course, meets the nonsymmetric conditions of [9], but is not partitionable for
majorization as in Theorem 3. Of course, this spectrum, which is not symmetrically
realizable, illustrates the difference between the real and symmetric cases (first noted in
[12]) when n = 5. There is no difference for n = 4.
Example 8: In spite of the above example, the spectrum:�δ = {7, 5,−δ,−4+δ,−4,−4}
is symmetrically realizable for each δ ∈ [0, 2]. Since the Loewy condition (the case s = 2
of Theorem 3) is not met for δ ∈ [0, 1), this shows that it is not necessary when t > 3 (as it
is when t = 3).

To realize �δ for δ ∈ [0, 1], a method similar to one used in [13] is used to construct
the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 x 4 0 0
0 0 y 0 z z
x y 0 x 0 0
4 0 x 0 0 0
0 z 0 0 0 4
0 z 0 0 4 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

x =
√

−δ2 + 4δ + 23 − √
δ4 − 8δ3 − 18δ2 + 136δ + 145

2
y = √

2(δ − 3)(δ − 1)

z =
√

−δ2 + 4δ + 23 + √
δ4 − 8δ3 − 18δ2 + 136δ + 145

2

with spectrum �δ .
To realize �δ for δ ∈ [1, 2] we can use Fiedler’s method [2, Lemma 2.2], the one used

in the proof of the Loewy condition. First we realize the spectra {8 − δ,−4 + δ,−4} and
{4 + δ,−δ,−4} by the matrices
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A =
⎛
⎝ 0

√
16 − 2δ

√
16 − 2δ√

16 − 2δ 0 4 − δ√
16 − 2δ 4 − δ 0

⎞
⎠ and

B =
⎛
⎝ 0

√
8 + 2δ

√
8 + 2δ√

8 + 2δ 0 δ√
8 + 2δ δ 0

⎞
⎠ ,

respectively, and respective normalized Perron eigenvectors

uT =
(

2√
12 − δ

,
√

8 − δ

24 − 2δ
,
√

8 − δ

24 − 2δ

)
and

vT =
(

2√
8 + δ

,
√

4 + δ

16 + 2δ
,
√

4 + δ

16 + 2δ

)
.

We obtain the eigenvalues 7, 5 as the spectrum of the matrix
(
8 − δ ρ

ρ 4 + δ

)
, ρ = √

(3 − δ)(δ − 1) .

Then the spectrum �δ is symmetrically realized by
(

A ρuvT

ρvuT B

)
.

By symmetry, we obtain that �δ is also symmetrically realizable for δ ∈ [2, 4].
Example 9: It might be asked whether Loewy’s condition, as stated, generalizes to the
case in which there aremore than two positive eigenvalues. If the negative eigenvalues may
be partitioned into two sets, each beaten in absolute sum by the Perron root, is symmetric
realizability guaranteed. The answer is “no” as {6, 2, 2,−5,−5} is not symmetrically real-
izable by the second condition of Theorem 5 (216 + 8 + 8 � 125 + 125), but 6 beats both
5 and 5.

We offer two remarks, applying Theorem 3 to get general conditions for symmetric
realizability when s = 2.
Remark 10: With two positive eigenvalues, s = 2 in Theorem 3, only the cases t ≥ 3 are
of interest; if t = 2, realizability is guaranteed by the Perron and trace conditions, see [7,8].
When t ≥ 3, partitionability, a la Theorem 3, is most subtle in the trace 0 case. It occurs if
and only if there is a subset of the β ’s whose sum lies between α2 and α1. When t = 3, this
happens if and only if α2 ≤ β3 ≤ α1. For t > 3, it is more complicated and we may only
give a simple sufficient condition: the sum of the top

t
2
(n even) or the top

t − 1
2

(n odd)

β ’s lies between α2 and α1. In the even case, it suffices that β1 ≥ 2α2

t
and in the odd case

that β1 ≥ 2α2

t − 1
or βt ≤ 2α1

t + 1
. These conditions guarantee symmetric realizability.

Remark 11: Let α1 and α2 be fixed. Assuming a uniform distribution on the β ’s, subject
to β1 ≤ β2 ≤ · · · ≤ βt in Theorem 3, the probability of partitionability meeting the
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conditions of Theorem 3 approaches 1 as t → ∞. This means that with s = 2 in Theorem
3, the probability of symmetric realizability approaches 1 as t → ∞.

Is it worth asking if the last two remarks remain valid for s > 2? The likely answer is yes.
We close with an observation that gives further insight into a classical example and

natural questions raised about it.
Remark 12: Since at least the 1970’s it has been recognized that the spectrum

{3, 3,−2,−2,−2}

is not even realizable, despitemeeting all known general necessary conditions. The obstacle
is the implied reducibility due to the tie for Perron root. (Of course, symmetric realizability
is ruled out by the result of [4] or the necessity of partitioned majorization for n = 5,
observed herein for two positive eigenvalues.)

Shortly after this spectrum was first discussed, author Johnson raised the question of
the minimum ε > 0 for which

{3 + ε, 3 − ε,−2,−2,−2}

is realizable in an AMS talk. (Larger ε will also work.) This is, of course, of interest in both
the case of realizability and symmetric realizability. Call the minimum ε, εmin or εSmin,
depending upon the case of realizability, and εmin(k) or εSmin(k) if k 0’s are appended
to the mentioned spectrum. Of course εmin(k) ≤ εSmin(k), for k = 0, 1, . . . . The case
of realizability attracted the attention of several people and was fully resolved, k = 0,
in [9]:

εmin =
√
16

√
6 − 39 ≈ 0.438.

It follows from the observations herein, or earlier work that

εSmin = 1,

again showing that thedifferencebetween the S(ymmetric)NIEPand theR(eal)NIEPbegins
at n = 5, and that the difference is substantial. Of course, in the realizability case, the
observation [14] shows that appending 0’s will decrease εmin and that limk→∞ εmin(k) = 0
(also shown constructively in [15]). Less obviously, as [14] does not apply, εSmin(1) <
εSmin. Since {7, 5,−4,−4,−4, 0} is symmetrically realizable (Example 8), then so is

{
3 + 1

2
, 2 + 1

2
,−2,−2,−2, 0

}
,
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giving εSmin(1) ≤ 1
2 . In fact, it is smaller. The 6-by-6 example

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 x 2 0 0
0 0 x2 0 x x
x x2 0 x 0 0
2 0 x 0 0 0
0 x 0 0 0 2
0 x 0 0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

with x = 2√
3
, is nonnegative, symmetric, irreducible and has eigenvalues

{
10
3
,
8
3
,−2,−2,−2, 0

}
.

Thus, εSmin(1) ≤ 1
3 , and εSmin(1) < εmin, even. In [15], estimates for εmin(k) are

given via explicit matrices, and 1
3 , our estimate for εSmin(1), is already less that the

estimate given for εmin(5). However, their estimates of εmin(k) converge rapidly to 0
in k.

We do not know if εSmin(1) = 1
3 , and it seems that εmin(1) is also not known.

Whether εSmin(k) decreases for some positive k (it is obviously nonincreasing) and
limk→∞ εSmin(k), would also be of interest.
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