
Linear Algebra and its Applications 512 (2017) 129–135
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Ruling out certain 5-spectra for the symmetric 

nonnegative inverse eigenvalue problem ✩

C.R. Johnson a, C. Marijuán b, M. Pisonero c,∗

a Dept. Mathematics, College of William and Mary, Williamsburg, VA, 23187,
USA
b Dpto. Matemática Aplicada, E.I. Informática, Paseo de Belén 15, 
47011-Valladolid, Spain
c Dpto. Matemática Aplicada, E.T.S. de Arquitectura, Avenida de Salamanca 18, 
47014-Valladolid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 May 2016
Accepted 14 September 2016
Available online 16 September 2016
Submitted by R. Brualdi

MSC:
15A18
15A29
15A42

Keywords:
Symmetric realizability
5-by-5 S-NIEP
Interlacing inequalities

A method is developed to show that certain spectra cannot 
be realized for the S-NIEP. It is applied in the 5-by-5 case to 
rule out many spectra that were previously unresolved. These 
are all in the case of 3 positive and 2 negative eigenvalues as 
all other cases are now resolved. For spectra of the sort we 
discuss, a diagram is given of the spectra that are excluded 
here, as well as those trivially realizable, those realizable 
because of the trace 0 case and those that may also be 
excluded because of the J–L–L conditions. A small region 
remains unresolved; it is a very small fraction of the area of 
those spectra we consider.
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The n-by-n symmetric nonnegative inverse eigenvalue problem, S-NIEP, asks which 
collections of n real numbers, λ1 ≥ λ2 ≥ · · · ≥ λn, occur as the spectrum of an n-by-n
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symmetric nonnegative matrix, counting multiplicities. Already for n = 5 this has proven 
a very challenging problem. In [6] a detailed discussion is given of many parts of the case 
n = 5, for positive trace. In the trace 0 case (

∑n
i=1 λi = 0) such spectra have recently 

been characterized for n = 5 [9], but the general (trace ≥ 0) case remains open. It is 
convenient to categorize by sub-cases, based upon the number of positive eigenvalues. 
In case that number is 1, 4, or 5 resolution of the 5-by-5 S-NIEP is straightforward. 
In [1], the unresolved cases were narrowed to some with 2 positive eigenvalues and most 
nontrivial ones with 3 positive eigenvalues. Here, we first note that all cases with 2 
positive eigenvalues may be resolved, and then (principally) give a new method to rule 
out many unresolved spectra with 3 positive eigenvalues. Some ruled out spectra are 
known to be realizable for the 5-by-5 R-NIEP (which only requests a nonnegative, not 
necessarily symmetric matrix realizing the given eigenvalues).

For both the R-NIEP and S-NIEP, 
∑n

i=1 λi ≥ 0 is clearly necessary and by the 
Perron–Frobenius theory λ1 ≥ |λn|, i.e. λ1 is the spectral radius, is also necessary. In 
case n = 4, these two conditions alone are necessary and sufficient for both the S-NIEP 
and R-NIEP (this is straightforward and may be found in [5], among other places). In 
addition, if λ1 = λ2, a “tie” for spectral radius, the matrix must be reducible, and the 
spectrum must be partitionable into (at least) 2 nonnegative spectra in lower dimensions. 
Another necessary condition, J–L–L [3,5], is based upon traces of powers:

(
n∑

i=1
λk
i

)m

≤ nm−1
n∑

i=1
λkm
i , k, m = 1, 2, . . . . (1)

Whenever there is just one positive eigenvalue, it is known that the trace condition 
is sufficient, as well as necessary for the S-NIEP [12,2,4]. When there are just 2 positive 
eigenvalues, it has been observed [8] that “partitioned majorization” is sufficient for the 
S-NIEP, i.e. if the nonpositive eigenvalues λ3 ≥ λ4 ≥ · · · ≥ λn may be partitioned into 
2 subsets such that the larger sum of the absolute values in one set is no more than λ1

and λ1 +λ2 is at least |λ3| + · · ·+ |λn|. For n ≤ 5, this condition is also necessary [5,7,6]. 
Note that for n > 5 this is not true is shown by the spectrum 7, 5, −1/2, −7/2, −4, −4, 
which is symmetrically realizable [4, Example 8 with δ = 1/2] but is not partitionable.

When n = 5, this leaves the unresolved cases for the S-NIEP (because the cases of 4 
or 5 nonnegative eigenvalues are straightforward):

λ1 > λ2 ≥ λ3 > 0 > λ4 ≥ λ5

λ1 + λ5 ≥ 0
5∑

i=1
λi > 0

and λ1 + λ2 + λ4 + λ5 < 0.
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The third inequality is strict, as [9] resolves all trace 0 cases and the last inequality may 
be assumed, as, otherwise, {λ1, λ2, λ4, λ5} and {λ3} would be realizable. Thus far, none 
of these cases has been resolved, except those for which translation by − 

(1
5
∑

λi

)
I leads

to a spectrum realizable according to [9]. Of course, some may also be ruled out by the 
J–L–L conditions, (1). An example that meets all known necessary conditions (and is 
realizable for the R-NIEP [11]) is

6, 3, 3,−5,−5.

We give here an argument, based upon the eigenvalue interlacing inequalities for 
symmetric matrices, that rules out this spectrum (among infinitely many others) and 
could be used to rule out others.

Consider the possible S-NIEP spectrum

1, a, a,−(a + d),−(a + d)

in which

0 < a, d

a + d, 2d < 1 < a + 2d.

We assume a + d < 1 because of the Perron condition (and we may, as well, assume 
irreducibility), 2d < 1 because of the positive trace condition, and a + 2d > 1, as, 
otherwise, realizability occurs reducibly.

This is a parametrically described subset of the unresolved spectra mentioned. We 
give conditions on a and d that prevent this spectrum from being S-NIEP realizable.

Suppose the above spectrum is realizable by a symmetric, nonnegative 5-by-5 matrix 
A = (aij), and let A(i) denote its 4-by-4 principal submatrix resulting from deletion of 
row and column i. Then, by interlacing, A(i) has spectrum

pi ≥ a ≥ qi ≥ −(a + d),

in which pi is the spectral radius of A(i). By interlacing and Perron–Frobenius, we obtain

1 ≥ pi ≥ a + d.

Since Tr(A(i)) ≥ 0 and Tr(A) > 0

pi + qi − d ≥ 0 and 1 − 2d > 0.

Since aii ≥ 0 and aii = Tr(A) − Tr(A(i)), we have

1 − pi − d− qi ≥ 0
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from which we conclude

d− pi ≤ qi ≤ 1 − pi − d (≤ 1 − a− 2d). (2)

It follows that each qi < 0.
From the identity 4 Tr(A) =

∑5
i=1 Tr(A(i)), we obtain

4 − 3d =
5∑

i=1
pi +

5∑
i=1

qi . (3)

Note that 4 Tr(A3) ≥
∑5

i=1 Tr(A(i)3) because cubing in A only contributes more non-
negative summands than cubing in A(i), making the corresponding diagonal entries no 
less. By cubing the eigenvalues, and algebra, we obtain

4 + 3a3 − 3(a + d)3 ≥
5∑

i=1
p3
i +

5∑
i=1

q3
i . (4)

With these constraints in the record our idea is to minimize

5∑
i=1

p3
i +

5∑
i=1

q3
i .

If that minimum violates the above inequality (4), then we may conclude that the as-
sumed A does not exist, ruling out the indicated spectrum. Fortunately, the necessary 
optimization can be carried out analytically. First, for a given total weight 

∑5
i=1 pi, the 

value 
∑5

i=1 p
3
i will be minimized when all pi’s are the same, since pi ≥ 0, for i = 1, . . . , 5. 

No variation in the pi’s can help decrease 
∑5

i=1 q
3
i . Since pi ∈ [a + d, 1], we may write

pi = a + d + t , t ∈ [0, 1 − a− d] .

Then from (3)

5∑
i=1

qi = 4 − 3d− 5a− 5d− 5t = 4(1 − 2d) − 5a− 5t , (5)

and
∑

p3
i = 5(a + d + t)3 .

Now, as each qi < 0, the value 
∑5

i=1 q
3
i is minimized when, subject to the constraints 

on qi, the qi vary as much as possible, i.e. as many of them are as small as possible. We 
have from (2)
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d− (a + d + t) ≤ qi ≤ 1 − (a + d + t) − d

or

−(a + t) ≤ qi ≤ 1 − 2d− (a + t) .

If we let qi = −(a + t) + si, 0 ≤ si ≤ 1 − 2d, from (5) we obtain 
∑5

i=1 si = 4(1 − 2d). 
Then, a minimizing allocation of the si weight, subject to constraints is

s1 = 0, s2 = s3 = s4 = s5 = 1 − 2d .

This gives 
∑5

i=1 q
3
i = −(a + t)3 + 4(1 − 2d − a − t)3 and

∑
p3
i +

∑
q3
i = 5(a + d + t)3 − (a + t)3 − 4(1 − 2d− a− t)3 .

Thus, we have a one variable (t) minimization problem in which the objective function 
turns out to be quadratic in t (parametrized by a and d)

min
0≤t≤1−(a+d)

5(a + d + t)3 − (a + t)3 − 4(1 − 2d− a− t)3 .

The derivative of the objective function is

18
(

4
3 − d

)
t + 3d2 + 18

(
2
3 − d

)
(a + 2d) + 12(a + 2d− 1) ,

which is positive on the interval, so that the objective function is increasing as a function 
of t, and the minimum is always at the left hand end-point (t = 0). This gives

5∑
i=1

p3
i +

5∑
i=1

q3
i ≥ 5(a + d)3 − a3 − 4(a + 2d− 1)3 .

Comparing to the upper bound (4) gives a contradiction to the existence of a realizing 
matrix when

2(a + d)3 > 1 + a3 + (a + 2d− 1)3 .

This gives our main result.

Theorem 1. Let 0 < a, d satisfy a +d, 2d < 1 < a +2d. If 2(a +d)3 ≥ 1 +a3+(a +2d −1)3, 
then 1, a, a, −(a +d), −(a +d) are not the eigenvalues of a 5-by-5 symmetric nonnegative 
matrix.
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Fig. 1. Curve 1 ≡ 2(a + d)3 − a3 − (a + 2d − 1)3 = 1, curve 2 ≡ 50(a + d)3 + (1 − 2d)2 − 50a3 = 25, line 3 
≡ 10a − (

√
5 − 5)d = 2

√
5, line 4 ≡ a + 2d = 1, P = (1/2, 1/3) and Q = (1/2, 7/24).

Example 2. The mentioned spectrum 6, 3, 3, −5, −5 corresponds to a = 1
2 and d = 1

3 , in 
which case

2
(

5
6

)3

≥ 1 + 1
8 + 1

216

and the condition of the theorem is satisfied. So this spectrum is not realizable.

In a, d-space, Fig. 1 depicts what may be said about realizability as a result of this 
(and other) work.

The slightly curved line 1 is the exclusionary curve given by Theorem 1. No spectrum 
corresponding to points above or on it is realizable for the 5-by-5 S-NIEP. The point P =
(1/2, 1/3), corresponds to the spectrum 6, 3, 3, −5, −5, which is not S-NIEP realizable, 
though it is R-NIEP realizable. Curve 2 is an exclusionary boundary deduced from a 
cubic J–L–L condition. Other J–L–L conditions were also investigated. Though they 
tended to rule out somewhat different regions, all were comfortably inside our excluded 
region, and the one we have depicted ruled out perhaps the most. Of course, these curves 
rule out R-NIEP spectra (as well as S-NIEP), so that a gap is to be expected.

We also depicted the inclusionary line 3 of points corresponding to constant diagonal 
S-NIEP realizable spectra, deduced from the result of [9]. The equation of this line in 
[0, 1] × [0, 1/2] is

(
√

5 − 5)d− 10a + 2
√

5 = 0.

It happens to coincide with the line indicating nonnegative symmetric circulant realiz-
ability (on and to the left) which may be deduced from [10, Lemma 1], or directly. The 
line 4 is the line (on and below which) indicating realizability due to the fact that 2 of 
the positive and the two negative eigenvalues are 4-by-4 S-NIEP realizable. Its equation 
is a +2d = 1. So all points on and below this line are (trivially) symmetrically realizable.

This leaves a small, nearly triangular region of unresolved spectra in the middle. For 
example, the point Q = (1/2, 7/24), corresponding to the spectrum {24, 12, 12, −19, −19}
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lies in this region. We tried all known methods of realization, as well as a number of ad hoc
methods, to realize a spectrum in this region, without success. We especially investigated 
just east of line 3, above line 4, as well as just above line 4 to the right of line 3. It is 
likely that the true exclusionary boundary is to the west of our curve 1. We would be 
quite interested if someone could realize a spectrum in the interior of this triangle, such 
as the point Q, especially if it displayed some interesting structure. The points to the 
west of (and on) line 3, above line 4, correspond to the only spectra of our type, that we 
know of, for which the trace is less than a (i.e. the two larger positive eigenvalues, plus 
the negative ones, are less than 0).

We note that the method used to prove the main theorem involved the cubes of 
the eigenvalues of the principal submatrices. In fact any other positive integer power 
might be tried (and is no more difficult to carry out). It is worth mentioning that even 
powers, while they do rule out a portion of the (a, d) pairs and do improve, as they 
increase, subject to an asymptote, are never competitive with the cube. On the other 
hand, after the third power, odd powers rule out less. So the cubic argument that we 
used produces the strongest exclusionary result. That said, we suspect that spectra inside 
the unresolved triangle, but near to the exclusionary boundary given by our result, are 
also not realizable. This is because there is a positive gap between the two sides of the 
trace inequality we used (display (4), and above). This also means that points along the 
exclusionary curve are also not realizable.

References

[1] P.D. Egleston, T.D. Lenker, S.K. Narayan, The nonnegative inverse eigenvalue problem, Linear 
Algebra Appl. 379 (2004) 475–490.

[2] M. Fiedler, Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl. 9 (1974) 119–142.
[3] C.R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear Multilinear 

Algebra 10 (1981) 113–130.
[4] C.R. Johnson, C. Marijuán, M. Pisonero, Symmetric nonnegative realizability via partitioned ma-

jorization, Linear Multilinear Algebra (2016), http://dx.doi.org/10.1080/03081087.2016.1242113, 
in press.

[5] R. Loewy, D. London, A note on the inverse problem for nonnegative matrices, Linear Multilinear 
Algebra 6 (1978) 83–90.

[6] R. Loewy, J.J. McDonald, The symmetric nonnegative inverse eigenvalue problem for 5 ×5 matrices, 
Linear Algebra Appl. 393 (2004) 275–298.

[7] J.J. McDonald, M. Neumann, The Soules approach to the inverse eigenvalue problem for nonnegative 
symmetric matrices of order n ≤ 5, Contemp. Math. 259 (2000) 387–407.

[8] N. Radwan, An inverse eigenvalue problem for symmetric and normal matrices, Linear Algebra 
Appl. 248 (1996) 101–109.

[9] O. Spector, A characterization of trace zero symmetric nonnegative 5 × 5 matrices, Linear Algebra 
Appl. 434 (4) (2011) 1000–1017.

[10] R.L. Soto, O. Rojo, Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem, 
Linear Algebra Appl. 416 (2006) 844–856.

[11] R.L. Soto, O. Rojo, J. Moro, A. Borobia, Symmetric nonnegative realization of spectra, Electron. 
J. Linear Algebra 16 (2007) 1–18.
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