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Abstract

In this article, we focus on structural and spectral properties of minimal strong
digraphs (MSDs). We carry out a comparative study of properties of MSDs versus
trees. This analysis includes two new properties. The �rst one gives bounds on
the coe�cients of characteristic polynomials of trees (double directed trees), and
conjectures the generalization of these bounds to MSDs. As a particular case, we
prove that the independent coe�cient of the characteristic polynomial of a tree or
an MSD must be −1, 0 or 1. For trees, this fact means that a tree has at most one
perfect matching; for MSDs, it means that an MSD has at most one covering by
disjoint cycles. The property states that every MSD can be decomposed in a rooted
spanning tree and a forest of reversed rooted trees, as factors. In our opinion, the
analogies described suppose a signi�cative change in the traditional point of view
about this class of digraphs.
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1 Introduction

A digraph is strongly connected or (simply) strong (SD) if every pair of vertices
are joined by a path. An SD is minimal (MSD) if it loses the strong connection
property when any of their arcs is suppressed. This class of digraphs has been
considered under di�erent points of view. See, for instance, [4,6].

We are also interested in the following nonnegative inverse eigenvalue prob-
lem [8]: given k1, k2, . . . , kn real numbers, �nd necessary and su�cient condi-
tions for the existence of a nonnegative matrix A of order n with characteristic
polynomial xn + k1x

n−1 + k2x
n−2 + · · · + kn. The coe�cients of the charac-

teristic polynomial are closely related to the cycle structure of the weighted
digraph with adjacency matrix A (see, for instance, [5]). The class of strong
digraphs can easily be reduced to the class of minimal strong digraphs, so
we are interested in any theoretical or constructive characterization of these
classes of digraphs.

In [6], a sequentially generative procedure for the constructive character-
ization of the classes of MSDs is given. In addition, algorithms to compute
unlabeled MSDs and their isospectral classes are described. These algorithms
have been implemented to calculate the said classes of digraphs up to order
15 classi�ed by their order and size [10]. We are also interested in properties
regarding the spectral structure of this class of digraphs, mainly about the
coe�cients of the characteristic polynomial.

MSDs can be seen as a generalization of trees, as we pass from simple
graphs to directed graphs. Although the structure of MSDs is much richer
than that of trees, many analogies remain between the properties of both
families. Other properties, nevertheless, undergo radical changes when passing
from trees to MSDs.

In this article, we focus on structural and spectral properties of MSDs.
We carry out a comparative study of properties of MSDs versus trees. An
extended version of this work can be found in [7].

2 Minimal strong digraphs versus trees

In this paper we use some standard basic concepts and results about graphs.
A digraph D is a couple D = (V,A), where V is a �nite nonempty set and
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A ⊂ V ×V −{(v, v) : v ∈ V }. Elements in V and A are called vertices and arcs

respectively. If u, v ∈ V we denote (u, v) by uv. A path is a sequence of distinct
vertices v1v2 . . . vq, q ≥ 2, such that vivi+1 is an arc for i = 1, 2, . . . , q − 1. We
denote a path from the vertex u to the vertex v by uv-path. A cycle of length

q or a q-cycle is a path v1v2 . . . vq closed by the arc vqv1. It is denoted by Cq.
A double directed tree is the digraph obtained from a tree by replacing each
edge {u, v} with the two arcs (u, v) and (v, u).

We now record a number of basic facts about the strong digraphs (see [6]
and the references therein). In an SD of order n ≥ 2, the in-degree and out-
degree of the vertices are bigger than or equal to 1. A vertex is linear if it has
in- and out-degree equal to 1.

If D is an MSD and there is a uv-path in D, then there cannot be an arc
joining the vertex u to the vertex v, that is uv /∈ A. In general, an arc uv in
a digraph D is transitive if there is another uv-path distinct from the arc uv.
The semicycle consisting of a uv-path together with the arc uv is a pseudocycle.
So an MSD has no transitive arcs or pseudocycles; moreover, this condition
characterizes the minimality of the strong connection. Consequently, ifD is an
MSD then so is every strong subdigraph of D. Furthermore, every subdigraph
that is an MSD is an induced subdigraph.

The contraction of a cycle of length k in an SD consists of the reduction
of the cycle to a unique vertex, so that k − 1 of its vertices and its k arcs are
eliminated. The contraction obviously preserves the SD property.

Lemma 2.1 The contraction of a cycle in an MSD preserves the minimality,

that is, it produces another MSD.

Lemma 2.2 The size of a minimal strong digraph D of order n ≥ 2 veri�es

n ≤ |A| ≤ 2(n − 1). The size of D is n if and only if D is an n-cycle. The

size of D is 2(n− 1) if and only if D is a double directed tree.

Lemma 2.3 Every MSD of order n ≥ 2 has at least two linear vertices.

Trees and MSDs are de�ned in a similar way. They are minimal connected
graphs and minimal strong digraphs respectively, such that, in every case, the
deletion of any edge and arc respectively implies connectivity loss. Despite
the analogy in the de�nition, it is expected that the properties of these two
kinds of graphs are very di�erent because, while trees have no cycles, in every
MSD, each arc belongs to a cycle.

However, surprisingly, there are many more analogies than di�erences be-
tween these two families of graphs. We explore the properties of both kind of
graphs, so as to deeply understand the structure of MSDs, by using the very
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well-known family of trees.

Trees and MSDs have a linear number of edges and arcs respectively m,
related to the number of vertices n. The order of a tree determines the number
of edges, m = n − 1, whereas this does not hold for MSDs. In this case, the
number of arcs veri�es n ≤ m ≤ 2(n − 1). On the other hand, considering
an edge equivalent to two arcs, in both cases, the maximal number of arcs is
m = 2(n− 1).

There is an equivalent de�nition of trees: they are connected graphs with
n− 1 edges. This fact is related to the following property of MSDs: an strong
digraph with n arcs is an MSD (Lemma 2.2). Furthermore, the two families
of graphs verify that they have at least two linear vertices, i.e. vertices with
degree one and in- and out-degree one respectively (Lemma 2.3). Also, in
both cases, there are con�gurations with a great number of linear vertices:
tree stars have n − 1 linear vertices and directed cycles have n; and with a
vertex with high degree: both tree and MSD stars.

There are two other meaningful di�erences, besides the nonexistence and
the existence of cycles. Given two vertices u and v in any tree, there is a
unique uv-path. We denote this fact as path-tree property. Then, trees verify
the path-tree property, while MSDs do not. If uv is an arc in an MSD then
this path is unique, but we cannot say the same in other cases. Nevertheless,
there exists a subfamily of the MSD class where the property holds. It is
de�ned below.

De�nition 2.4 A directed cycle digraph is an SD in which every topological
cycle is a directed cycle.

Here, a topological cycle means a cycle in the simple graph obtained by the
substitution of every arc by an edge. Obviously, every directed cycle digraph
is an MSD. However, we also state below that the class of MSDs satisfying
the path-tree property is exactly the directed cycle digraph class.

Theorem 2.5 Let D be an SD. Then, D veri�es the path-tree property if and

only if D is a directed cycle digraph.

The second meaningful di�erence between trees and MSDs is the complex-
ity of the following algorithmic problem: Given a weighted connected graph
and a weighted strong digraph, �nd the minimum spanning tree (MST) and
the minimum spanning strong subdigraph (MSSS) respectively. While there
are many polynomial algorithms to solve the MST problem [3], the MSSS
problem belongs the the NP-hard class [1], even when all weights are one.

In the problem of covering the vertices of a graph, by paths or cycles, we
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come upon three new similar properties. We state below that an MSD has
at most one covering by disjoint cycles. The corresponding property for trees
says that every tree has at most one perfect matching. This property becomes
the previous one if we consider edges equivalent to two arcs.

Theorem 2.6 If D is an MSD then D has at most one covering by disjoint

cycles.

The covering of a strong digraph D with α cycles, not necessarily disjoint,
where α is the stability number or the independent number of D, constitutes
the Gallai conjecture. This was proved by Bessy and Thomassé [2] and the
proof also applies to MSDs and trees if we consider that edges are equivalent
to two arcs. There are examples of MSDs and trees where α cycles are needed
in order to cover the corresponding digraph: MSD and tree stars.

The covering of a strong digraph D with α− 1 disjoint paths, where α is,
as above, the stability number or the independent number of D, constitutes
the Las Vergnas conjecture. This was proved by Thomassé [9] and the proof
also applies to MSDs and trees if we consider that edges are equivalent to two
arcs. There are examples of MSDs and trees where α − 1 disjoint paths are
needed to cover the corresponding digraph: MSD and tree stars.

Finally, we want to remark the following properties in which trees and
MSDs behave in a similar way.

Let D = (V,A) be an MSD with n vertices and let km(D) be the coe�cient
of xn−m in the monic characteristic polynomial of the adjacency matrix of D.
Let Km(D) be the number of coverings of m vertices (or arcs) in D by disjoint
cycles. Hence, |km(D)| ≤ Km(D).

Theorem 2.7 Let D be a double directed tree with n vertices, n ≥ 2. Then,

|km(D)| = Km(D), and:

(i) For all m odd such that 2 ≤ m ≤ n, it is Km(D) = 0.

(ii) For all m even such that 2 ≤ m ≤ n, it is Km(D) ≤
(
n− m

2
m
2

)
.

Conjecture 2.8 Let D = (V,A) be an MSD with n vertices, n ≥ 2, And m
an integer such that 2 ≤ m ≤ n. Then, the following equality holds:

Km(D) ≤
(
n− ⌈m

2
⌉

⌊m
2
⌋

)
The property that best explains the structure of an MSD is its factorization

into two arborescences, the �rst with a unique source (a rooted tree), and the
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second with a unique sink in each connected component (a forest of reversed
rooted trees).

Theorem 2.9 If D is an MSD then it factorises in a rooted spanning tree

and a forest of reversed rooted trees.
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