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1. Introduction

In the analysis of propagation of ideas and influence through social networks, a much 
studied optimization problem is the selection of the most authoritative nodes. This is 
the so-called influence maximization problem, which was first studied in [10], where it 
is shown NP-hard for several models of social networks and approximation guarantees 
for efficient solutions are given. A related problem is to model the dynamics of social 
networks that change in time by modifications on the topology of the network. These 
topological modifications can significantly alter the hierarchy of influence previously 
existing in a social network. For example, the situation arises in academic networks, such 
as Academia or Research Gate, where participants are often enticed by the administrator 
of the network to link (or follow) others, in order to raise their social presence and 
consequently their network score, which is computed by a form of centrality measure. 
Also, in the World Wide Web, the role played by the topology of the internet has been 
widely recognized as a key factor in the computation and improvement of the scores 
given by the most used ranking measure, namely PageRank (see [1,8]).

In this paper we address the problem of how the modifications in the link structure 
of a directed network, whose nodes are ranked by a measure of centrality based on 
eigenvectors, affect the distribution of values given by this type of scoring function. We 
propose to do this analysis progressively with respect to the topological complexity of the 
network. Hence, we present here the case of unidirectional rooted trees, acyclic digraphs 
through their rooted subtrees, trees with bidirectional arcs and trees extended with 
cycles, and for all these trees we set as our objective to improve the eigenvector-based 
centrality score of the root.

We focus our analysis on α-centrality and PageRank scoring functions. PageRank is 
arguably the most general form of eigenvector-based centrality measure, producing more 
meaningful scores in directed networks than other centrality measures in its class. As a 
matter of fact, measures of centrality based on the eigenvectors of the adjacency matrix of 
directed networks are basically three: eigenvector centrality [6], Katz or alpha-centrality
[7] and PageRank [2,3]. Eigenvector centrality is useless in acyclic digraphs because 
it assigns a null score to all vertices. In general, a vertex having arcs coming from 
source nodes (vertices with in-degree zero) obtains a score of zero. More precisely, only 
vertices in, or connected from, a strongly connected component have positive score. 
Katz and α-centrality fix the eigenvector scoring limitations by aggregating a term to 
the scoring function independent of the link structure. This additional term accounts 
for exogenous sources of information and in this way every vertex gets some non-zero 
score that can transmit to its neighbors. However, the Katz (and α) centrality score is 
transmitted uniformly, so that any number of vertices receiving a link from one vertex 
with high centrality score becomes equally highly central too. This poses an unfair gain 
of relevance by many individuals in social networks, or pages in the World Wide Web, 
since it is enough for them to have a highly reputed “sponsor”, regardless of their level of 
popularity quantified by the number of links received. This anomaly is corrected by the 
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PageRank centrality measure by dividing the centrality scores inherited from neighbor 
vertices by their out-degree. We will provide mathematical formulations of all these 
eigenvector-based centrality measures so that the reader can see how each generalizes 
the other in a formal way. For a more in-depth exposition of these and other centrality 
measures see [14].

The paper is organized as follows: In Section 2 we fix the notation to be used for di-
graphs, present the linear algebraic formulation of each of the eigenvector based directed 
network centrality measures, and discuss these measures from a perspective of power 
series. In Section 3 we specify the PageRank formula for directed networks organized 
as rooted trees. This formula depends solely on the number of vertices at each level of 
the tree structure, and provides us with a full mathematical justification of the fact that 
erasing the vertices farthest away from the root improves the PageRank. We then give 
some rules to optimize the link structure of a web site that stem from our results. Over 
rooted trees α-centrality coincides with PageRank so all results in this section apply to 
α-centrality as well. Section 4 presents a through analysis of how the basic combinatorial 
results of previous section adapt to the α-centrality, as well as PageRank measure, in the 
more general context of acyclic digraphs. In Section 5, we extend the PageRank and the 
α-centrality formula obtained in Section 3 to vertices of trees with bidirectional arcs, and 
cyclical trees (obtained by closing cycles on unidirectional rooted trees), modeling these 
more complex hierarchical structures by means of infinite unidirectional rooted trees. 
We also give a vectorial version of these formulas for bidirectional trees. In Section 6, 
we analyze the behavior of PageRank and α-centrality on bidirectional and cyclical trees 
when their topology is modified. We give qualitative and quantitative justifications on 
the consequences of these actions. We close with Section 7 looking at the directed network 
through its condensation digraph as the acyclic digraph of its strongly connected compo-
nents, where PageRank can be calculated independently, thus justifying its computation 
in parallel as suggested by some authors.

2. Preliminaries on eigenvector based centrality measures

By a digraph D we mean a pair D = (V, A) where V is a finite nonempty set and 
A ⊂ V × V \ {(v, v) : v ∈ V }. Elements in V and A are called vertices and arcs
respectively. For an arc (u, v) we will say that u is adjacent to v, and we also use uv to 
denote an arc (u, v). The in-degree id(v) (out-degree od(v)) of a vertex v is the number 
of arcs uv (vu) in A.

A sequence of vertices v1v2 . . . vq, q ≥ 2, such that vivi+1 is an arc for i = 1, 2, . . . , q−1
is a walk of length q − 1 joining v1 with vq or more simply a v1–vq walk. If the vertices 
of v1v2 . . . vq are distinct the walk is called a path. A cycle of length q or a q-cycle is a 
path v1v2 . . . vq closed by the arc vqv1. A digraph is acyclic if it has no cycle.

By a subdigraph of the digraph (V, A) we mean a digraph (W, B) such that W ⊂ V and 
B ⊂ A. The subdigraph is called a partial digraph when W = V . The induced subdigraph
by the digraph (V, A) on W ⊂ V is the digraph (W, A/W ) where A/W = A ∩ (W ×W ).
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Let M = (mij) be the N × N adjacency matrix of the digraph D = (V, A). If D
represents a network (social or informational as WWW) mij > 0 stands for the contri-
bution of vertex vi to vj ’s status (and vivj ∈ A), and so we let x = (x1, . . . , xN )t be 
a vector of centrality scores for the elements in V . The eigenvector centrality measure 
assigns to each vertex vi a proportion of the weighted sum of the centrality of the vertices 
connected to it:

λxi = m1ix1 + m2ix2 + . . . + mNixN , for i = 1, . . . , N, (1)

or in matrix form

Mtx = λx (2)

Then, the eigenvector centrality of the network D is given by the unique nonnegative 
eigenvector x associated to the spectral radius ρ(Mt) of the nonnegative matrix Mt (by 
Perron–Frobenius theory). Furthermore, such eigenvector is non-null if the correspond-
ing spectral radius ρ(Mt) is non-null, which is equivalent to the existence of a cyclic 
structure in the digraph D. Consequently, eigenvector centrality is useless in acyclic 
digraphs.

A more appropriate measure of centrality was introduced by Katz [9] in 1953. Katz 
considers for each vertex vi the influence of all the vertices connected by a walk to vi. Arc 
connections are penalized by an attenuation factor α, and the contribution of each vj–vi
walk of length k to the score of vertex vi is αk. Taking into account that each element 
(Mk)ji of the matrix Mk gives the number of vj–vi walks of length k, Katz centrality
assigns to each vertex vi the score

xi =
∞∑
k=1

N∑
j=1

αk(Mt)ji, for i = 1, . . . , N (3)

Then the Katz centrality vector is given by the column sums of the matrix 
∞∑
k=1

αk(Mt)k. 

If we set e = (1, . . . , 1)t to be the N -vector of ones, we have the following matrix form 
for Katz centrality,

x =
( ∞∑

k=1

αk(Mt)k
)

e =
(
−I +

∞∑
k=0

αk(Mt)k
)

e (4)

where I is the N × N identity matrix. If α is smaller than the inverse of the spectral 
radius of Mt, then the series 

∑∞
k=0 α

k(Mt)k converges to (I − αMt)−1. In this case 
Eq. (4) can be expressed as

x = (−I + (I − αMt)−1)e (5)



A. Arratia, C. Marijuán / Linear Algebra and its Applications 504 (2016) 325–353 329
Another similar measure of centrality that also resolves the problems encountered by 
the eigenvector centrality is α-centrality (see [7]). This measure consists in adding to the 
Katz score of each vertex a constant term independent of the connective structure of the 
network, so that every vertex has a non-zero centrality value. In this way,

xi = α
N∑
j=1

mjixj + βi (6)

with α, βi > 0 for each i = 1, . . . , N , where α is a parameter reflecting the relative 
importance of endogenous versus exogenous factors in the determination of centrality [7]. 
In matrix form

x = αMtx + βe

and rearranging for x, we have

x = β
(
I − αMt

)−1 e (7)

Since we are interested in the relative values of the scores xi, the factor β is irrelevant, 
and for convenience we set β = 1. So we have the α-centrality measure given by

x = (I − αMt)−1e (8)

Thus, α-centrality is a simple translation of Katz centrality. In the remainder of this 
paper we will refer to both measures as α-centrality.

The next step to extend Eq. (8) to a more fair centrality measure that distributes the 
centrality of a node among its neighbors in proportion to their number, is to consider 
the contribution of centrality from each node divided by its out-degree. In mathematical 
terms, the centrality xi of vertex vi is formalized as

xi = β + α

N∑
j=1

mji
xj

od(vj)
(9)

where β > 0 is some constant. This is the general form of the PageRank scoring function 
which originally sets β = (1 − α)/N and α is a constant in the real interval (0, 1)
which is usually set to 0.85 [2,3]. Additionally it is assumed that all nodes have at least 
out-degree 1 in order to avoid indeterminate terms in the sum. We use P(vi) to denote 
the original PageRank centrality measure for a vertex vi. Thus, Eq. (9) becomes

P(vi) = 1 − α

N
+ α

N∑
j=1

mji
P(vj)
od(vj)

(10)

where mji = 1 iff vivj ∈ A or 0 otherwise. In matrix form
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p = (1 − α)
N

(I − αMtD−1)−1e (11)

where D is the diagonal matrix with Dii = max[od(vi), 1], and p = (P(v1), . . . , P(vN ))t
is the PageRank vector of D. This p is a probability vector (the sum over j on the 
right side of Eq. (10) is one, for all i = 1, . . . , N) and, in fact, is the positive dominant 
eigenvector of the transition matrix T = (1−α)

N J + αMtD−1 (where J is the N × N

matrix of 1’s), associated to the greatest positive eigenvalue λ and is the solution to the 
system of equations given by (10) for all possible vertices of D. Since the digraph D has 
no sinks (i.e. vertices with out-degree 0), the matrix T is stochastic by columns with 
dominant eigenvalue λ = 1, and the PageRank of a node v can be interpreted as the 
probability of a user reaching v directly (with probability (1 − α)/N) or after following 
all appropriate links, each with probability α. On the other hand, if there are some sinks, 
then T is not stochastic, and so the proposed method to make it stochastic is to connect 
every sink with all the vertices of the digraph, including the sink itself, which amounts 
to normalizing to 1 the vector p by simply dividing all its components by their overall 
sum. This 1-normalization is necessary to compare the PageRank of vertices in different 
websites under the same metric conditions. The PageRank vector p is computed by 
iterative methods based on the power method where fast convergence is guaranteed by 
the domination of the spectral radius of T , and the convergence speed is given by the 
second eigenvalue of T . For an in-depth exposition of PageRank and the related linear 
algebra methods see [11] and references therein.

Remark 1. Obviously, by the definitions, α-centrality and PageRank are equivalent 
measures of centrality on digraphs without vertices of out-degree greater than one. 
For this class of digraphs, formula (11) with D = I coincides with formula (7) for 
β = (1 − α)/N . �
Centrality measures as power series. Yet another view of PageRank is the analytical 
formulation given by Brinkmeier (see [4]), who conceived the PageRank function as a 
power series. In this setting, a formula is given that highlights the fact that the ranking 
of a vertex v, as assigned by PageRank, depends on the weighted contributions of each 
vertex in every walk that leads into v, being these contributions higher in value for 
vertices that are nearer in distance from v.

For a given walk ρ = v1v2 . . . vn in the graph (V, A), define the branching factor of ρ
by the formula

D(ρ) = 1
od(v1)od(v2) · · · od(vn−1)

(12)

Then, for any vertex a ∈ V , we have

P(a) = 1 − α

N

∑ ∑
αl(ρ)D(ρ) (13)
w∈V ρ : w −→ a
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where ρ : w −→ a denotes a walk ρ joining a vertex w with a, and l(ρ) is the length 
of ρ. We should remark that for effectively computing P(a) by the power series in (13), 
Brinkmeier implements a breadth-first search strategy where the inner sum is taken over 
all walks ending in a of a fixed length, and this is done for all possible lengths; that is,

P(a) = 1 − α

N

∑
l≥0

∑
ρ : w l−→ a

αlD(ρ) (14)

where ρ : w
l−→ a denotes a walk ρ from any w to a of length l.

For α-centrality D(ρ) = 1 for all walks ρ, and formulas (13) and (14) become for each 
vertex vi

xi = β
∑
w∈V

∑
ρ : w −→ vi

αl(ρ) = β
∑
l≥0

∑
ρ : w l−→ vi

αl

with β = 1 as in Eq. (8) or β = (1 − α)/N . From now on we use β = (1 − α)/N for a 
precise comparison of α-centrality with PageRank.

3. Rearranging the structure of rooted trees

Our starting case study is the set of rooted trees, where a tree with root r is an acyclic 
digraph with a maximal vertex r, such that for every vertex v �= r there is a unique 
v–r path. Vertices with in-degree 0 are called leaves. The root is the targeted page for 
improving its α-centrality or PageRank valuation. The height of a vertex in a rooted 
tree is the length of the path from the vertex to the root. The level Nk is the set of 
vertices with height k; the root is at level N0. The height of a rooted tree is the length 
of the longest path from a leaf to the root.

Rooted trees belong to the class of digraphs without vertices of out-degree greater 
than one and so all the results of this Section expressed in terms of PageRank are also 
valid in the same way for α-centrality (cf. Remark 1).

Remark 2. Since we are interested in studying the behavior of PageRank when localized 
in certain subdigraphs of the Web digraph, we think, in particular, of our trees as local 
closed web sites. This means that the value of N in formula (10) is the number of vertices 
in the tree. �

To compute the PageRank of the root r of a tree all we need to do is count the number 
of vertices at each level of the tree. For each vertex w there is a unique w–r path of length 
k if w ∈ Nk, then by Eq. (13) we have:

Theorem 3. If a rooted tree has N vertices and height h, then the PageRank of its root 
r is given by the formula
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P(r) = 1 − α

N

h∑
k=0

αknk (15)

where nk := |Nk| is the number of vertices of the kth-level, Nk, of the tree. �
Remark 4. Theorem 3 shows that we can do any rearrangements of links between two 
consecutive levels of a web set up as a rooted tree, and the PageRank of the root will be 
the same. �
Remark 5. Due to Theorem 3, we will from now on describe a rooted tree T r, with root 
r and h ≥ 0 levels, each of cardinality n0 = 1, n1, . . . , nh, as the string T r = 1n1 . . . nh. 
Also the PageRank for the root r of T r, or for any other vertex seemed as the root of a 
subtree in T r, will only depend on the height and the number of vertices at each level 
of T r. �

The following result shows that erasing vertices farthest away from the root improves 
the PageRank. This corroborates the known fact that the optimal configuration is a star, 
i.e. a rooted tree of height 1 (see e.g. [11]).

Theorem 6. If in a tree T r = 1n1 . . . nh we have that p vertices, 1 ≤ p ≤ nh, of the last 
level Nh are erased, then the PageRank of its root r, P(r), increases its value.

Proof. After passing from the tree T r = 1n1 . . . nh, with N = 1 + n1 + . . .+ nh vertices 
and PageRank P(r), to the tree T ′ r = 1n1 . . . nh−1(nh − p) with N − p vertices and 
PageRank P ′(r), we get

P ′(r) − P(r) = (1 − α)p
(N − p)N (1 + n1α + . . . + nh−1α

h−1 − (N − nh)αh)

= (1 − α)p
(N − p)N (1 + n1α + . . . + nh−1α

h−1 − (1 + n1 + . . . + nh−1)αh)

= (1 − α)p
(N − p)N ((1 − αh) + n1(α− αh) + . . . + nh−1(αh−1 − αh)) > 0

because 0 < α < 1 and h ≥ 1. �
Remark 7. Thus, in order to improve the PageRank of the root of a tree one can delete 
as many vertices from highest level to lowest, as the context permits. Conversely, if a 
new level of vertices is added to a tree, then the PageRank of its root decreases. �
Remark 8. The previous result holds in absolute terms, i.e., not disregarding the existence 
of a sink in the tree. Since in practice one needs to normalize the PageRank vector to 
guarantee the stochastic properties of the transition matrix ruling the system, and to 
compare the PageRanks of the pages in different trees under the same metric conditions, 
we should establish the truth of Theorem 6 for the 1-normalized version of PageRank. �
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Proof of normalized version of Theorem 6. The key observation is that the PageRank 
at level Nk, understood as the sum of all PageRank of vertices at level Nk and which we 
denote as P(Nk), only depends of the quantities nk, nk+1, . . . , nh (see Remark 5). We 
have

P(N1) = 1 − α

N
(n1 + n2α + n3α

2 + . . . + nh−1α
h−2 + nhα

h−1)

P(N2) = 1 − α

N
(n2 + n3α + . . . + nh−1α

h−3 + nhα
h−2)

...
...

P(Nh−1) = 1 − α

N
(nh−1 + nhα)

P(Nh) = 1 − α

N
nh

The PageRank at level N0 is exactly P(r). The sum of all levels’ PageRank is then

P(T r) := 1 − α

N
(N + (N − 1)α + (N − 1 − n1)α2 +

(N − 1 − n1 − n2)α3 + . . . + (nh−1 + nh)αh−1 + nhα
h)

and the normalization of P(r) is obtained by the quotient

P(r)
P(T r) = 1 + n1α + n2α

2 + . . . + nh−1α
h−1 + nhα

h

N + (N − 1)α + (N − 1 − n1)α2 + . . . + (nh−1 + nh)αh−1 + nhαh

If p vertices, 1 ≤ p ≤ nh, are removed from the last level Nh of T r, then the normalized 
PageRank of r in the pruned tree T ′ r is

P ′(r)
P(T ′ r) = 1 + n1α + n2α

2 + . . . + nh−1α
h−1 + (nh − p)αh

N ′ + (N ′ − 1)α + (N ′ − 1 − n1)α2 + . . . + (nh − p)αh

where N ′ = N − p. Therefore,

P ′(r)
P(T ′ r) ≥ P(r)

P(T r) ⇐⇒ P ′(r)P(T r) ≥ P(r)P(T ′ r)

Note that both terms in the last inequality are polynomials in α of degree 2h. Then 
the inequality holds because the coefficients accompanying αk, for k < h, are greater 
in P ′(r)P(T r) than in P(r)P(T ′ r), and for k ≥ h the corresponding coefficients are 
equal. �

Erasing p leaves from any other level Nk distinct from the last level Nh can either 
increase or decrease the PageRank of the root. Hence, doing an unorderly pruning has 
mixed consequences to PageRank, as the following example shows.
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Example 9. Let the tree T r = 1n1n2 with PageRank P(r). Then consider removing p
leaves from the level N1, with 1 ≤ p ≤ n1−1. The resulting pruned tree T ′ r = 1(n1−p)n2

has PageRank P ′(r) and we have that

P ′(r) − P(r) = (1 − α)2p
(N − p)N (1 − n2α)

which is positive for n2 = 1 and α ∈ (0, 1), and negative for any α > 1/n2.
This reduction of the PageRank of the root of this tree also holds in relative terms. 

From the normalized version of Theorem 6 we have

P(r)
P(T r) = 1 + n1α + n2α

2

1 + n1 + n2 + (n1 + n2)α + n2α2

and

P ′(r)
P(T ′ r) = 1 + (n1 − p)α + n2α

2

1 + n1 − p + n2 + (n1 − p + n2)α + n2α2

so that

P ′(r)P(T r) − P(r)P(T ′ r) > 0 ⇐⇒ p(1 − n2α) > 0

Hence, for this deletion of leaves at intermediate level, the relative variation of PageRank 
of the root is equivalent to its absolute variation. �

If it were the case that for practical, or any other reason, we were obliged to keep 
certain height, then a natural question is how much can we prune the tree to improve 
on PageRank. The extreme situation is to prune all but one arc at each level, so we take 
that structure as benchmark.

Theorem 10. The PageRank of the root of the tree T r = 1n1 . . . nh is smaller than the 
PageRank of the root of the tree

T r
q := 1n1 . . . n�h−1

2 � 1 . . . 1︸ ︷︷ ︸
�h/2�+1

The tree T r
q is called queue tree.

Proof. We proceed recursively from the last level down to �(h− 1)/2�.

(a) The PageRank P(r) of the root r of T r = 1n1 . . . nh−1nh is smaller than the Page-
Rank P ′(r) of T ′ r = 1n1 . . . nh−11. Indeed, let N = 1 + n1 + . . . + nh, then
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P ′(r) − P(r) = (nh − 1)(1 − α)
(N − (nh − 1))N

(
h−1∑
k=0

nkα
k − (N − nh)αh

)

= (nh − 1)(1 − α)
(N − (nh − 1))N

h−1∑
k=0

nk(αk − αh) > 0

Apply the same methodology for T r = 1n1 . . . nh−2nh−11 and T ′ r = 1n1 . . . nh−211, 
and so on, up to �h/2�. At this last step we have

(b) T r = 1n1 . . . n�h−1
2 �n�h+1

2 � 1 . . . 1︸ ︷︷ ︸
�h/2�

, and we shall see that its PageRank is less than 

that of the queue tree T ′ r = 1n1 . . . n�h−1
2 � 1 . . . 1︸ ︷︷ ︸

�h/2�+1

. We work separately the cases of 

h even or h odd.
(b.i) If h = 2p − 1 then T r = 1n1 . . . np−1np 1 . . . 1︸ ︷︷ ︸

p−1

, T ′ r = 1n1 . . . np−1 1 . . . 1︸ ︷︷ ︸
p

and 

N = n1 + . . . + np + p. Let M = (np−1)(1−α)
(N−(np−1))N . Then

P ′(r) − P(r) = M

⎛
⎝1 +

p−1∑
k=1

nkα
k − (N − np)αp +

2p−1∑
k=p+1

αk

⎞
⎠

= M

⎛
⎝(1 − αp) +

p−1∑
k=1

nk(αk − αp) +
2p−1∑
k=p+1

(αk − αp)

⎞
⎠

= M

(
(1 − αp) +

p−1∑
k=1

(nk − αp−k)(αk − αp)
)

> 0

(b.ii) If h = 2p then T r = 1n1 . . . np−1np 1 . . . 1︸ ︷︷ ︸
p

, T ′ r = 1n1 . . . np−1 1 . . . 1︸ ︷︷ ︸
p+1

and 

N = n1 + . . . + np + p + 1. One then shows P ′(r) − P(r) > 0 by a similar 
argument as in (b.i). �

Remark 11. Theorem 10 can not be improved, in the sense that deleting further vertices 
(but keeping the height) in a queue tree may or may not improve the PageRank of the 
root. For small values of h, the queue tree is the optimal pruning of a tree for increasing 
PageRank. For example, if h = 4 the corresponding queue tree is T r

q = 1n1111 with 
PageRank P(r), and if n1 > 1 and we remove a vertex from level N1, we get the tree 
T ′ r = 1(n1 − 1)111 with PageRank P ′(h), and their difference is

P ′(r) − P(r) = 1 − α (1 − 4α + α2 + α3 + α4) < 0
(n1 + 3)(n1 + 4)
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for any α such that 0.27568 < α < 1. For larger values of h, an improvement of PageRank 
will depend on α and on the cardinalities of the levels N1, . . . , N�h−1

2 �. �
A theoretically as well as commercially important problem is to find a scheme for 

modifying the link structure of a local web in order to improve its ranking, as set by 
PageRank or any other ranking function. In this section we have presented the case of a 
network with a tree-like structure, where the PageRank of the main page, located at the 
root of the tree, should have the highest possible value, but at the same time the overall 
structure of the web should satisfy certain conditions given by the context. We shall 
not make precise the details of the context, which are surely determined by the general 
conditions imposed by design. Let us refer to the context as Π. By virtue of Theorem 3
this translates into the following optimization problem.

Main Objective: Given a certain context Π, to maximize the function

P(h, n1, . . . , nh) = 1 − α

1 + n1 + . . . + nh

h∑
k=0

αknk

for fixed α, such that 0 < α < 1, and all trees T r = 1n1 . . . nh with integer values 
h, ni ≥ 1, 1 ≤ i ≤ h. If the total number N of vertices is bounded then we can assure that 
the maximum exists. The complexity of the problem depends mostly on the conditions 
imposed by the context Π. This justifies approaching the solution through heuristics. 
Here we give an ad hoc list of rules that clearly stem from our theorems.

Rule 1: Due to Theorem 6, the first action to take is to reduce the height as much as 
the context allows.

Rule 2: Keep in mind that while applying Rule 1 (and deleting levels), links between 
consecutive levels can be rearrange in any way you like, as long as the context is kept 
consistent, and this has no effect on the root’s PageRank value (by Theorem 3).

Rule 3: Once the optimal height h > 1 is attained,3 we delete (as much as possible) 
vertices from levels in the upper half of the tree, trying to get it close to its underlying 
queue tree (Theorem 10), and those vertices that cannot be deleted should be moved as 
closer to level 1 as possible (by Theorem 3).

4. Acyclic digraphs

We continue in this section with an analysis of the extend to which the previous results 
hold for the different centrality measures in a general acyclic digraph.

3 Optimality here again depends on maintaining the context consistent. This height could mean the 
minimal levels of a hierarchy that we need to reflect in the web site; say, for example, of a corporation or 
a hypertext.
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For an acyclic digraph (V, A) there exists at least one vertex v with od(v) = 0. Such 
vertices are called maximals or sinks in the digraph. The set of maximal vertices of 
(V, A) will be denoted by M , and a path v1v2 . . . vq with vq ∈ M will be called path with 
maximal end.

Moreover, the vertices in the acyclic digraph (V, A) can be distributed by levels
N0, N1, . . . , where N0 = M and, recursively for p > 0,

Np = {v ∈ V \
p−1⋃
i=0

Ni : v is maximal in the induced subdigraph on V \
p−1⋃
i=0

Ni}

Thus one has a partition of V , V = N0 ∪ N1 ∪ · · · ∪ Nh, h being the height of the 
acyclic digraph, i.e. the last index such that Nh �= ∅.

The closure4 of a vertex v in an acyclic digraph (V, A) is the set of vertices

v̄ = {u : there is a path from u to v} ∪ {v}

Clearly, the union of the closures of the maximal vertices of the acyclic digraph (V, A)
covers the set of vertices V , and the arcs of its induced subdigraphs cover the set of 
arcs A: ⋃

m∈M

m̄ = V,
⋃

m∈M

A/m̄ = A.

A labeling of a digraph (V, A) by the label set E is a bijective map v : E −→ V , v(e)
being denoted by ve for any e ∈ E. If (E, ≤) is a totally ordered set, the digraph (V, A)
is said to be E-ordered if it is labeled by E in such a way that if (vi, vj) ∈ A then i < j. 
We have the following characterization of acyclic digraphs [12]: A digraph (V, A), with 
card(V ) = N , is acyclic if and only if (V, A) is E-ordered by the set E = {1, . . . , N}.

Definition 12. We call forest of paths associated to an acyclic digraph (V, A) to the di-
graph (Ṽ , Ã) where Ṽ is the set of paths with maximal end of (V, A) together with the set 
of maximal points M and Ã = {(p, q) ∈ Ṽ × Ṽ : p /∈ M and q is the path obtained from
p by deleting the first element}.

If the acyclic digraph (V, A) is labeled by means of E = {1, . . . , N} by the bijection 
v : E −→ V , then the forest of paths digraph (Ṽ , Ã) will be considered labeled by Ẽ =
{K ⊂ E : vK ∈ Ṽ } by means of the bijection ṽ : Ẽ −→ Ṽ given by ṽ(K) = vi1 . . . viq ∈ Ṽ , 
where vK denotes the restriction of v to the naturally ordered set K = {i1 < . . . < iq}. 
Moreover, if the acyclic digraph (V, A) is E-ordered by E = {1, . . . , N}, then Ẽ is totally 
ordered by the lexicographic ordering and therefore, the forest of paths digraph (Ṽ , Ã)
is an Ẽ-ordered digraph.

4 The set {v̄ : v ∈ V } can be taken as a sub-basis of closed sets for a topology over the set of vertices V
(see [13]).
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Proposition 13. (Cf. [12].) The forest of paths digraph (Ṽ , Ã) of an acyclic digraph (V, A)
is a forest with m rooted trees, where m = Card(M). �
Remark 14. Each non-maximal vertex of the acyclic digraph (V, A) gives rise to a new 
vertex in the forest of paths (Ṽ , Ã) for each one of the paths with maximal end in (V, A)
starting from it. And each vertex in the forest of paths is in the level Nk of this forest if 
and only if k is the length of the corresponding path. �
Proposition 15. (Cf. [12].) The labels of the leaves in the forest of paths (Ṽ , Ã) describe 
the digraph from the start (V, A).

Proof. It is clear that vi ∈ V if and only if vi is in the label of some leaf of (Ṽ , Ã) and 
(vi, vj) ∈ A if, and only if, vi and vj are consecutive (in that order) in the label of some 
leaf in (Ṽ , Ã). If we denote the set of leaves of (Ṽ , Ã) by L, then we have:

V =
⋃
v∈L

{vi : vi being in the label of v ∈ L ⊂ Ṽ } and

A = {(vi, vj) : ∃v = vji . . . vjrvjr+1 . . . vjq ∈ L in (Ṽ , Ã), i = jr, j = jr+1} �
Now we show how a labeling in an acyclic digraph (V, A) induces a “prelabeling” in 

its forest of paths (Ṽ , Ã) which can be done by using the same label set and in such a 
way as to enable the recovery of the original structure of (V, A).

Definition 16. A prelabeling on a forest (Z, H) by the prelabel set E is a surjective map 
p : Z −→ E. For every x ∈ Z, p(x) is the prelabel of x.

Proposition 17. Let (V, A) be an acyclic digraph labeled by E = {1, . . . , N}, with x(i) =
xi, and let (Ṽ , Ã) be its forest of paths labeled by Ẽ. The following properties hold:

1. The map p : Ṽ −→ E such that p(xi1 . . . xiq ) = i1 for any xi1 . . . xiq ∈ Ṽ , is a 
prelabeling on (Ṽ , Ã) by E.

2. If K is the arc set given by:

K = {(i, j) ∈ E ×E : there exists (x, y) ∈ Ã with p(x) = i and p(y) = j}

then the labeling bijection p : E −→ V is a digraph isomorphism between (E, K) and 
(V, A).

3. The acyclic digraph (V, A) labeled by E can be recovered from its forest of paths 
(Ṽ , Ã) prelabeled by E, being V the set of prelabels of Ṽ and (u, v) ∈ A if and only 
if (u, v) ∈ Ã.

Remark 18. The vertices of Ṽ with the same prelabel i have the same closure ī, and the 
induced subdigraph by the forest (Ṽ , Ã) in ī is a rooted subtree with root i. �
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Fig. 1. An acyclic digraph and its labeled and prelabeled forest of paths.

Fig. 1 includes, on the left, an E-ordered acyclic digraph (V, A) by E = {1, . . . , 7}, 
with two maximal vertices; in the middle, its Ẽ-ordered forest of paths (Ṽ , Ã) by Ẽ, the 
set of paths with maximal end; and, on the right, the forest of paths (Ṽ , Ã) prelabeled 
by E.

The α-centrality and PageRank vectors of an acyclic digraph can be obtained from its 
associated forest of paths. We then have the following extension of Theorem 3 to acyclic 
digraphs.

Theorem 19. Let (V, A) be an acyclic digraph E-ordered by E = {1, . . . , N} and let (Ṽ , Ã)
be its forest of paths prelabeled by E. Then:

1. The α-centrality vector of (V, A) is

x = (x1, . . . , xN ) = 1 − α

N
(y1, . . . , yN ), with yi =

i∑
k=0

nikα
k (16)

where nik is the number of vertices of the level Nik in the rooted subtree of the forest 
(Ṽ , Ã) with root i (the induced sub-digraph in ī).

2. The normalized α-centrality vector of (V, A) is

x1 = 1∑N
i=1 yi

(y1, . . . , yN )

3. The PageRank vector of (V, A) is

p = (P1, . . . ,PN ) = 1 − α

N
(q1, . . . , qN ), with qi =

i∑
k=0

bikα
k (17)

where bik is the sum of the vertex’s branching of the level Nik in the rooted subtree 
of (Ṽ , Ã) with root prelabeled by i.

4. The normalized PageRank vector of (V, A) is

p1 = 1∑N
i=1 qi

(q1, . . . , qN )
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Proof. The α-centrality measures the contribution of the paths to each vertex, and this is 
what has been modeled with the forest of paths. This shows 1. For each vertex labeled by 
i we consider the induced subdigraph by the forest of paths on the closure of i, and where 
each vertex is weighted by the branching of the corresponding subpath. Then statement 3 
follows by Remark 14 and Proposition 15. Statements 2 and 4 are the 1-normalization 
of the corresponding formulas. �

Theorem 19 gives us another way of computing the α-centrality and PageRank mea-
sures for acyclic digraphs.

Example 20. Let us compute the α-centrality and PageRank of the acyclic digraph shown 
in Fig. 1. Using formula (7) with adjacency matrix M = (mij)1≤i,j≤7, with non-null
elements m31 = m41 = m42 = m51 = m53 = m54 = m61 = m65 = m74 = m75 = 1, we 
obtain the α-centrality

x = 1 − α

7
(
1 + 4α + 5α2 + 4α3, 1 + α + 2α2 + 2α3,

1 + α + 2α2, 1 + 2α + 2α2, 1 + 2α, 1, 1
)

One can see that this expression coincides with that given by formula (16).
Now compute the PageRank using formula (11) to get

p = 1 − α

7

(
1 + 7

3α + 13
12α

2 + 1
2α

3, 1 + 1
2α + 5

12α
2 + 1

6α
3,

1 + 1
3α + 1

3α
2, 1 + 5

6α + 1
3α

2, 1 + α, 1, 1
)

Once again this expression can be easily obtained using formula (17). For instance, to 
compute the PageRank of the vertex 1 in the acyclic digraph (first term in the vector 
above) we look in the induced subgraph by the forest of paths on the closure of 1, and 
obtain the value

P1 = 1 − α

7

(
1 + 7

3α + 13
12α

2 + 1
2α

3
)

where 7
3 , 13

12 and 1
2 are each equal to the sum of the branching of the vertices of its 

corresponding level, namely, N1, N2 and N3, in the forest of paths (Ṽ , Ã). Similarly the 
PageRank of vertex 4 is

P4 = 1 − α
(

1 + 5
α + 1

α2
)

7 6 3
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Fig. 2. Rooted subtrees of (Ṽ , Ã) with branching.

Fig. 3. Acyclic digraph, its forest of paths and reduced digraph.

where the coefficients are obtained from the branching of the levels in the induced sub-
graph by the forest of paths on the closure of 4. Fig. 2 shows the induced subdigraph in 
the closure of the vertices 1, 2, 3, 4 and 5, of the prelabeled forest of paths in Fig. 1. �

The previous Theorem shows that Remark 4 holds for α-centrality as well as PageRank 
(provided one considers the sum bk of all branchings of vertices at level k) on acyclic 
digraphs; that is, one can do any rearrangement of links between consecutive levels of 
the network (being acyclic digraph) and the α-centrality or PageRank measure will be 
the same. Remark 5 can also be updated in this context of acyclic digraphs considering 
bk instead of nk.

However, Theorem 6 does not hold for either α-centrality or PageRank applied to 
measuring centrality of maximal vertices in acyclic digraphs. We give an example below 
where it occurs that removing vertices with out-degree greater than one from the last 
level can either increase or decrease the values of the α-centrality and/or PageRank 
measures of the root of the acyclic digraph. In Fig. 3 we have, on the left, an acyclic 
digraph with 2k + 3 vertices, k vertices from the last level (level N3) connected to the 
vertex 2. In the middle, we have the forest of paths with vertices weighted by their 
branching. The right-most figure shows the reduced digraph obtained by removing the 
k vertices of degree 2 at level N3.

With the notations of Theorem 19, for the α-centrality of the acyclic digraph in Fig. 3
we have

y1 = 1 + α + (k + 1)α2 + 2kα3, y2 = 1 + (k + 1)α + 2kα2,

y3 = 1 + 2kα, yi = 1, for i = 4, . . . , 2k + 3, and
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2k+3∑
i=1

yi = 2k + 3 + (3k + 2)α + (3k + 1)α2 + 2kα3

and for the acyclic digraph without the k vertices of outdegree 2 we have

y′1 = 1 + α + α2 + kα3, y′2 = 1 + α + kα2,

y′3 = 1 + kα, y′i = 1, for i = 4, . . . , k + 3, and
k+3∑
i=1

y′i = k + 3 + (k + 2)α + (k + 1)α2 + kα3

Then, in relative terms, we have

x′
1∑k+3

i=1 x′
i

≥ x1∑2k+3
i=1 xi

⇐⇒ y′1

2k+3∑
i=1

yi ≥ y1

k+3∑
i=1

y′i

⇐⇒ (α + 1)
(
α− 1 −

√
k + 1
k

)(
α− 1 +

√
k + 1
k

)
≤ 0

Hence,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
1∑k+3

i=1 x′
i

≥ x1∑2k+3
i=1 xi

for k ≤ 3, α ∈ (0, 1), and

x′
1∑k+3

i=1 x′
i

≤ x1∑2k+3
i=1 xi

for k > 3, α ∈
(

1+
√
k+1
k , 1

)

For the PageRank of the acyclic digraph in Fig. 3 we have q1 = 1 +α+(k2 +1)α2+ 3k
2 α3, 

q2 = 1 + (k2 + 1)α + 3k
2 α2, q3 = 1 + 3k

2 α, qi = 1, for i = 4, . . . , 2k + 3, and 
2k+3∑
i=1

qi =

2k+3 +(2k+2)α+(2k+1)α2 + 3k
2 α3, and for the acyclic digraph without the k vertices 

of outdegree 2 we have q′i = y′i, i = 1, . . . , k + 3. Then, in relative terms, we have

P ′
1∑k+3

i=1 P ′
i

≥ P1∑2k+3
i=1 Pi

⇐⇒ q′1

2k+3∑
i=1

qi ≥ q1

k+3∑
i=1

q′i ⇐⇒ (m− 3)α2 − 4α− 2 ≤ 0

Hence,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P ′
1∑k+3

i=1 P ′
i

≥ P1∑2k+3
i=1 Pi

for k ≤ 9, α ∈ (0, 1), and

P ′
1∑k+3 ′

≤ P1∑2k+3 for k > 9, α ∈
(

2+
√

2k−2
k−3 , 1

)

i=1 Pi i=1 Pi
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Fig. 4. Bidirectional tree Br and its associated infinite tree in two stages.

As a consequence, the notion of queue tree has no analogue in the context of acyclic 
digraphs.

In the remainder of this work we shall concentrate on the analysis of the behavior 
of PageRank in more general structures. Observing that α-centrality can be seen as the 
particular case of PageRank where the branching of all paths is 1, from each result about 
PageRank we will obtain a similar result for α-centrality as corollary.

5. The bidirectional case

We turn now to trees with bidirectional as well as unidirectional arcs. A digraph 
Br = (V, A) is a bidirectional tree with root r if its set of arcs A can be partitioned in 
two disjoint sets A1 and A2 such that:

• (V, A1) is a partial tree with root r (the underlying tree of Br), and
• if uv ∈ A2 then vu ∈ A1, and in this case we have the bidirectional arc (or 2-cycle) 

vuv.

Observe that for each arc uv ∈ A2 the corresponding bidirectional arc vuv defines an 
infinite number of walks ending at the root r (just as would do any cycle within a tree). 
Henceforth, to the effect of computing the PageRank of r with formula (13), we can view 
each arc uv ∈ A2 as a path of infinite length hanging from the vertex v, and containing 
alternatively copies of vertices u and v, where at each v hangs a copy of the sub-tree 
rooted at v, T v, and at each u hangs a copy of the remainder of the sub-tree rooted 
at u after removing from it the sub-tree T v, that is, T u \ T v. Note that T u (and T v) 
may contain bidirectional arcs. Extending this idea through all bidirectional arcs, we can 
view the bidirectional tree Br as its associated infinite tree. Fig. 4 shows a bidirectional 
tree Br with two disjoint bidirectional arcs, vuv and v′u′v′ (leftmost tree); next to it the 
bidirectional tree with an infinite branch corresponding to vuv; and the rightmost tree 
is the full infinite tree associated to Br.

This view of Br as an infinite tree makes it easier to understand the interpretations 
we do below of formula (13) adapted to our trees. In formula (13), the sum is taken 
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over all vertices w connected through a walk to a. In the associated infinite tree this 
walk is a unique path ρ connecting w with a. This path could have various incidence 
of bidirectional arcs. On the other hand, each bidirectional arc vuv, with u �= r and 
od(u) = 2, produces an infinite number of walks: u, uvu, uvuvu, . . . , with branching 
factors D(u) = 1, D(uvu) = 1/2, D(uvuvu) = 1/22, . . . ; hence, summing over all these 
walks we get

∑
ρ : u−→ u

αl(ρ)D(ρ) = 1 + α2

2 + α4

22 + · · · = 1
1 − α2/2

Therefore, if the path ρ : w −→ a in formula (13) contains q vertices, each meeting 
a bidirectional arc, the contribution to P(a) of the possible walks produced on ρ is 
1/(1 − α2/2)q. If the bidirectional arc is vrv, with od(r) = 1, and hence D(rvr . . . vr) = 1
for any walk on this arc, we get that the contribution to P(a) is 1/(1 − α2). All the above 
observations lead to the following result on computing the PageRank on bidirectional 
trees.

Theorem 21. Let Br = (V, A) be a bidirectional tree rooted at r.

(1) If od(r) = 0, then the PageRank of any a ∈ V is given by

P(a) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

2n(1 − α2/2)q (18)

(2) If od(r) = 1 with bidirectional arc rvr, then

P(a) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

2n(1 − α2/2)q , for a /∈ {r, v} (19)

and

P(a) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

2n(1 − α2/2)q−1(1 − α2) , for a ∈ {r, v} (20)

where in all cases, ρ : w −→ a is the unique path from the vertex w to a, and l(ρ) is 
the length of this path; n is the number of bidirectional vertices (i.e. with od(u) = 2) 
not being an end-vertex in ρ; q is the number of bidirectional arcs meeting ρ. �

In particular, if od(r) = 0, then n = q and so

P(r) = 1 − α

N

∑
w ∈ V

αl(ρ)

(2 − α2)q (21)
ρ:w −→ a
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And if od(r) = 1, then n = q − 1 and

P(r) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

(2 − α2)q−1(1 − α2)
(22)

For α-centrality formulas (18) to (22) coincide.

Corollary 22. Let Br = (V, A) be a bidirectional tree rooted at r. Then the α-centrality 
of a vertex vi ∈ V , i = 1, . . . , N , is given by

xi = 1 − α

N

∑
w ∈ V

ρ:w −→ vi

αl(ρ)

(1 − α2)q (23)

where ρ : w −→ vi is the unique path from the vertex w to vi, l(ρ) is the length of this 
path, and q is the number of bidirectional arcs meeting ρ. �

Our proposed formula for computing the PageRank of the root in the case of unidirec-
tional trees (Eq. (15)) is founded on Brinkmeier’s breadth-first search implementation 
of his analytical formulation (Eqs. (14) and (13)). We would like to have a result on the 
same spirit of counting by levels for bidirectional trees.

For a breadth-first search type of computation of PageRank on a bidirectional tree, 
we must classify somehow the vertices by levels of the tree. For each k > 0, the ver-
tices at level Nk = {vk1, . . . , vknk

} are characterize by the number of bidirectional arcs 
met by their paths which ends in the root, vki . . . r. Hence, nk = n0

k + · · · + nk+1
k , 

where nq
k denotes the number of vertices at level Nk having q bidirectional arcs meeting 

their paths to r. Some of these nq
k could be null. The non-null nq

k many vertices con-
tributes to the summation in equations (21) and (22) the quantities nq

kα
k/(2 − α2)q and 

nq
kα

k/(2 − α2)q−1(1 − α2) according to either case of od(r) = 0 or od(r) = 1. Thus, we 
have the following result.

Theorem 23. Let Br be a bidirectional tree rooted at r, with N vertices and height h > 0.

(1) If od(r) = 0, P(r) = 1 − α

N

h∑
k=0

k∑
q=0

nq
kα

k

(2 − α2)q

(2) If od(r) = 1, P(r) = 1 − α

N

h∑
k=0

k∑
q=0

nq+1
k αk

(2 − α2)q(1 − α2)

where q is the number of bidirectional arcs met by the path ending in r, but distinct from 
the bidirectional arc incidence with r, if such bidirectional arc exists. �
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Fig. 5. Examples of cyclical trees.

We can give a more succinct vectorial formulation of the previous result, if we develop 
the sums “by rows” (outmost sum) and group column terms in a vector.

Theorem 24. Let Br be a bidirectional tree rooted at r, with N vertices and height h > 0. 
Then

P(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − α

N

h∑
q=0

Δq · Λq

(2 − α2)q if od(r) = 0

1 − α

N

h∑
q=0

Δ′
q · Λq

(2 − α2)q(1 − α2) if od(r) = 1

where Δq = (nq
q, n

q
q+1, . . . , n

q
h), Δ′

q = (nq+1
q , nq+1

q+1, . . . , n
q+1
h ) and Λq = (αq, αq+1, . . . ,

αh). �
Corollary 25. Let Br be a bidirectional tree rooted at r, with N vertices and height h > 0. 
Then the α-centrality of the root r is given by

xr = 1 − α

N

h∑
k=0

k∑
q=0

nq
kα

k

(1 − α2)q = 1 − α

N

h∑
q=0

Δq · Λq

(1 − α2)q

where q is as in Theorem 23, Δq and Λq are as in Theorem 24. �
5.1. Case of s-cycles

In this section we generalize the computation of PageRank to bidirectional trees of 
height h > 1 on which we close permissible cycles of any length obtained by joining 
vertices from level Nj with vertices from level Nk, for 0 ≤ j < k ≤ h. In this way we can 
transform bidirectional arcs vuv into cycles vuvs−1 . . . v2v of longer length, where the arc 
uv closes the new cycle inserted in the rooted tree. Also the arc uv of the bidirectional 
arc vuv can be substituted by a new arc ut closing a larger path t . . . vu in the tree. In 
Fig. 5 we exhibit some examples of these transformations.

Formally we define a digraph Cr = (V, A) as a cyclical tree with root r, if its set of 
arcs A can be partitioned in two disjoint sets A1 and A2 such that:
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• (V, A1) is a partial tree with root r (the underlying tree of Cr), and
• if uv ∈ A2 then there is a path vsvs−1 . . . v1, beginning at vs = u, ending at v1 = v

and with intermediate vertices and arcs vi+1vi in A1, and in this case we have the 
s-cycle vuvs−1 . . . v2v.

We proceed to compute the PageRank of these cyclical trees. Similarly to the bidirec-
tional case, we have that each cycle vu . . . v of length l ≥ 2 and od(u) = 2 produces an 
infinite number of walks: u, uv . . . u, uv . . . uv . . . u, . . . , with branching factors D(u) = 1, 
D(uv . . . u) = 1/2, D(uv . . . uv . . . u) = 1/22, . . . ; hence, summing over all these walks 
we get

∑
ρ : u−→ u

αl(ρ)D(ρ) = 1 + αl

2 + α2l

22 + · · · = 1
1 − αl/2

Therefore, if the path ρ : w −→ a contains q vertices, meeting q cycles of length 
l1, l2, . . . , lq, respectively, then the contribution to P(a) of the possible walks produced 
on ρ is

1
1 − αl1/2 · 1

1 − αl2/2 · · · 1
1 − αlq/2

If the cycle is vr l. . . v, with od(r) = 1, and hence D(rv . . . r) = 1, we get that the 
contribution to P(a) is 1/(1 − αl).

Theorem 26. Let Cr = (V, A) be a cyclical tree rooted at r.

(1) If od(r) = 0, then PageRank for a vertex a ∈ V is given by

P(a) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

2n(1 − αl1/2) · · · (1 − αlq/2)

(2) If od(r) = 1 in the cycle rv1 . . . vlq−1r, then

P(a) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

2n(1 − αl1/2) · · · (1 − αlq/2) , for a /∈ {r, v1, . . . , vlq−1}

and

P(a) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

2n(1 − αl1/2) · · · (1 − αlq−1/2)(1 − αlq ) ,

for a ∈ {r, v1, . . . , vlq−1},
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where in all cases ρ : w −→ a is the unique path from w to a, and l(ρ) is the 
length of this path; n is the number of bidirectional vertices (i.e. with od(u) = 2) 
not being an end-vertex in ρ; q is the number of cycles meeting ρ and of lengths 
l1, l2, . . . , lq. �

In particular, if od(r) = 0, n = q, and

P(r) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

(2 − αl1) . . . (2 − αlq ) (24)

And if od(r) = 1, n = q − 1, and

P(r) = 1 − α

N

∑
w ∈ V

ρ:w −→ a

αl(ρ)

(2 − αl1) . . . (2 − αlq−1)(1 − αlq ) (25)

Corollary 27. Let Cr = (V, A) be a cyclical tree rooted at r. Then the α-centrality for a 
vertex vi ∈ V , i = 1, . . . , N , is given by

xi = 1 − α

N

∑
w ∈ V

ρ:w −→ vi

αl(ρ)

(1 − αl1) · · · (1 − αlq )

where ρ : w −→ vi is the unique path from the vertex w to vi, l(ρ) is the length of this 
path, and q is the number of cycles meeting ρ and of lengths l1, l2, . . . , lq. �
6. Rearrangements in rooted bidirectional and cyclical trees

Analogously to the case of unidirectional trees we shall analyze in this section the be-
havior of PageRank on bidirectional, and more general, cyclical trees when their topology 
is modified. Our first result shows that on a unidirectional tree changing unidirectional 
arcs to bidirectional enhances the PageRank value of the end-vertices of the transformed 
arc, but reduces the PageRank of the root of the tree.

Theorem 28. If in a unidirectional tree T r an arc vu, with u �= r, is changed to a 
bidirectional arc vuv, then P(u) and P(v) both increase, but P(r) decreases. The same 
holds for α-centrality.

Proof. We introduce some notation first. The term Px(T y) denotes the PageRank of 
vertex x in the tree T y with root y and np(T y) denotes the number of vertices at level 
Np in the tree T y. Now, assume that u is at level Nk in the tree T r and, hence, v ∈ Nk+1
(see Fig. 6).
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Fig. 6. Number of vertices by levels.

Then, we have that

Pr(T r) = 1 − α

N

h∑
p=0

np(T r)αp

= 1 − α

N

⎛
⎝ h∑

p=0
np(T r − T u)αp +

h∑
p=k

np(T u)αp

⎞
⎠

Therefore, if Br is the bidirectional tree obtained from T r by just changing the arc vu
to bidirectional arc vuv, using the results of Section 5, we have

Pr(Br) = 1 − α

N

⎛
⎝ h∑

p=0
np(T r − T u)αp + 1

2(1 − α2/2)

h∑
p=k

np(T u)αp

⎞
⎠ < Pr(T r)

which shows that the PageRank of the root r decreases. On the other hand, the Page-
Ranks of u and v are given by the equations:

Pu(Bu) = 1 − α

N(1 − α2/2)

h∑
p=k

np(T u)αp−k = 1
1 − α2/2Pu(T r) > Pu(T r)

Pv(Bv) = 1 − α

N(1 − α2/2)

⎛
⎝α

2

h∑
p=k

np(T u − T v)αp−k +
h∑

p=k+1

np(T v)αp−(k+1)

⎞
⎠

> Pv(T v)

For α-centrality, the corresponding expressions can be obtained replacing 1
2
(
1−α2

2

) by 

1
1−α2 in Pr(Br); 1

1−α2
2

by 1
1−α2 in Pu(Bu); 1

1−α2
2

by 1
1−α2 and α/2 by α in Pv(Bv). �

Using same arguments as given for the previous theorem, we can generalize the result 
to the case where the original tree is bidirectional, and some of its unidirectional arcs (if 
any) is promoted to being bidirectional.
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Fig. 7. Theorem 29.

Theorem 29. Let Br be a bidirectional tree, and let B′ r be the tree resulting from Br when 
a unidirectional arc vu, with u �= r, is changed to a bidirectional arc vuv (see Fig. 7). 
Then

1. Pu(B′ u) = 1
1 − α2/2Pu(Bu) > Pu(Bu).

2. Pv(B′ u) > Pv(Bu).
3. If v′u′v′ is a bidirectional arc intersecting the path uv1 . . . vk−1r, then Pu′(B′ r) <

Pu′(Br) and Pv′(B′ r) < Pv′(Br).
4. Px(B′ r) < Px(Br) for all vertex x in the path v1 . . . vk−1r.
5. In particular, Pr(B′ r) < Pr(Br).
6. The vertices which are neither contained in the path uv1 . . . vk−1r nor in the bidirec-

tional arcs intersecting this path preserve their original PageRank.

Similar inequalities hold for α-centrality changing (1 − α2/2) by (1 − α2). �
Theorems 28 and 29 suggest that in order to increase the PageRank of the root 

r of a tree we have to directly promote to bidirectional the arcs incidence to r. The 
consequences of this manipulation are summarized in the following theorem, which is a 
direct consequence of the two previous results.

Theorem 30. Let Br be a bidirectional tree, with od(r) = 0, and let B′ r be the tree 
resulting from Br when one of its arcs vr is changed to a bidirectional arc vrv. Then

1. Pr(B′ r) = Pr(Br)
1 − α2 .

2. Pv(B′ r) = Pv(Br) + αPr(Br)
1 − α2 .

3. Pr(B′ r) ≥ Pv(B′ r) ⇐⇒ Pr(Br) ≥ (1 + α)Pv(Br).
4. All other vertices (apart from r and v) preserve their PageRank. �

Note that, for α = 0.85, we have that Pr(B′ r) ≈ 3.6Pr(Br), Pv(B′ r) − Pv(Br) ≈
3.06Pr(Br) and that the PageRank of the root r is kept greater than the PageRank of 
the vertex v if and only if the original PageRank of r is greater than 1.85 times the 
PageRank of v.



A. Arratia, C. Marijuán / Linear Algebra and its Applications 504 (2016) 325–353 351
Fig. 8. Example 32, case od(r) = 0.

Remark 31. For cyclical trees we have results similar to Theorems 28–30 but replacing 
1/(1 − α2/2) by 1/(1 − αl/2) for PageRank, or replacing 1/(1 − α2) by 1/(1 − αl) for 
α-centrality. �

Now, the pruning of the lower levels of a bidirectional tree has mix consequences for 
the α-centrality and the PageRank of the root, in the same way as it happened for acyclic 
digraphs. The following example illustrates the possible outcomes of pruning lower levels 
of a bidirectional tree.

Example 32. Consider the tree shown in Fig. 8, with root labeled 1 and out-degree 0. 
We should compute the PageRank of vertex labeled by 1 before and after removing the 
m vertices of the last level. Applying Equation (21) we get

P(1) = 1 − α

N

(
1 + 2α + 2α2 + α3 + α4 + mα5

2 − α2 + α2 + 2α3 + nα4

(2 − α2)2

)

where N = n + m + 10. Now, pruning the m vertices of the last level, we get that the 
new PageRank of 1 in the pruned tree is

P ′(1) = 1 − α

N ′

(
1 + 2α + 2α2 + α3 + α4

2 − α2 + α2 + 2α3 + nα4

(2 − α2)2

)

and N ′ = n + 10. Then, for α = 0.85, we have that

P ′(1) > P(1) ⇐⇒ m(1443654850 − 19126309n) > 0

which holds for n ≤ 75, and independently of the positive value of m. Thus, for n ≤ 75
(n ≥ 76) and for all m ≥ 1, successive removal of the m vertices of the last level 
increments (decrements) the PageRank of the root, P(1). By similar arguments and 
using equation (22), in the tree shown in Fig. 9, which is an example of a tree with root 
having out-degree 1, we have that for n ≤ 31 (n ≥ 32) and for all m ≥ 1, successive 
removal of the m vertices of the last level increments (decrements) P(1). �
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Fig. 9. Example 32, case od(r) = 1.

The previous results give us some clues on ways of optimizing the α-centrality or Page-
Rank of tree-like organized networks. Obviously these rules for rearrangement should 
apply insofar as the context allows.

Rule 1 To augment either eigenvector-based centrality value of the root, transform in-
coming arcs into bidirectional ones. Furthermore, link the root with vertices 
below in the tree (so that cycles passing by the root are built).

Rule 2 To augment either eigenvector-based centrality value of a vertex u different from 
the root, link u with a bidirectional arc to each one of the vertices on the subtree 
with root u (hence obtaining a cyclical tree). Keep in mind that this enhances the 
α-centrality or PageRank of u but reduces the corresponding score of the root. 
One may interpret this action as linking an individual with all its subordinates 
in a hierarchical organization.

7. A note on fast computation of PageRank

There are several approaches in the literature to the task of speeding up the calculation 
of PageRank, based upon the following general scheme (see, for example, [8,1,5]):

Partition the directed network into local sub-nets; then compute some independent 
ranking for each local sub-net, which will apply to the whole sub-net treated as a unit; 
and then compute the ranking of the digraph of sub-nets.

In [1] and [5] the local splitting of the directed network is done in strongly connected 
components (SCC), and further in [5, Thm 2.1], it is shown that the PageRank can be 
calculated independently on each SCC, provided we know the PageRank of all vertices 
outside the SCC, but directly linking to vertices in the SCC.

We observe that if a directed network D = (V, A) is a cyclical tree with root r then 
the set of arcs A can be partitioned in two disjoint sets A1 and A2 such that:

• (V, A1) is a partial digraph whose condensation digraph is a tree of SCCs with 
distinguished roots, where each pair of adjacent SCCs are linked by a unique arc and 
the maximal SCC contains the root r (the underlying digraph of D); and
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• if uv ∈ A2 then there is a path vsvs−1 . . . v1, beginning at vs = v, ending at v1 = u

and with intermediate vertices and arcs vi+1vi in A1.

Therefore, cyclical trees with root give a simple splitting of a directed network in the 
way of [1] and [5], namely as a tree of SCCs, with the additional strongest condition of 
having a single link between components, which by the previously mentioned result of [5], 
can have PageRank computed independently in each SCC, and on a very simple way, 
provided we know the PageRank of their descendants in the topological structure of the 
tree. This suggests computing PageRank in parallel and through layers, as is proposed 
in [5, §3], following an iterated process on the tree from a top level Nh down to the root 
at N0. The cyclical tree is a suitable structure for the application of this process.
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