
Contemporary Mathematics

Evaluation Codes and Plane Valuations

J. I. Farrán and C. Galindo

Abstract. Evaluation codes are a particular construction of error-correcting
codes, consisting of evaluating functions at rational places of certain geometric
objects. Classical examples are Reed-Muller or Reed-Solomon codes. In recent
years many other constructions have arisen, like algebraic geometry codes (AG
codes in short), toric codes or complete intersection codes. This paper is
addressed to survey the above mentioned cases, together with evaluation codes
coming from order functions, with a special emphasis on a recent construction
of codes obtained from plane valuations.
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1. Introduction

Evaluation codes are error-correcting codes constructed by evaluating functions
from some suitable vector space at rational places of some geometric object. Very
important families of error-correcting codes, as Reed-Muller, Reed-Solomon and AG
codes, can be regarded as families of evaluation codes. Facts as the usefulness of
Reed-Solomon codes or the existence of AG codes attaining the Varshamov-Gilbert
bound [51] explain the importance of these codes. We devote this paper to review
some of the most interesting evaluation codes, laying special emphasis on those
obtained with plane valuations.

The introductory part of Section 2 defines this class of codes, explains the main
problems which appear for constructing them, and presents their most known and
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classical examples. Afterwards in successive subsections, we define and provide the
main properties and results on the parameters of AG codes, codes defined over
higher dimensional varieties, toric and differential codes, and codes determined by
order functions. We do not show proofs of the results, but give references where the
reader can check the details about our statements. AG codes are surely the most
studied among the codes that we present here. They enjoy the advantages of being
supported in deep theorems of algebraic geometry, and having efficient decoding
algorithms. Indeed, the so-called Berlekamp-Massey-Sakata algorithm [5, 37, 42]
has been used to get fast implementations of both, the modified algorithm given in
[32, 45] (see also [33, 30]), and the majority voting scheme for unknown syndromes
of Feng and Rao [16], [47] (see also [43, 44]). Codes given by order functions were
introduced in [29] to simplify AG codes given by divisors defined with a unique
point. However, if one allows semigroups to be different from that of positive
integers, then the family of obtained codes is very enlarged. These new codes admit
similar decoding methods as the above mentioned for AG codes, and Feng-Rao type
bounds for their minimum distances can be given. In addition, Section 2 devotes
a subsection to codes defined by varieties different from curves and to toric codes
introduced by Hansen and studied, among others, by Ruano. We also consider the
so-called differential codes. Although, there is no known procedure for decoding
them, they admit good estimates of their parameters thanks to Cayley-Bacharach
Theorem.

In all the above cases, one needs to solve some computational problems for
constructing evaluation codes. For the case of AG codes, computations related to
algebraic curves are required and Section 3 is addressed to analyze such computa-
tions for the special case of having plane curves. Thus, we study first the resolution
of singularities of plane curves and how to use it to construct codes using the desin-
gularized curves. We introduce the Hamburger-Noether expansions, which provide
both the desingularization at a singular point and natural parameterizations of the
corresponding branches . We also remark that it is possible to compute a vector ba-
sis of the so-called Riemann-Roch spaces by means of the Brill-Noether algorithm.
This is the crucial step of the construction of AG codes, although this method only
applies for plane curves, since it is based on the adjunction theory. Furthermore,
in this section we study the particular situation of curves with only one point at
infinity. That is a very common case in coding theory examples, for which we
show an alternative way to construct the Weierstrass semigroups with the aid of
the Abhyankar-Moh algorithm. Finally, the use of order functions as an elementary
approach to AG codes is treated.

Order functions and, especially, those named weight functions were defined
over the semigroup of nonnegative integers with the aim of doing understandable
one point AG codes for non expert in algebraic geometry people. However, the
families of the obtained codes are much increased simply by extending their value
semigroups. We know few things about these order functions, but this is not the
case for some similar objects as valuations. They have been studied because of
their relation with singularity theory in algebraic geometry, and plane valuations
are classified in [46] (see also [52]). As a consequence, valuations seem to be
one of the best sources for obtaining weight functions. In [20, Proposition 2.2],
one can see how to get weight functions from valuations and, in [21], a class of
plane valuations that is well-adapted to these purposes, namely plane valuations
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at infinity, is introduced. Semigroups of weight functions defined by them are easy
to handle, because they are generated by the so-called (generalized) δ-sequences.
The corresponding valuations are related to curves with only one place at infinity,
which have useful properties for coding theory as one can see in [8]. To construct
the above mentioned weight functions, one only needs certain sequences of values
in Z2, Q or R, which are the mentioned δ-sequences. Order bounds for the codes
of the corresponding dual families and some well-behaved examples can be seen in
[21].

The previous paragraph has introduced the objects we will study in Sections 4
and 5. In Section 4, we recall the concept of valuation. Unfortunately, a complete
classification is only available for the planar case, and this is the reason for using
plane valuations. We recall this classification and afterwards introduce a subclass
of the set of plane valuations, the so-called plane valuations at infinity, which is
suitable for coding purposes. Valuations in this subclass intersect all the types of
valuations of the mentioned classification of valuations. A remarkable result by
Matsumoto [38] asserts that order domains corresponding to one-point AG codes
are affine coordinate rings of algebraic curves with exactly only one place at in-
finity. Our subclass of plane valuations is closely related to such algebraic curves,
and the corresponding valuations determine weight functions whose attached value
semigroup is spanned by δ-sequences. To get our codes, we only need a δ-sequence
and a family of points to be evaluated. Since our codes are given by order func-
tions, they admit Feng-Rao type bounds and have efficient decoding algorithms. A
detailed explanation of the above facts and some explanatory examples are given
in Section 4 and in the first subsection of Section 5.

The mentioned codes, over a finite field Fq, have length at most q2, but codes
given by weight functions (an important property due to their advantages for the
decoding procedure) of arbitrary length can be also made if one considers a number
of plane valuations at infinity, which depends on the length of the code one desires.
We explain this fact, developed in [22], in the second subsection of Section 5, where
some examples are added to make easier its reading.

2. Evaluation codes

Evaluation codes are a very common type of error-correcting codes. The general
idea of their construction is quite simple:

(1) Take a geometric object χ defined over a finite field Fq.
(2) Take a set P = {P1, . . . , Pn} with n rational places in χ, i.e. defined over

the base field Fq.
(3) Consider a (finite dimensional) vector space L with rational functions on

χ which are well-defined over the points in P .
(4) Evaluate the functions of L at the points in P

ϕ : L → Fn
q

f 7→ f(P1, . . . , Pn)

obtaining the code C := Imϕ as the image of this linear map.

This construction is general, but in order to construct good codes in this way
one needs to choose suitable χ, P and L so that the construction of such codes
is computationally effective, coding and decoding are efficient tasks, and good es-
timates for the parameters can be given from the mathematical properties of the
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involved geometric objects. To this end, the main practical problems to solve,
depending on the nature of χ, are the following:

(A): Find sufficiently many places P in χ, if we want the length n to be
sufficiently large.

(B): Compute a basis of the vector space L.
(C): Evaluate functions in L at points of P . This is usually an easy task, but

not always (see Section 3).
(D): Obtain the generator matrix of the code in order to compute the coding

map. This follows immediately from tasks (B) and (C).
(E): Get good estimates for the dimension and the minimum distance of the

code.
(F): Design efficient decoding procedures, for both error-detection and error-

correction. Tasks (E) and (F) strongly rely on special geometrical properties of
the chosen object χ.

Practical efficiency of these codes is usually achieved by dividing all the coding
and decoding tasks into two parts:

• Preprocessing, where we group the hard tasks of the coding and decod-
ing algorithms. These computations are to be performed only once from
the geometric data of the construction, and they can be time consuming
since they are done before the real-time applications (namely, encoding
information and correcting errors from a received transmission).

• Coding and Decoding algorithms themselves must be fast for real ap-
plications, once all the preprocessing is previously performed (efficiency
means polynomial time, and real time applications require complexity at
most O(n3)).

In this section, we will introduce the following constructions of evaluation codes:
AG codes (where algebraic curves are used as the geometric object χ), variety codes
(using higher dimensional varieties instead of curves, including complete intersec-
tion varieties), toric codes (using toric varieties), differential codes (using the sin-
gular locus of a differential form), and codes given by order functions. Beforehand,
we present two very classical examples which are in fact evaluation codes.

Example 2.1 (Reed-Solomon codes). Reed-Solomon codes can be defined as
primitive BCH codes over Fq with n = q − 1 (see [36]). BCH codes are a very
interesting family of codes where the minimum distance can be estimated just by
imposing conditions on the involved polynomials (designed minimum distance).
The advantage of Reed-Solomon codes is that the n-th root of unity used, α, is in
the base field, so that all the computations with the code are performed inside Fq

and no field extension is needed. Nevertheless, the main disadvantage is that the
length is bounded to be q − 1, so that when the finite field is fixed we cannot get
codes with arbitrarily large length n and, in particular, there is no Reed-Solomon
code over the binary field F2.

Anyway, Reed-Solomon codes are widely used in real life over extensions F2m of
F2. For example, concatenated Reed-Solomon codes over F256 are used to correct
both random errors (inner code) and burst codes (outer code) in the CD and DVD
players. On the other hand, Reed-Solomon codes are MDS, meaning that they
satisfy the equality k + d = n + 1, k and d being respectively the dimension and
the minimum distance of the code. Notice that the previous equality means that
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Reed-Solomon codes attain the Singleton bound (see [36]). Finally, Reed-Solomon
codes can be efficiently decoded, so that they are suitable for real life applications.

Reed-Solomon codes were originally defined as evaluation codes by evaluating
polynomials f of degree at most k − 1 at all the nonzero points of Fq. Thus, their
words have the form (f(1), f(α), . . . , f(αq−2)). This way is more convenient for
encoding k information symbols (in fact, the coefficients of such a polynomial are
precisely the information symbols). The reader can check for example in [36] that
both definitions of Reed-Solomon codes are equivalent. Note also that the dual of
a Reed-Solomon code is again a Reed-Solomon code.

Example 2.2 (Reed-Muller codes). Let χ = Fm
q be the affine space over the

finite field Fq, and take all rational points P = Fm
q for evaluation. Consider the

polynomial space V = Fq[X1, . . . , Xm] with infinite dimension, and evaluate such
polynomials at P

ϕ : Fq[X1, . . . , Xm] → Fn
q ,

where n := qm is the number of all affine points (i.e., we consider polynomial
functions). One can easily check that the map ϕ is surjective. Note that for q = 2
such polynomial functions look like truth tables .

The q-ary Reed-Muller code of order r and length n = qm is denoted by
RM q(r,m), and it is defined as the image by the above evaluation map of the
space of polynomials with degree at most r, that is L := Fq[X1, . . . , Xm](r). Notice
that when evaluating in Fq we have Xq

i ≡ Xi, so that we can actually work in the
ring

Fq[X1, . . . , Xm]/〈Xq
1 −X1, . . . , X

q
m −Xm〉

of the so-called reduced polynomials. For q = 2, reduced polynomials are called
Boolean functions.

One easily checks that for r > m(q− 1), RM q(r,m) = Fn
q holds, since reduced

polynomials have degree at most m(q − 1) and the evaluation map is surjective.
Computing parameters of Reed-Muller codes is just a combinatorial problem (see
[36] for the details). In fact, the dimension of RM q(r,m) is just

k =

r
∑

t=0

m
∑

i=0

(−1)i
(

m
i

)(

t− iq +m+ 1
t− iq

)

.

For q = 2, it happens that the dimension of RM2(r,m) is

k =

r
∑

t=0

(

m
t

)

.

In addition, the minimum distance of RM q(r,m) for 0 ≤ r ≤ m(q − 1) is d =
(q − s)qm−ν−1, provided r = ν(q − 1) + s with 0 ≤ s < q − 1. Finally, we remark
that Reed-Muller codes are efficiently decoded by using majority logic.

2.1. AG codes.
Algebraic Geometry codes (AG codes in short) can be considered as a gener-

alization of Reed-Solomon codes. In fact, Reed-Solomon codes can be constructed
from the projective line, whereas AG codes come from any arbitrary projective
curve. To define an AG code, we take as geometric object an absolutely irreducible
projective smooth algebraic curve χ over Fq, consider a set P of rational points
in χ as places to evaluate at, and the Riemann-Roch space L(G) will be the set
of functions to be evaluated, choosing the divisor G so that these functions are
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well-defined at the points in P . Although the details are referred to [29], we are
going to give some basic information about these codes.

Let Fq(χ) be the function field of χ over Fq, and denote by Ω(χ) the space of
differential forms over Fq. One can consider three families of points on χ:

Rational points: Those with coordinates in the base field Fq.

Geometric points: Those with coordinates in the algebraic closure Fq.
Closed points: Conjugation classes of geometric points under the Frobe-

nius map.

A (rational) divisor of χ is any formal linear combination of closed points with
integer coefficients. For any divisor H one considers the function space

L(H) := {ϕ ∈ Fq(χ) | (ϕ) +H ≥ 0} ∪ {0}
where (ϕ) denotes the divisor of zeros and poles of the function ϕ, and ≥ 0 means
to be effective (that is, every nonzero coefficient of the divisor is positive).

Now one takes two divisors D = P1 + . . . + Pn and G =
∑

P

nPP such that

supp (G) ∩ supp (D) = ∅ and consider the Fq-linear evaluation map

evD : L(G) → Fn
q

ϕ 7→ (ϕ(P1), . . . , ϕ(Pn))

so that the (evaluation) AG code is defined by the image

CL = CL(D,G) := im (evD).

The dual of CL is

CΩ = CΩ(D,G) := CL(D,G)
⊥,

which can be regarded either as a code obtained by evaluating residues of certain
differential forms in Ω(χ) or, again, as an evaluation AG code for a suitable divisor
(see [29]). Estimates of the parameters of AG codes can be obtained by using the
Riemann-Roch Theorem in the following way:

Theorem 2.3 (Goppa). Assume that 2g − 2 < deg G < n, then the map evD
is injective, and one has

k(CL) = deg G+ 1− g and d(CL) ≥ n− deg G := d∗(CL).

k(CΩ) = n− deg G+ 1− g and d(CΩ) ≥ deg G+ 2− 2g := d∗(CΩ).

The numbers d∗ in the above result are called the (corresponding) Goppa dis-
tances, and they play the same role as the designed minimum distances in BCH
codes.

On one hand, a generator matrix for CL(D,G) is




ϕ1(P1) . . . ϕ1(Pn)
. . . . . . . . .

ϕk(P1) . . . ϕk(Pn)



 ,

where {ϕ1, . . . , ϕk} is a basis of L(G) over Fq. By “duality”, the above matrix is
also a parity-check matrix for CΩ(D,G).

On the other hand, it is possible to prove that CΩ(D,G) = CL(D,W +D−G)
for a suitable canonical divisor W (see [29]). Thus, just by using linear algebra,
we can easily compute a generator matrix for CΩ(D,G) and a parity-check matrix
for CL(D,G). This efficiently solves the problem of encoding and error-detection,
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assumed that we are able to compute bases for the corresponding Riemann-Roch
spaces .

Example 2.4 ([29]). Consider the plane curve χ over F4 given by the equation

X3 + Y 3 + Z3 = 0.

Since the cube of any element in F4 is 0 or 1, then all the rational points in χ have
a projective coordinate equal to 0, so that we may take one of the other coordinates
equal to 1. Thus, it is easy to list the 9 rational points of this curve (see below).

Now take Q = (0 : 1 : 1). By the Riemann-Roch theorem we get that the
dimension of L(3Q) equals 3 (note that the curve is nonsingular and its genus is
g = 1). In fact, a basis of this Riemann-Roch space is

{1, X

Y + Z
,

Y

Y + Z
}.

Thus, by using the remaining n = 8 rational points for evaluation, and denoting
by α the primitive element of F4, we may compute a generator matrix for the
corresponding AG code as

G =





1 1 1 1 1 1 1 1
0 0 1 α α2 1 α α2

α2 α 0 0 0 1 1 1



 ,

where the list of points is

P1 = (0 : α : 1) P2 = (0 : α2 : 1) P3 = (1 : 0 : 1) P4 = (α : 0 : 1)
P5 = (α2 : 0 : 1) P6 = (1 : 1 : 0) P7 = (α : 1 : 0) P8 = (α2 : 1 : 0).

Finally, note that Goppa theorem implies that d ≥ 5, and looking atG the minimum
distance is exactly d = 5.

Dual codes given by G = mP∞, being m > 0 and P∞ an “extra” rational
place (i.e. a rational point not used for evaluation), are called one-point (AG)
codes . Their Goppa distances can be improved by the so-called Feng-Rao distances ,
defined on the Weierstrass semigroup of χ at P∞. Such semigroup is nothing but
the complementary in N of the (finite) set of Weierstrass gaps of χ at P , where a
positive integer m is called a gap if and only if L(mP ) = L((m− 1)P ) (see [18] for
further details).

In fact, let G = mP∞ and ΓP = {ρi | i ∈ N} be an increasing enumeration of
the elements in the Weierstrass semigroup of χ at P∞ (i.e., 0 = ρ1 < ρ2 < ρ3 · · · ).
Denote Cr := C(ρr), where C(m) := CΩ(D,mP∞). If we fix a function gi with
only one pole at P∞ of order ρi, then {g1, . . . , gr} is a basis of L(ρrP∞). Thus, the
matrix Hr with rows hi := evD(gi), 1 ≤ i ≤ r, is a parity-check matrix for Cr. The
dimension of these codes is given by n− kr where kr = card (ΓP ∩ [0, ρr]), and the
minimum distance satisfies dr ≥ δFR(ρr+1) ≥ d∗r , where

δFR(ρr) := min {ns | s ≥ r},
being nr := card Nr and Nr := {(i, j) ∈ N2 | ρi + ρj = ρr+1}.

The integer δFR(ρr) is called the Feng-Rao distance of the code Cr. This
estimate for the minimum distance is usually better than the Goppa distance. The
main interest of these codes comes from the fact that they have a very fast decoding
procedure by means of the so-called Feng-Rao (majority) decoding algorithm (see
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[29]). In general, AG codes can be decoded efficiently with preprocessing. The
main computational problems involved in this preprocessing are the following:

(1) Find curves with sufficiently many rational places, (so that n is large
enough), and compute explicitly such points with the aid of Groebner bases tools.

(2) Compute Weierstrass semigroups and their associated functions or, in gen-
eral, compute bases for the Riemann-Roch spaces L(G). This can be done with the
aid of the Brill-Noether algorithm, when plane curves are used (see [9]).

(3) Compute pole orders, and evaluate functions at rational places.
(4) Compute the Feng-Rao distance (this can be easily done with numerical

semigroup techniques, see [8]).

We will provide more details about some of these problems in Section 3.

2.2. Codes on varieties.
We outline here two different approaches in order to generalize AG codes to

higher-dimensional varieties. The first one is more algebraic, and the second one
has a more geometric nature.

The algebraic approach is referred to [24]. Consider an ideal I ⊆ Fq[X1, . . . , Xm],
define

Iq := I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉 and Rq := Fq[X1, . . . , Xm]/Iq

and consider V = VFq
(Iq) = V

Fq
(Iq) = {P1, . . . , Pn} the variety of Iq over the

algebraic closure Fq of Fq. Define an evaluation Fq-linear map ev : Rq → Fn
q given

by
ev(F + Iq) = (F (P1), . . . , F (Pn)).

Notice that this map is surjective. Finally, for a linear subspace L ⊆ Rq of finite
dimension, we get the code C(I, L) = ev(L) and its orthogonal code C(I, L)⊥.

Groebner bases theory is the main tool to work with these codes. We state
here the main properties of these codes (see [24] for further details):

(1) The points Pi of the variety V are computed with a combination of Groebner
basis calculations and triangulation procedures.

(2) The length of the codes is given by the cardinality of the so-called footprint
∆(Iq) of the ideal Iq, where the footprint of an ideal J ⊆ Fq[X1, . . . , Xm], for a fixed
monomial ordering, is defined as the set of monomials in Fq[X1, . . . , Xm] which are
not the leading monomial of any polynomial in J .

(3) Since the evaluation map is injective, the dimensions of the mentioned codes
are

dim C(I, L) = dim (L),
dim C(I, L)⊥ = n− dim (L).

(4) The minimum distance of the code C(I, L) can also be estimated by means
of footprints and well-behaving bases.

(5) Finally, the minimum distance of the code C(I, L)⊥ can be estimated by
an analogous of the Feng-Rao bound, also in terms of footprints and well-behaving
bases. For the special case when Rq is an order domain, one retrieves the classical
Feng-Rao distance in terms of some numerical semigroups (see [29]).

We finish this section summarizing the geometric approach for constructing
evaluation codes from higher dimensional varieties given in [34]. Let χ ⊆ Fm

q be an
algebraic variety and S = {P1, . . . , Pn} a finite set of rational points of χ. Consider
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F an Fq-vector space (with finite dimension) of rational functions on χ, so that
these functions are well-defined on S. Then, the corresponding evaluation code is
defined as the image of the linear map

evS : F → Fn
q

f 7→ (f(P1), . . . , f(Pn))

and the corresponding dual code is obtained by orthogonality. Now the problem for
constructing these codes is far more complicated and strongly depends on the nature
of the variety χ. Even though there are general bounds for the parameters, the best
results can be obtained by considering special varieties like quadrics, Hermitian
hypersurfaces, Grassmannians and flag varieties, ruled surfaces or Deligne-Lusztig
varieties.

2.3. Toric codes.
Toric codes are constructed from the so-called toric varieties. In fact, compu-

tations with this kind of varieties are reduced to combinatorics, so that toric codes
are suitable for explicit and effective constructions. Indeed, as we will see later, the
construction of toric codes is reduced to evaluate monomials inside a polytope at
points of the algebraic torus (i.e., points with nonzero coordinates). The details of
this section are referred to [39].

The construction of toric codes is as follows: Consider a (rational) polytope
P over Fq, with dimension r ≥ 2, let XP be the associated toric variety (which
is a regular variety) and DP the corresponding Cartier divisor over XP . For any
t ∈ T = (F∗

q)
r in the algebraic torus T , the rational functions in H0(XP ,O(DP )) can

be evaluated at t and we define the toric codes by evaluating the rational functions
of H0(XP ,O(DP )) at the (q − 1)r points of the torus T = (F∗

q)
r, namely

evT : H0(XP ,O(DP )) → (Fq)
card T

f 7→ (f(t))t∈T ,

obtaining the toric code CP associated to the polytope P as the image of the above
linear map. The length of CP is obviously card T = (q − 1)r.

Note that H0(XP ,O(DP )) is a Fq-vector space of finite dimension, with basis
{χu | u ∈ P ∩M}, M being a lattice isomorphic to Zr for some r, and where χu

denotes a Laurent monomial Xu1

1 · · ·Xur
r (see [39] for further details). Basically,

up to an isomorphism, M consists of the of integer points in the corresponding
ambient affine space where the polytope is embedded. In other words, this basis
consists of those monomials whose (integer) exponents are inside the polytope P . In
particular, the computation of integer points inside polytopes involves algorithms
of combinatorial geometry.

Thus, a generator system for the code CP is just {(χu(t))t∈T | u ∈ P ∩M}, and
this becomes a basis if and only if the evaluation map is injective. In other words,
encoding procedures are described in terms of combinatorics.

We will explicitly show how to get such a basis, even without the injectivity
condition. Let P be a polytope and CP the associated toric code. For every u ∈
P ∩M , write u = cu + bu with cu ∈ H = {0, . . . , q− 2}r ⊂M and bu ∈ ((q − 1)Z)r

and denote u = cu and P = {cu | u ∈ P} ⊂ P ∩M . The kernel of the evaluation
map is generated by

{χu − χu′ | u, u′ ∈ P ∩M, cu = cu′},
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so that a basis of CP is just {(χcu(t))t∈T | u ∈ P ∩M}. As a consequence, the
dimension of CP is precisely

k = card {u | u ∈ P ∩M} = card P .

The polytope P satisfies the injectivity condition when for all u, u′ ∈ P ∩M ,
one has that u 6= u′ implies cu 6= cu′ (i.e. the evaluation map evT is injective).
In such case, the code CP has dimension k = card (P ∩M), that is precisely the
number of integer points inside the polytope P . Notice that there exist polynomial
algorithms to count integer (lattice) points inside a polytope (see [12]). Moreover,
for plane polytopes, Pick’s formula [3] holds, namely

card (P ∩M) = vol2(P ) +
per(P )

2
+ 1,

where vol2 is the planar Lebesgue volume, and per(P ) the number of lattice points
in the border of the polytope. Notice that the above formula is true whenever all
the vertices of the polytope P are in the lattice M .

Example 2.5 ([41]). Consider the plane polytope with vertices (0, 0), (b, 0),
(2b, b), (2b, 2b), (b, 2b) and (0, b) with b < q − 1. The length of the corresponding
toric code is n = (q − 1)2 and the evaluation map is injective because of the
assumption b < q− 1. On the other hand, by applying Pick’s formula one gets that
the dimension equals to

k = vol2(P ) +
per(P )

2
+ 1 = 3b2 + 3b+ 1.

Example 2.6. Consider F7 and the plane polytope with vertices (0, 0), (4, 1)
and (1, 4). In this case, the length of the toric code is n = 36 and we may list all
the monomials:

{1, XY,XY 2, XY 3, XY 4, X2Y,X2Y 2, X2Y 3, X3Y,X3Y 2, X4Y }
Finally, we have to evaluate to obtain a generator matrix of such code.

We add that, in the literature, one can found several ways to estimate the min-
imum distance of these codes, namely using combinatorics and elementary compu-
tations (see [31]), mixed volumes of polytopes (see [41]), Intersection Theory (see
[28] and [41]), Minkowsky sums (see [35]), and the Minkowsky length (see [49]).

As an example, we briefly show how to bound the minimum distance with the
aid of Minkowsky sums. The Minkowsky sum of two polytopes P and Q is the set
containing the pointwise sums of their points P+Q := {p+q | p ∈ P, q ∈ Q}. Let P
be a polytope with P ∩M ⊆ {0, . . . , q−2}r, and take q ≫ 0 a large enough positive
integer. Consider the largest positive integer l such that there exists a polytope
Q ⊂ P which is the Minkowsky sum of l non-trivial polytopes Q = P1 + · · · + Pl,
non-trivial meaning that all the polytopes have positive dimension. Then, there
actually exists such a polytope Q ⊂ P satisfying

d(CP ) ≥
l

∑

i=1

d(CPi
)− (l − 1)(q − 1)2.

We also notice that an upper bound can be obtained in a similar way (see [35] for
the details).

As a final remark, we note that a decoding procedure for these codes is feasible
and efficient. This procedure makes use of order functions (described later in this
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paper) and the Feng-Rao majority decoding algorithm (see the details in [4] and
[29]).

2.4. Differential codes.
We devote this section to describe a recent construction of evaluation codes

from a completely new point of view. Here, we evaluate polynomials up to a
certain degree at some singular points of an algebraic differential equation over a
finite field (the details are referred to [10]). In this case, the decoding problem is not
yet solved, although the construction provides good estimates for the parameters
via cohomology theory and the Cayley-Bacharach Theorem.

More precisely, take P1, . . . , Pn points in the affine plane A2 which are rational
over Fq. For an integer m > 0, denote by Fq[x, y]≤m the set of polynomials with
degree at most m, and consider the (linear) evaluation map given by

E : Fq[x, y]≤m −→ Fn
q

f 7→ (f(P1), . . . , f(Pn)).

In general, it is not easy to estimate the parameters of the code Em := Im(E).
Nevertheless, we will consider the special case where the points P1, . . . , Pn lie in
the singular locus of a foliation.

In fact, let (X : Y : Z) be homogeneous coordinates on the projective plane
over Fq, P

2 := P2
Fq
. A foliation F of degree r ≥ 0 on P2 can be given by a differential

form Ω = AdX+BdY +CdZ, where A,B,C are homogeneous polynomials of degree
r+1 with no common factor and satisfying the Euler condition XA+Y B+ZC = 0.
Notice that it corresponds locally to an algebraic differential equation.

The singular scheme of F is the zero-dimensional closed subscheme of P2 given
by the indeterminacy ideal I of the polarity map Φ, i.e. the ideal I = (A,B,C). In
such points, the gradient of the differential form is not well-defined. This singular
locus is computed in practice from Ω by means of Groebner basis computations.

The following result, proved in [11], shows that we do not actually need the
foliation, but just a set of points satisfying some geometric conditions. In fact, a
set of points Z = Z(I) is the singular locus of a foliation in P2 with degree r ≥ 2
if and only if the following conditions hold:

(1) There are at least 3 independent divisors of degree r + 1 passing through
all the points of Z.

(2) For each 1 ≤ j ≤ r − 2 there is no subset with (r − j)(r + 1) points of Z
lying on a divisor of degree r − j.

(3) There is no subset of r + 2 points of Z lying on a (projective) line.

Now, let F be a (projective) foliation of degree r ≥ 2 over Fq, and assume
that the singularities of F are reduced and rational over Fq. Thus, the support of
Z(I) consists of r2 + r+1 different rational points of P2, r being the degree of the
foliation. This implies r ≤ q, since the number of rational points of P2 is precisely
q2 + q + 1.

Denote by P1, ..., Pn the points in Z(I)∩A2, and by l the cardinality of Z(I)∩H ,
H being the line at infinity given by Z = 0. One obviously has

r2 + r + 1 = n+ l.

Let m be an integer such that 1 ≤ m ≤ 2r− 2, and denote by Em = Em(F , H) the
code defined by evaluation of the functions of L(mH) = Fq[x, y]≤m, x = X/Z, y =
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Y/Z, at the rational points P1, ..., Pn. In other words Em is the image of the linear
map

E : Fq[x, y]≤m −→ Fn
q

given by f → (f(P1), ..., f(Pn)).
By construction, the length of such codes is n = r2 + r + 1− l. The geometric

properties of the singular locus of F provide a formula for the dimension and a
bound for the minimum distance. In fact, if for every non negative integer s we
denote by Ns the number of monomials of degree s in three variables, that is
Ns = (s+ 1)(s+ 2)/2, we have the following result:

Theorem 2.7 ([10]). Under the above conditions, we have:

(1) A formula for the dimension:
• k(Em) = Nm for 1 ≤ m ≤ r − 1.
• k(Em) = Nm − (m − r)(m − r + 2) −max(0, l +m + 1 − 2r) for
r ≤ m ≤ 2r − 2.

(2) An estimate for the minimum distance:
• d(E1) ≥ r2 − l.
• d(Em) ≥ (r + 1)(r −m)− l + 2 for 2 ≤ m ≤ r − 1.
• d(Em) ≥ 2r −m− l for r ≤ m ≤ 2r − 2 , if l < 2r −m− 1.
• d(Em) ≥ 2r −m− 1 for r ≤ m ≤ 2r − 2 , if l ≥ 2r −m− 1.

Example 2.8. For q = 3, consider the foliation given by the forms A = X(Z2−
Y 2), B = Y (X2 − Z2) and C = Z(Y 2 − X2), with degree r = 2 and q − 1 = 2
points at infinity (i.e. n = 5 and l = 2). Notice that A, B and C satisfy the Euler
equation and have no common factor. The singular points in the affine chart Z 6= 0
are

P1 = (0, 0), P2 = (1, 1), P3 = (1, 2), P4 = (2, 1), P5 = (2, 2)

and the singular points at infinity are Q1 = (1 : 0 : 0) and Q2 = (0 : 1 : 0). Thus,
by taking m = 1 one obtains a code with parameters n = 5, k = 3 and d = 2.

Example 2.9. In the same way, for q = 3, take now the foliation given by
A = (Y +Z)(Y Z−X2), B = X(X2−Z2) and C = X(X2−Y 2) with degree r = 2,
but now with just one point at infinity (i.e. n = 6 and l = 1). The affine singular
points are:

P1 = (0, 0), P2 = (0, 2), P3 = (1, 1), P4 = (1, 2), P5 = (2, 1), P6 = (2, 2)

and the singular point at infinity is Q = (0 : 1 : 0). If m = 1, one gets a code with
parameters n = 6, k = 3 and d = 3, which is optimum in the sense that any other
code with the same parameters n and k over the finite field with q elements cannot
have a larger minimum distance (one can check it by using the Main Conjecture
MDS, on maximum distance separable codes, see [36]).

Remark 2.10 (Complete Intersection Codes). The construction of differential
codes can be generalized to complete intersection varieties in any dimension. In this
case, we also evaluate multivariate polynomials up to a certain degree at points of
general complete intersection varieties. The construction works since the parame-
ters of the codes can also be estimated with the Cayley-Bacharach Theorem [27],
even though the decoding problem is not solved yet. This construction can also be
regarded as a particular case of the constructions in Section 2.2.
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2.5. Codes given by order functions.
We conclude this Section 2 by introducing a large class of codes containing

interesting particular cases which will be described later. Consider a commutative
semigroup with zero Γ, which admits an ordering ≤. The ordering ≤ is said to be
admissible if 0 ≤ γ, together with α ≤ β, implies α + γ ≤ β + γ, where α, β, γ
are arbitrary elements in Γ. In addition, Γ is called cancellative whenever from the
equality α + β = α + γ one can conclude β = γ. Finally, Γ ∪ {−∞} will denote
the above semigroup together with a new minimal element, denoted by −∞, which
satisfies α+ (−∞) = −∞ for all α ∈ Γ ∪ {−∞}.

Definition 2.11. An order function from a Fq-algebra A onto Γ ∪ {−∞},
where Γ is a cancellative well-ordered commutative with zero and with admissible
ordering semigroup, is a mapping w : A −→ Γ ∪ {−∞} such that, for p, q ∈ A, the
following statements are satisfied:

(1) w(p) = −∞ if and only if p = 0;
(2) w(ap) = w(p) for all nonzero element a ∈ Fq;
(3) w(p+ q) ≤ max{w(p), w(q)};
(4) If w(p) = w(q), then there exists a nonzero element a ∈ F∗

q such that
w(p− aq) < w(q).

In this case, the triple (A,w,Γ) is called an order domain over Fq (see for
instance [25]). When adding the condition w(pq) = w(p) + w(q), one gets the
definition of weight function.

Order and weight functions for coding purposes were introduced in [29] with
Γ = N as semigroup. The main advantage of using order functions is that one
can consider the filtration of vector spaces Oα := {p ∈ A | w(p) ≤ α}, where α
runs over the semigroup Γ. Then, the properties of order function prove that if
we set Oα− := {p ∈ A | w(p) < α}, then the dimension of the quotient vector
space Oα/Oα− equals 1. This fact is very useful in coding theory. The purpose
of the paper [29] was to explain how one point AG codes can be constructed and
studied in a simple manner, avoiding the use of algebraic geometry. Indeed, the
corresponding order (in fact, weight) function is −υχ,P , where υχ,P is the valuation
given by the curve χ that defines the code at the point P = P∞.

Notwithstanding, the ideas in [29] can be extended to more general codes only
by considering different semigroups Γ instead of N. Let us summarize it. Let w be
as above and set ev : A→ Fn

q , for some fixed positive integer n, an epimorphism of
Fq-algebras. Then, one can construct the family of evaluation codes defined by w
and ev as {Eα := ev(Oα)}α∈Γ. We are even more interested, for decoding purposes,
in the family of dual codes, which are denoted by {Cα := E⊥

α }α∈Γ. It is not difficult
to prove that there is a positive integer Ωn such that the vector spaces Cα vanish
(and therefore Eα = Fn

q ) if and only if α ≥ Ωn.
In order to get bounds on the minimum distance, set

ωβ := card{(β1, β2) ∈ Γ2 | β1 + β2 = β},
β being any element in Γ. Following the ideas in Section 2.1, the values

d(α) := min{ωβ |α < β ∈ Γ}
and

dev(α) := min{ωβ |α < β ∈ Γ and Cβ 6= Cβ+ },
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where β+ := min{γ ∈ Γ|γ > β} are called the Feng-Rao distances of Cα. They
satisfy d(Cα) ≥ dev(α) ≥ d(α), d(Cα) being the minimum distance of the code Cα.

There is also a very related bound for the set of primal codes {Eα}α∈Γ, called
the Andersen-Geil bound (see [2]).

Concerning a decoding procedure of this class of codes, one can use the methods
described in [29] for decoding the dual codes: the basic algorithm, which works
when w is a weight function, and the extended algorithm, that uses majority voting
on unknown syndromes, and which can be used for any order function. Berlekamp-
Massey-Sakata algorithm also helps to decode these codes (see for instance [48]). In
the case of order functions, this algorithm decodes up to half the Feng-Rao distance.
Recently, in [26], has been proved that the primal codes can also be decoded by a
similar procedure up to half of the mentioned Andersen-Geil bound, which in [26]
is called the Feng-Rao bound for primal codes.

3. Plane curve tools

In this section, we will study some of the computational problems related to
plane curves that appear in the effective construction and practical implementation
of AG codes. Some of the technical tools and geometric concepts that are needed
for these tasks will be useful for the construction of evaluation codes from plane
valuations which will be developed in the last part of this paper.

Thus, consider a smooth absolutely irreducible curve χ over Fq, and take its
function field Fq(χ). If the curve χ is smooth and it is embedded in Pn, one easily
evaluates rational functions at rational points, just by substituting variables by the
corresponding values. However, we do not have a general method to compute a
basis of L(H) for a divisor H , that is the crucial point of the construction of AG
codes.

There exists a general algorithm to compute such a basis for plane curves.
However, note that if a curve is plane and non-singular, then the number of rational
points is upper bounded by q2 + q + 1, so that we cannot have arbitrarily many
rational points for a fixed finite field Fq, whereas if we allow singular points we
can have arbitrarily many rational branches, corresponding to rational places in
the function field Fq(χ). Thus, we may construct AG codes from singular plane
curves, just by substituting “points” by “branches”, but in this case evaluation of
functions at branches is not so evident.

Thus, considering plane curves for constructing AG codes leads to the problem
of effective resolution of singularities. In fact, AG codes are constructed just from
the algebraic function field and the rational places of the corresponding curve (see
[50]). If we consider an (absolutely irreducible) plane curve χ over Fq, then the
code can be constructed just from the normalization χ̃, by using the same algebraic
function field, and taking into account that rational places correspond to “rational
branches”. For example, a singular point with two branches corresponds to two
places in the normalization.

Therefore, some computational problems arise for plane curves: compute the
singular points, the resolution of the singularities (and the genus, as a consequence)
together with parameterizations for the rational branches at the singular points,
evaluate rational functions at rational branches, and finally compute a basis of
the Riemann-Roch spaces L(H). For the case of one-point AG codes, we need
furthermore to calculate the pole order of a rational function at a rational branch,
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find the functions achieving the pole orders of the Weierstrass semigroup, and
compute the Weierstrass semigroup itself, together with the Feng-Rao distances
(this last thing is just a problem in numerical semigroups, that can be solved by
means of Apéry sets, see [8]).

3.1. Resolution of singularities of plane curves.
Concerning the resolution of singularities, singular points are found by a com-

bination of Groebner bases techniques, triangulation procedures and factorization
algorithms for polynomials over finite fields. This task is feasible, since the Jaco-
bian of the curve is a zero-dimensional ideal. In the same way, we find all the points
(singular or not) over extensions of Fq, just by adding the equations Xq

i −Xi = 0,
obtaining again a zero-dimensional ideal.

Once the singular points are found, one has to perform the sequence of blowing-
ups to solve each singularity. In positive characteristic, an effective way to solve
a singularity is to compute the so-called symbolic Hamburger-Noether expansions
(see [9]). This procedure is faster than the usual blowing-up sequence, since groups
of several blowing-ups are performed in a single step and, furthermore, local param-
eterizations of the branches together with the local invariants of the singularities
are obtained.

Assume that we have a local parametrization of the place (branch) P , namely,
with a change of variables so that the base point of P is at the origin of coordinates.
Note that such a parametrization can have infinitely many terms, so that we actually
use a “lazy” parametrization, which means that we compute as many terms as we
need for a concrete calculation. Later, we will see how to obtain parameterizations
from the symbolic Hamburger-Noether expressions by lazy computations.

Finally, we wish to evaluate a rational function φ = G/H at P , where G,H
are homogeneous polynomials of the same degree in three variables. To that end,
set (X(t) : Y (t) : Z(t)) the local parametrization obtained from the symbolic
Hamburger-Noether expressions for the branch given by P , substitute

φ(t) =
G(X(t), Y (t), Z(t))

h(X(t), Y (t), Z(t))
=
art

r + . . .

bsts + . . .

and then we get the order of φ at P as ν = r − s (note that P corresponds to
t = 0). In particular, when the order is ν ≥ 0, the function is well-defined at P and
the evaluation is

φ(P ) = as/bs.

Clearly φ(P ) = 0 if ν > 0. In case ν < 0, φ has at P a pole of order −ν. Thus,
computing the order of a function at a place can be done by lazy parameterizations
of the corresponding branch, that is, by computing as many terms as we need to
find r and s in the above formula.

3.2. Symbolic Hamburger-Noether expressions.
We devote this section to introduce the concept of Hamburger-Noether expan-

sion (HNE) for a branch of a plane curve χ with local equation f = 0. We may
assume in general that the base field is a perfect field F (a finite field, in particular).
Further details about calculations can be found in [9]. Assume that we have chosen
a suitable affine chart and the corresponding equation so that the point P of the
curve χ is at the origin of coordinates.
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Definition 3.1. A branch of χ at P is given by an equivalence class of para-
meterizations

ρ : K[[x, y]] → F [[t]],

i.e. formal series x(t), y(t) ∈ F [[t]] with at least one of them non identically zero,
such that f(x(t), y(t)) ≡ 0, where K and F are suitable extensions of the base field
F.

Definition 3.2. The Hamburger-Noether expansion (HNE in short) of χ at P
for the rational branch given by ρ is a finite sequence ID of expressions, in some
new variables Z−1, Z0, . . . , Zr, of the form

Z−1 = a0,1Z0 + a0,2Z
2
0 + . . .+ a0,h0

Zh0

0 + Zh0

0 Z1

Z0 = a1,2Z
2
1 + a1,3Z

3
1 + . . .+ a1,h1

Zh1

1 + Zh1

1 Z2

..........................................................

Zr−2 = ar−1,2Z
2
r−1 + ar−1,3Z

3
r−1 + . . .+ ar−1,hr−1

Z
hr−1

r−1 + Z
hr−1

r−1 Zr

Zr−1 =
∑

i≥1

ar,iZ
i
r,

where r is a non-negative integer, aj,i ∈ F , ak,1 = 0 if k > 0, hj are positive
integers and moreover

ϕ(Z0(Zr), Z−1(Zr)) = 0 in F [[Zr]]

if ϕ ∈ K[[x, y]] is a generator of the prime ideal ker (ρ).
If we substitute the last (possibly infinite) line by an implicit equation

g(Zr, Zr−1) = 0

we get a symbolic Hamburger-Noether expression.

Notice that such a symbolic Hamburger-Noether expression allows us to com-
pute a rational parameterizations equivalent to ρ, by considering x ≡ Z0 and
y ≡ Z−1 as a function of the local parameter t = Zr after successive backward
substitutions. In fact, by lazy computation, we can add as many terms to the
parametrization as we need, that is, by substituting more terms in the above ex-
pressions (see [9]). The symbolic Hamburger-Noether expressions, together with
lazy parameterizations, are implemented in Singular [13] with the hnoether.lib
library.

Moreover, the Hamburger-Noether expansion ID (or the symbolic version) de-
pends only on the branch given by ρ and the choice of the parameters x(t), y(t)
in Oχ,P given by the images of x, y under ρ. The role played by the HNE’s in
arbitrary characteristic is just the same as that classically played by the Puiseux
expansions in characteristic 0. Notice that these ones do not always exist in positive
characteristic. Moreover, even when such expansions exist, the problem of making
them primitive is hard (see [7]), and the parameter t is not (in general) a ratio-
nal function over the given curve. Thus, Hamburger-Noether expansions provide
natural parameterizations in positive characteristic.

The HNE can be computed from the Newton diagram of the local equation of
χ at P , together with the coefficients of such a local equation (see [9]). The process
is equivalent to the desingularization of the branch, but several blowing-ups are
frequently performed in a single step, saving time in the resolution process.
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Example 3.3. Let χ be the projective plane curve over F2 given by

F (X,Y,Z) = X10 +Y8Z2 + X3Z7 +YZ9 = 0

with only one singular point P = (0 : 1 : 0) which is rational over F2. Take the
local equation

f(x, z) = x10 + x3z7 + z9 + z2

of χ where P is the origin. By applying the Hamburger-Noether algorithm, the
symbolic Hamburger-Noether expression of χ at P is







































Z−1 = Z5
0 + Z19

0 + Z22
0 Z1

g(Z1, Z0) = Z9
1Z

154
0 + Z8

1Z
151
0 + Z8

1Z
137
0 + Z1Z

130
0 + Z127

0 + Z7
1Z

113
0 +

+ Z6
1Z

110
0 + Z113

0 + Z5
1Z

107
0 + Z4

1Z
104
0 + Z3

1Z
101
0 + Z6

1Z
96
0 +

+ Z2
1Z

98
0 + Z1Z

95
0 + Z4

1Z
90
0 + Z92

0 + Z2
1Z

84
0 + Z5

1Z
79
0 +

+ Z4
1Z

76
0 + Z78

0 + Z1Z
67
0 + Z4

1Z
62
0 + Z64

0 + Z50
0 +

+ Z3
1Z

45
0 + Z2

1Z
42
0 + Z1Z

39
0 + Z36

0 + Z2
1Z

28
0 + Z22

0 +
+ Z1Z

18
0 + Z15

0 + Z1Z
11
0 + Z8

0 + Z2
1 + Z0

(see the details in [9]).

Remark 3.4 (The Brill-Noether algorithm). We remark that, with the aid of
the Brill-Noether algorithm, it is possible to compute a basis for a Riemann-Roch
space if the underlying curve is plane, singular or not (see [9] for further details).
This method relies on the adjunction theory, that only works properly for the case
of plane curves. Thus, it is not possible to use this algorithm for curves embedded
in a higher dimensional space, and hence there is no general method to do this task.

In the same way, by combining the Brill-Noether algorithm for the case G =
mP and a triangulation procedure, one gets an effective method to compute the
Weierstrass semigroup ΓP of χ at P up to an element m, together with a function
fl for each non-gap l ≤ m (see again [9] for further details). This method is
implemented in Singular [13] with the brnoeth.lib library [15].

Finally, if P is the only place at infinity of χ, the Weierstrass semigroup can
also be computed by a combination of the algorithm of approximate roots (see next
paragraph) and the integral basis algorithm (see [8]).

3.3. Semigroups at infinity.
Many examples of plane curves that are used in coding theory have the special

property of having only one point at infinity. This paragraph is addressed to study
this particular situation. Let χ̃ be a (non-singular and absolutely irreducible) pro-
jective algebraic curve defined over a perfect field F. Consider a plane model χ for
χ̃, i.e. a birational morphism

n : χ̃→ χ ⊆ P2.

Let L ⊆ P2 be a projective line defined over F so that L∩χ = {P} and n−1 = {P}.
Define

C̃ = χ̃ \ {P} and C = χ \ {P}.
Note that if we take L as the line at infinity, then we have a plane model with only
one branch at infinity. The affine equation of C can be given by

f(x, y) = ym + a1(x) y
m−1 + . . .+ am(x) ∈ F[x][y].
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Consider also the following additive subsemigroups of the semigroup of nonnegative
integers N:

ΓP := {−υP (f) | f ∈ Oχ̃(C̃)},
Sχ,∞ := {−υP (f) | f ∈ Oχ(C)},

where Oχ̃(C̃) and Oχ(C) denote the respective affine coordinate rings. Then, the
following formula holds:

card (ΓP \ Sχ,∞) = dimF(Oχ̃(C̃)/Oχ(C)),

so that both semigroups, the semigroup at infinity Sχ,∞, and the Weierstrass semi-
group ΓP , coincide if and only if there is no affine singular point in the plane model.

The description of the semigroup Sχ,∞ and the construction of the associated
functions (those whose poles span the semigroup) can be done with the so-called
Abhyankar-Moh theorem and the algorithm of approximate roots. Semigroups at
infinity will be of importance in this paper. So, we are going to give some more
information (the classical reference is [1]).

First, we introduce the definition of approximate root. Let S be a ring, g ∈ S[y]
a monic polynomial of degree e, and f ∈ S[y] a monic polynomial of degree m
with e|m. If we write m = ed, then g is called an approximate d-th root of f if
deg (f − gd) < m− e = e (d− 1). In other words, f − gd has a small enough degree,
so that one can consider gd as a good enough approximation of f . The main remark
is that if d is a unit in the ring S, then there exists a unique approximate d-th root
of f , which will be denoted app(d, f). In the sequel, we will work with S = F[x] as
the coefficient ring.

Now, consider the affine plane model χ, having only one point at infinity, given
by the equation

f = f(x, y) = ym + a1(x) y
m−1 + . . .+ am(x),

where m is actually the total degree of the polynomial f , and set n := degx f .
Assume moreover that the following condition holds:

(*) charF does not divide either deg χ or eP (χ).

It happens that m = deg χ and n = deg χ− eP (χ), and the above Condition (*) is
equivalent to say that p = charF does not divide either m or n, that is, p = charF
does not divide both degx f and degy f .

We may assume that p does not divide m = deg χ. In fact, if m is a multiple
of p but n is not, we choose k not divisible by p such that nk > m, and by doing a
change of variables of the form x′ = x+ yk, y′ = y we get a new (but isomorphic)
affine curve whose degree is not divisible by p.

Next, we will use resultants of polynomials, denoted by Res, and agree to set

degxResy(g, h) = −∞ if Resy(g, h) = 0

for any couple of polynomials g, h ∈ F[x, y], and

gcd (δ0, δ1, . . . , δi) = gcd (δ0, δ1, . . . , δj)

if δ0, δ1, . . . , δj are integers, j < i and δj+1 = δj+2 = . . . = δi = −∞.
Then, the algorithm of approximate roots works as follows from an input f as

above (the case when y divides f is trivial, so we assume the opposite):

Algorithm 3.5.

Input: f
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Set d0 = 0, F0 = x, δ0 = d1 = m, F1 = y and δ1 = degxResy(f, F1).
For i from 2 do

di = gcd (di−1, δi−1).
If di = di−1 then g = i− 2 and STOP else

Fi = app(di, f)
δi = degxResy(f, Fi).

Output: g, (δ0, . . . , δg) and (F0, . . . , Fg).

Note that, since the sequence {di}i≥1 is a decreasing one of positive integers,
there exists a unique positive integer g such that d1 > . . . > dg+1 = dg+2 , and
hence the algorithm terminates.

Our first application for this algorithm is the following criterion for a curve
with only one (rational) point at infinity to have only one (rational) branch at this
point (and to be absolutely irreducible, as a consequence).

Theorem 3.6 (Criterion for one branch at infinity). Let f be a polynomial
giving the equation of a plane model with only one point at infinity as above, and
assume that charF does not divide m = deg f . Let g, di and δi the integers com-
puted by the algorithm of approximate roots. Then, the curve has only one (rational)
branch at infinity if and only if dg+1 = 1, δ1d1 > δ2d2 > . . . > δgdg and niδi is in
the semigroup generated by δ0, δ1, . . . , δi−1 for 1 ≤ i ≤ g, where ni := di/di+1 also
for 1 ≤ i ≤ g.

A second application of the algorithm of approximate roots is just the com-
putation of Sχ,∞ and the above mentioned associated functions by means of the
following

Theorem 3.7 (Abhyankar-Moh, [1]). Let χ be a plane model with only one
branch at infinity and assume that charF does not divide deg χ. Then, there exist
a positive integer g and a sequence of positive integers δ0, . . . , δg ∈ Sχ,∞ generating
Sχ,∞ such that

(I): dg+1 = 1 and ni > 1 for 2 ≤ i ≤ g, where di := gcd(δ0, . . . , δi−1) for
1 ≤ i ≤ g + 1, and ni := di/di+1 for 1 ≤ i ≤ g.

(II): niδi is in the semigroup generated by δ0, . . . , δi−1, for 1 ≤ i ≤ g.
(III): niδi > δi+1 for 1 ≤ i ≤ g − 1.

Moreover, up to a change of affine coordinates, one can assume that δ0 = deg χ.

The above set of numbers {δi}0≤i≤g is called the δ-sequence of the branch at
infinity. Later on, we will introduce generalized δ-sequences included in semigroups
which are different from the nonnegative integers. Thus, in order to avoid confusion,
the above δ-sequences will be called δ-sequences in N>0. Without loss of generality
and for our convenience, we will assume along this paper that δ0 > δ1.

Example 3.8. Consider the affine plane curve y8+y2+x3 = 0 defined over F2,
with only one point at infinity P = (1 : 0 : 0). The degree of the curve is multiple
of the characteristic, but with the change of variables x = x + y3 and y = y, one
gets the plane model f(x, y) = y9 + y8 + xy6 + x2y3 + y2 + x3, and the algorithm
of approximate roots can be applied to f :

F0 = x , δ0 = d1 = 9 , F1 = y,

δ1 = degx Resy(f, y) = 3, d2 = gcd (9, 3) = 3,
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F2 = app(3, f) = y3 + y2 + y + x+ 1,

δ2 = degx Resy(f, F2) = 8 and d3 = gcd(9, 3, 8) = 1.

Thus g = 2 and Sχ,∞ = 〈9, 3, 8〉. As a consequence, there is only one branch at
infinity, since properties (I), (II) and (III) from the Abhyankar-Moh Theorem are
satisfied.

3.4. Dual graph and δ-sequences.
As in the previous section, fix homogeneous coordinates (X : Y : Z) on P2.

Here, Z = 0 will be the line L at infinity and P = (1 : 0 : 0). Set (x, y) coordinates
in the chart Z 6= 0, and (u = y/x, v = 1/x) coordinates around the point at infinity.
Consider a projective plane model χ with only one branch at infinity. As we have
said, the curve χ is defined by a monic polynomial f(x, y) in the indeterminate y
with coefficients in F[x].

Consider the infinite sequence of morphisms

(3.1) · · · → Xi+1 → Xi → · · · → X1 → X0 := P2,

where X1 → X0 is the blowing-up at p0 := P (the point at infinity) and, for each
i ≥ 1, Xi+1 → Xi denotes the blowing-up of Xi at the unique point pi which
lies on both the strict transform of χ and the exceptional divisor created by the
preceding blowing-up. Notice that pi is defined over F, since the branch of χ at
P is rational. It is well-known that there exists a minimum integer n such that,
if π : Xn → P2 denotes the composition of the first n blowing-ups, then the germ
of the strict transform of χ by π at pn becomes regular and transversal to the
exceptional divisor. This gives the (minimal embedded) resolution of the germ of
χ at P . The essential information, that is, the (topological) equisingularity class of
the germ, can be given either in terms of its sequence of Newton polygons [6, III.4],
or by means of its dual graph (see [14] within a more general setting, or [17] for a
slightly different version). This information basically provides the number and the
position of the blowing-up centers of π, which can be placed either on a free point
(not an intersection of two exceptional divisors) or on a satellite point. In this last
case, it is also important to know whether, or not, the blowing-up center belongs
to the last but one created exceptional divisor. Thinking of blowing-up centers,
we will say that a center pi is proximate to other pj whenever pi is on any strict
transform of the divisor created after the blowing-up at pj .

After a suitable choice {u′, v′} of local coordinates of the local ring Oχ,P , it
happens that the HNE of χ at P has the form

v′ = a01u
′ + a02u

′2 + · · ·+ a0h0
u′h0 + u′h0w1

u′ = wh1

1 w2

...
...

ws1−2 = w
hs1−1

s1−1 ws1

ws1−1 = as1k1
wk1

s1
+ · · ·+ as1hs1

w
hs1
s1 + w

hs1
s1 ws1+1

...
...

wsg−1 = asgkg
w

kg
sg + · · · ,

where the family {si}gi=0, s0 = 0, of nonnegative integers, is the set of indices
corresponding to the free rows of the expression, that is, those rows that express
the blowing-ups at free points (they are those that have some nonzero ajl ∈ F) and
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one of the main goals (of the HNE) is that it gives local coordinates of the transform
of the germ of χ at P in each center of blowing-up. The local coordinates after
{u′, v′} are {u′, (v′/u′)− a01}, and so on.

The dual graph Γ associated to the above germ of curve is a tree such that each
vertex represents an exceptional divisor of the sequence π, and two vertices are
connected by an edge whenever the corresponding divisors intersect. Additionally,
we label each vertex with the minimal number of blowing-ups needed to create
its corresponding exceptional divisor. The dual graph can be done by gluing up,
by their vertices sti, subgraphs Γi (1 ≤ i ≤ g) corresponding to blocks of data
Bi = {hsi−1

−ki−1+1, hsi−1+1, hsi−1+2, . . . , hsi−1, ki} (with k0 = 0), which represent
the divisors involved in the part of the HNE of the germ between two free rows. In
other words, Γi contains the divisors corresponding to hsi−1

− ki−1 + 1 free points,
and to sets of hj (si−1 + 1 ≤ j ≤ si − 1) and ki proximate points to satellite ones.
Each subgraph Γi starts in the vertex sti−1 and ends in sti containing, among
others, the vertex ρi. So, the dual graph has the shape depicted in Figure 1.

♣ ♣ ♣r r r r

r r

r

r

r

r

r

r r r r r r r r

r

r

r

r

r

r

1=ρ0

ρ1

Γ1

ρ2

Γ2

ρg

Γg

st1 st2 stg

Figure 1. The dual graph of a germ of curve

Set Esi (1 ≤ i ≤ g) the exceptional divisor obtained after blowing-up the last
free point corresponding to the subgraph Γi. It corresponds to the vertex ρi in the
dual graph. An irreducible germ of curve ψ at P , is said to have maximal contact of
genus i with the germ of χ at P , if the strict transform of ψ in the (corresponding
germ of the) surface containing Esi is not singular, and meets transversely Esi and
no other exceptional curves.

The sequence of Newton polygons and the dual graph of the germ of a curve
χ with only one branch at infinity can be recovered from a δ-sequence in N>0,
∆ = {δ0, δ1, . . . , δs}, associated with it. We assume that the Newton polygons
are given by segments Pi (0 ≤ i ≤ g − 1) joining the points (0, ei) and (mi, 0),
ei,mi ∈ N>0. If δ0 − δ1 does not divide δ0 then s = g and

(3.2) e0 = δ0 − δ1, ei = di+1

m0 = δ0, mi = niδi − δi+1

for 1 ≤ i ≤ s− 1. Otherwise, s = g + 1 and

e0 = d2 = δ0 − δ1, ei = di+2

m0 = δ0 + n1δ1 − δ2, mi = ni+1δi+1 − δi+2

for 1 ≤ i ≤ s− 2. These formulae can be deduced from results in [6, IV.3].
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Concerning the dual graph or the blocks in the HNE of the germ, one gets

(3.3)
mj−1

ej−1
+ kj−1 = hsj−1

+
1

hsj−1+1+...+ 1

hsj−1+ 1
kj

,

for j = 1, 2, . . . , g, where s0 = k0 = 0 (see [6, III.4]).
Next, we define a useful concept for us.

Definition 3.9. A sequence of polynomials in F[x, y]

q∗0(x, y), q
∗
1(x, y), . . . , q

∗
g(x, y)

is a family of approximates for the above given curve χ given by f(x, y) if the
following conditions hold:

(1) q∗0(x, y) = x, q∗1(x, y) = y, δ∗0 := −υχ,p(q∗0) = degy(f) and δ
∗
1 := −υχ,p(q∗1).

(2) q∗i (x, y) (1 < i ≤ g) has degree δ∗0/di and it is monic in the indeterminate
y, where di = gcd(δ∗0 , δ

∗
1 , . . . , δ

∗
i−1), being δ

∗
i := −υχ,p(q∗i ).

(3) The germ of curve at P given by the local expression of q∗i (x, y) (1 < i ≤ g)
in the coordinates (u, v) has maximal contact with the germ of χ at P , of
genus i when δ∗0 − δ∗1 does not divide δ∗0 , and of genus i− 1 otherwise.

By an abuse of notation, when we set −υχ,p(q∗i ), q∗i stands for the element in
the fraction field of Oχ,p that it defines. On the other hand, under the conditions
of Abhyankar-Moh Theorem, that is, the characteristic of F does not divide the
degree of the curve χ, approximate roots are a family of approximates for χ.

Now, let ∆ = {δi}gi=0 be a δ-sequence in N>0, and set S∆ the semigroup in
N>0 that it generates. It is well-known the existence of a unique expression of the
form

(3.4) niδi =

i−1
∑

j=0

aijδj ,

where ai0 ≥ 0 and 0 ≤ aij < nj , for 1 ≤ j ≤ i − 1. Set q0 := x q1 := y and, for
1 ≤ i ≤ g,

(3.5) qi+1 := qni

i − ti

i−1
∏

j=0

q
aij

j ,

where ti ∈ F\{0} are arbitrary. Although the results in this paper concerning these
polynomials hold for any family of parameters {0 6= ti}gi=1, we fix for convenience
ti = 1 for all i. Then, by applying the algorithms relative to Newton polygons of a
germ of curve given by Campillo in [6, III.4] to the germ given by qg+1, it holds the
following result (see [40, Section 4] for more details), where we notice that there is
no restriction for the characteristic of the field F.

Proposition 3.10. The equality qg+1 = 0 defines a plane curve χ with only
one branch at infinity such that Sχ,∞ = S∆, and the set {qi}gi=0 is a family of
approximates for χ such that −υχ,p(qi) = δi, for all i = 0, 1, . . . , g.
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4. Plane valuations

We start by recalling the concept of valuation.

Definition 4.1. A valuation of a field K is a mapping

ν : K∗(:= K \ {0}) → G,

where G is a totally ordered group, such that it satisfies

• ν(f + g) ≥ min{ν(f), ν(g)} and
• ν(fg) = ν(f) + ν(g),

f, g being elements in K∗. The subring of K, Rν := {f ∈ K∗|ν(f) ≥ 0} ∪ {0}, is
called the valuation ring of ν. Rν is a local ring whose maximal ideal is mν := {f ∈
K∗|ν(f) > 0} ∪ {0}.

Given a local regular domain (R,m), we will say that a valuation ν of the
quotient field of R is centered at R if R ⊆ Rν and R ∩ mν = m. The subset of
G given by Sν := ν(R \ {0}) is called the semigroup of the valuation ν (relative
to R). We will only consider plane valuations, that is, valuations of the quotient
field of a local regular domain (R,m) of dimension two which are centered at R.
Assume for a while that the field F := R/m is algebraically closed. In this case,
a plane valuation is the algebraic version of a simple sequence of blowing-ups at
closed points, starting with the blowing-up at m (see [46] for the details). In fact,
attached to a plane valuation ν, there is a unique sequence of point blowing-ups

(4.1) · · · −→ XN+1
πN+1−→ XN −→ · · · −→ X1

π1−→ X0 = Spec R,

where π1 is the blowing-up of X0 centered at its closed point p0 and, for each
i ≥ 1, πi+1 is the blowing-up of Xi at the unique closed point pi of the exceptional
divisor Ei (obtained after the blowing-up πi) satisfying that ν is centered at the
local ring OXi,pi

(:= Ri). Conversely, each sequence as in (4.1) provides a unique
plane valuation. We will denote by Cν = {pi}i≥0 the sequence (finite or infinite)
of closed points involved in the blowing-ups of (4.1). When Cν is finite, ν is called
the divisorial valuation corresponding to the last exceptional divisor obtained in
(4.1); this is so since if πN+1 is the last blowing-up in the sequence (4.1) given
by ν, then ν is the mN -adic valuation, mN being the maximal ideal of the ring
RN . Otherwise (when Cν is not finite), the plane valuation ν can be regarded as
the limit of the sequence of divisorial valuations {νi}i≥0, νi being the divisorial
valuation corresponding to the divisor Ei.

With the above notation, let pi and pj be points in Cν = {pi}i≥0. We will
say that pi is proximate to pj (and it will be denoted by pi → pj) if i > j and
pi belongs to the strict transform (by the corresponding sequence of blowing-ups
given in (4.1)) of Ej+1. This binary relation among the points of Cν will be called
proximity relation and it induces a binary relation Pν in the set of natural numbers
(i→ j if pi → pj). Also, the point pi is said to be satellite if there exists j < i− 1
such that pi → pj (in other words, if pi belongs to the intersection of the strict
transforms of two exceptional divisors); otherwise, pi is said to be a free point.
Notice that these definitions extend those we mentioned for plane curves in the
previous section. It is worth pointing out that the semigroup Sν of a plane valuation
depends only on the relation Pν . According with this relation, a plane valuation ν
(with associated sequence Cν = {pi}i≥0) belongs to one of the following five types
(see [46] and [19]):
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– TYPE A (or divisorial): if Cν is finite.
– TYPE B: if there exists i0 ∈ N>0 such that the point pi is free for all i > i0.
– TYPE C: if there exists i0 ∈ N>0 such that pi → pi0 for all i > i0.
– TYPE D: if there exists i0 ∈ N>0 such that pi is a satellite point for all

i > i0 but ν is not a type C valuation. This means that the sequence (4.1) ends
with infinitely many blowing-ups at satellite points, but they are not ever centered
at some point of the strict transforms of the same divisor.

– TYPE E: if the sequence Cν alternates indefinitely blocks of free and satellite
points.

As in the case of germs of curves, a plane valuation ν admits also a Hamburger-
Noether expansion (HNE), which for a regular system of parameters of the ring R,
{u, v}, has the shape showed in Figure 2.

v = a01u+ a02u
2 + · · ·+ a0h0

uh0 + uh0w1

u = wh1

1 w2

...
...

ws1−2 = w
hs1−1

s1−1 ws1

ws1−1 = as1k1
wk1

s1
+ · · ·+ as1hs1

w
hs1
s1 + w

hs1
s1 ws1+1

(3)
...

...

wsg−1 = asgkg
w

kg
sg + · · ·+ asghsg

w
hsg

sg + w
hsg

sg wsg+1

...
...

wi−1 = whi

i wi+1

...
...

(wz−1 = w∞
z ).

Figure 2. HNE of a plane valuation

When ν is of type A, the last row has the form

wsg−1 = asgkg
wkg

sg
+ · · ·+ asghsg

w
hsg

sg + w
hsg

sg wsg+1,

here wsg+1 ∈ Rν and ν(wsg+1) = 0.
In case ν is of type B, its corresponding HNE has a last equality associated

with an infinite sum like this

wsg−1 =
∞
∑

j=kg

asgjw
j
sg
.

Notice that, in this case, the shape of the HNE is the same as that for a germ
of a curve around the point defined by m.

If ν is of type C, its HNE has a last free row like this

wsg−1 = asgkg
wkg

sg
+ · · ·+ asghsg

w
hsg

sg + w
hsg

sg wsg+1
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and, after, finitely many non-free rows with the shape

wsg = w
hsg+1

sg+1 wsg+2

...
...

wz−1 = w∞
z .

With respect to the case ν of type D, the HNE has a last free row like this

wsg−1 = asgkg
wkg

sg
+ · · ·+ asghsg

w
hsg

sg + w
hsg

sg wsg+1

followed by infinitely many rows as follows

wi−1 = whi

i wi+1,

(i > sg). Clearly, g <∞ and z = ∞.
Finally, the HNE of a valuation of type E satisfies that there exist infinitely

many ordered sets of equalities with the shape

wsi−1 = asiki
wki

si
+ · · ·+ asihsi

w
hsi
si + w

hsi
si wsi+1

...
...

wsi+1−2 = w
hsi+1−1

si+1−1 wsi+1
.

Here g = z = ∞.

4.1. Plane valuations at infinity.
Next, we introduce a particular type of plane valuations: plane valuations at

infinity. We do not actually need that the ground field is algebraically closed. This
is because the procedure and concepts above explained will work similarly, due to
the special nature of the valuations that we will consider, and the centers of the
associated blowing-ups will be defined over F. We recall that the field F has to be
a perfect field.

We start by stating the concept of general element of a divisorial valuation.

Definition 4.2. Let ν be a divisorial valuation. An element f in the maximal
ideal of R is said to be a general element of ν if the germ of curve given by f
is analytically irreducible, its strict transform in the last variety XN+1 obtained
by the sequence (4.1) attached to ν is smooth, and meets EN+1 transversely at a
non-singular point of the exceptional divisor of the sequence (4.1).

Remark 4.3. General elements are useful to compute plane divisorial valua-
tions. Indeed, if f ∈ R, then

ν(f) = min {(f, g)|g is a general element of ν},
where (f, g) stands for the intersection multiplicity of the germs of curve given by
f and g.

Let P := p0 be a closed point of P2 on the line of infinity and assume, from
now on, that R = OP2,P and K is the quotient field of R.

Definition 4.4. A plane divisorial valuation at infinity is a plane divisorial
valuation of K centered at R that admits, as a general element, an element in R
providing the germ at P of some curve with only one branch at infinity (P being
its point at infinity).
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Definition 4.5. A plane valuation ν ofK centered at R is said to be at infinity
whenever it is a limit of plane divisorial valuations at infinity. More explicitly, ν will
be at infinity if there exists a sequence of divisorial valuations at infinity {νi}∞i=1

such that Cνi ⊆ Cνi+1
for all i ∈ N>0, and Cν =

⋃

i≥1 Cνi .
There exist plane valuations at infinity of all types above described. The con-

cept of valuation at infinity of type A is equivalent to the one of plane divisorial
valuation at infinity; such a valuation is obtained whenever the sequence {νi}∞i=1

given in the above definition satisfies that νi = νi+1 for every index larger than or
equal to a fixed index i0 ∈ N>0 (in fact, it can be taken constant for all i). It is
obtained a valuation at infinity of type B if there exists i0 ∈ N>0 such that Cνi0
is the set of centers of the blowing-ups corresponding with the minimal embedded
resolution of the germ at p of a curve having only one branch at infinity and, for all
i ≥ i0, the strict transform of this germ meets transversely the exceptional divisor
associated with νi. Explicit constructions of plane valuations at infinity of types C,
D, and E are described in [21].

The concept of approximate can be extended to valuations at infinity as we
show in the following definition.

Definition 4.6. Let ν be a plane valuation at infinity. A sequence of polyno-
mials P = {qi(x, y)}i≥0 in F[x, y] is a family of approximates for ν whenever each
plane curve C with only one branch at infinity providing a general element of some
of the plane divisorial valuations at infinity converging to ν admits some subset of
P as a family of approximates, and P is minimal with this property.

4.2. Generalized δ-sequences.
For a starting point, we introduce the concept of semigroup at infinity of a

plane valuation at infinity. Recall that {x, y} are coordinates in the chart Z 6= 0.

Definition 4.7. Let ν : K∗ → G be a plane valuation at infinity. The semi-
group at infinity of ν is defined to be the following sub-semigroup of G:

Sν,∞ := {−ν(f) | f ∈ k[x, y] \ {0}}.
A normalized δ-sequence in N>0 will be an ordered finite set of rational numbers

∆ = {δ0, δ1, . . . , δg} such that there is a δ-sequence in N>0, ∆ = {δ0, δ1, . . . , δg},
satisfying δi = δi/δ1 for 0 ≤ i ≤ g. As we have said, we will consider δ-sequences
for the different types of plane valuations at infinity:

Definition 4.8. A δ-sequence of TYPE A (respectively, B, C, D, E) is a
sequence ∆ = {δ0, δ1, . . . , δi, . . .} of elements in Z (respectively, Z2, Z2, R, Q) such
that

TYPE A: ∆ = {δ0, δ1, . . . , δg, δg+1} ⊂ Z is finite, the elements of the set
{δ0, . . . , δg} satisfy the conditions (I), (II) and (III) of the Theorem 3.7
and δg+1 ≤ ngδg.

TYPE B: There exists a δ-sequence in N>0, ∆
∗ = {δ∗0 , δ∗1 , . . . , δ∗g}, such

that ∆ = {(0, δ∗0), (0, δ∗1), . . . , (0, δ∗g), (−1, (δ∗0)
2)}.

TYPE C: ∆ = {δ0, δ1, . . . , δg} ⊂ Z2 is finite, g ≥ 2 (respectively, ≥ 3) and
there exists a δ-sequence in N>0, ∆

∗ = {δ∗0 , δ∗1 , . . . , δ∗g}, such that δ∗0 − δ∗1
does not divide (respectively, divides) δ∗0 and

δi =
δ∗i

Aat +B
(A,B) (0 ≤ i ≤ g − 1) and
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δg =
δ∗g +A′at +B′

Aat +B
(A,B)− (A′, B′),

where 〈a1; a2, . . . , at〉, at ≥ 2, is the continued fraction expansion of the
quotient mg−1/eg−1 (respectively, mg−2/eg−2) given by ∆∗ and, consid-
ering the finite recurrence relation y

i
= at−iyi−1

+ y
i−2

, y−1
= (0, 1),

y
0
= (1, 0), then (A,B) := y

t−2
and (A′, B′) := y

t−3
. We complete this

definition by adding that ∆ = {δ0, δ1} (respectively, ∆ = {δ0, δ1, δ2}) is
a δ-sequence of type C whenever δ0 = y

t−1
and δ0 − δ1 = y

t−2
(respec-

tively, δ0 = jy
t−2

, δ0 − δ1 = y
t−2

and δ0 + n1δ1 − δ2 = y
t−1

) for the

above recurrence attached to a δ-sequence in N>0, ∆∗ = {δ∗0 , δ∗1} (re-
spectively, ∆∗ = {δ∗0 , δ∗1 , δ∗2}, such that j := δ∗0/(δ

∗
0 − δ∗1) ∈ N≥0 and

n1 := δ∗0/ gcd(δ
∗
0 , δ

∗
1)).

TYPE D: ∆ = {δ0, δ1, . . . , δg} ⊂ R is finite, g ≥ 2, δi is a positive rational
number for 0 ≤ i ≤ g − 1, δg is non-rational, and there exists a sequence

{

∆j = {δj0, δj1, . . . , δjg}
}

j≥1

of normalized δ-sequences in N>0 such that δji = δi for 0 ≤ i ≤ g − 1 and
any j and δg = limj→∞ δjg. We complete this definition by adding that
∆ = {τ, 1}, τ > 1 being a non-rational number, is also a δ-sequence of
type D.

TYPE E: ∆ = {δ0, δ1, . . . , δi, . . .} ⊂ Q is infinite and any ordered subset
∆j = {δ0, δ1, . . . , δj} is a normalized δ-sequence in N>0.

Example 4.9. We show some examples of δ-sequences of types from A to
E: {18, 12, 33, 4,−5} is of type A, {(0, 18), (0, 12), (0, 33), (0, 4), (−1, 182)} of type

B, {(6, 6), (4, 4), (11, 11), (1, 2)} of type C, {3/2, 1, 33/12, 4/12, (75+ 32
√
2)/12(7 +

3
√
2)} of type D and the first terms of a δ-sequence of type E are

{3/2, 1, 33/12, 1/3, 15/4, . . .}.

Along the rest of this paper, for a δ-sequence ∆ of any type (from A to E),
S∆ will denote the semigroup spanned by ∆. During a while, δ-sequence will mean
δ-sequence of some of the above types. Afterwards, we will restrict this concept to
δ-sequences of types from C to E.

By using the formulae after (3.2) and from the finite sequence of positive in-
tegers satisfying (I), (II) and (III) attached to a curve χ as in Theorem 3.7 by
Abhyankar and Moh, one can recover the proximity relation, dual graph and struc-
ture of the HNE attached to the minimal embedded resolution of the singularity
at infinity of χ. Indeed, to do it, one essentially needs to consider the continued
fractions of quotients of the type ml/el, ml and el being the values defined below
(3.2) (see [21]).

The concept of δ-sequence in Definition 4.8 is defined in such a way that the
mentioned equalities happen for any type of valuation, although we need, for that
purpose, to use an extended version of the Euclidian Algorithm that can also involve
values either in Z2 or in R [23]. Next example, and for the δ-sequences given in
Example 4.9, shows the attached pairs, (ml, el), and the corresponding elements
in the extended Euclidian algorithm. They provide the dual and proximity graphs
(and the structure of the HNE) of the attached valuation at infinity. This valuation
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has the property that its semigroup at infinity is spanned by the mentioned δ-
sequence.

Example 4.10. Consider the examples given in Example 4.9. All of them
satisfy δ0 − δ1 divides δ0. So, we have to use the sequent formulae:

di = gcd(δ0, . . . , δi−1) ni = di/di+1

e0 = δ0 − δ1, ei = di+2

m0 = δ0 + n1δ1 − δ2, mi = ni+1δi+1 − δi+2.

The type A δ-sequence is {18, 12, 33, 4,−5} and we get the pairs

(ml, el) : (21, 6), (62, 3), (2, 1)

with continued fractions: 〈3; 2〉, 〈20; 1, 2〉 and 〈2〉. The equality ngδg − δg+1 = 17
indicates that the last 17 points of Cν are free.

Now consider the type B δ-sequence, then (ml, el): ((0, 21), (0, 6)), ((0, 63), (0, 3))
and ((1, 0), (0, 1)) with continued fractions: 〈3; 2〉, 〈20; 1, 2〉 and 〈∞〉; this last one
corresponds to blowing-up at infinitely many free points.

With respect to the type C δ-sequence, {(6, 6), (4, 4), (11, 11), (1, 2)}, it holds
(ml, el): ((7, 7), (2, 2)) and ((21, 20), (1, 1)). The continued fractions are 〈3; 2〉 and
〈20; 1,∞〉 and the generalized Euclidian Algorithm provides (21, 20) = 20(1, 1) +
(1, 0); (1, 1) = 1(1, 0) + (0, 1) and (1, 0) = ∞(0, 1).

{3/2, 1, 33/12, 4/12, (75+32
√
2)/12(7+ 3

√
2)} is our δ-sequence of type D and

the pairs (ml, el) are (21/12, 1/2), (62/12, 3/12) and ((9+4
√
2)/12(7+3

√
2), 1/12),

being the continued fractions 〈3; 2〉, 〈20; 1, 2〉 and 〈1; 3, 2,
√
2〉.

Finally, we consider the Type E δ-sequence and then the pairs (ml, el) reproduce
the behavior of the one of type A.

Valuations at infinity satisfy an Abhyankar-Moh type theorem as one can see
in [23]. However, the interesting result for us is the converse of that theorem which
also happens and it will be essential for our purposes:

Theorem 4.11. (See [21, Theorem 4.9] for type C, D and E valuations and
[23, Remark 4.4] for the remaining ones). Let ∆ be a δ-sequence and set F[x, y] the
polynomial ring in two indeterminates over an arbitrary perfect field F. Then, there
exists a plane valuation at infinity ν over the field F(x, y) such that the semigroup
at infinity Sν,∞ is spanned by ∆.

5. Codes given by plane valuations at infinity

We devote this section to study a large family of evaluation codes associated
with certain weights functions given by either only one or finitely many plane val-
uations at infinity.

5.1. Codes given by one valuation.
We have explained that the weight functions are suitable objects to get (pri-

mal and dual) evaluation codes that can be decoded up to half of their designed
distances. From this point of view, the semigroup of values is the most important
element of the weight functions. Notwithstanding, and although one can provide
some weight functions, there is no method to define large families of them and no
classification is available. Valuations are very close objects to weight functions and,
in the plane case, they have been classified [46, 19]. The following result, proved
in [20, Proposition 2.2], shows how to obtain weight functions from valuations.
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Proposition 5.1. Let K be the quotient field of a regular local domain R with
maximal m. Let ν : K∗ → G be a valuation of K which is centered at R. Assume
that the canonical embedding of the field k := R/m into the field Rν/mν is an
isomorphism.

Set w : K∗ → G the mapping given by w(f) = −ν(f), f ∈ K
∗. If A ⊆ K

∗

is a k-algebra such that w(A) is a cancellative, commutative, free of torsion, well-
ordered semigroup with zero, Γ, where the associated ordering is admissible, then
w : A −→ w(A) ∪ {−∞}, w(0) = −∞, is a weight function.

We are interested in the case dimR = 2 because, as we have said, here we know
a classification of valuations in five types. R/m ∼= Rν/mν happens for any plane
valuation except for those of type A. Thus type A valuations are not interesting
for coding purposes. However they are very useful since the remaining types of
valuations can be regarded as limits of type A valuations. We are neither interested
in type B valuations, the reason comes from the fact that the semigroups provided
by their attached weight type functions are not well-ordered. We have included
its study by completion reasons. From now on, unless otherwise stated, δ-sequence
will mean δ-sequence of type C, D or E.

The following two results which can be found in [21] show how to get weight
functions over the polynomial ring Fq[x, y] only with a δ-sequence and the scope of
the result because these functions satisfy a Matsumoto type result.

Theorem 5.2. Let ∆ = {δ0, . . . , δr}, r ≤ ∞, be a δ-sequence. Set Fq[x, y] the
polynomial ring in two indeterminates over an arbitrary finite field Fq. Then:

a)There exists a weight function w∆ : Fq[x, y] −→ S∆ ∪ {∞}.
b) The map −w∆ : Fq(x, y) → G(S∆), G(S∆) being the group generated by S∆,

is a plane valuation at infinity.
c) Let {qi}ri=0 be a family of approximates for the valuation −w∆. Then, for

any α ∈ S∆, the vector spaces

Oα := {p ∈ Fq[x, y] | w∆(p) ≤ α}
are spanned by the set of polynomials

∏m
i=0 q

γi

i such that
∑m

i=0 γiδi := β runs over
the unique expression of the values β ∈ S∆ satisfying β ≤ α, γ0 ≥ 0, γr ≥ 0 if it
exists and 0 ≤ γi < ni, whenever 1 ≤ i < m.

Recall that ni is easily computed from ∆.

We also recall that Matsumoto in [38] proved that order domains given by
weight functions on Z are affine coordinate rings of algebraic curves with exactly
one branch at infinity. Now, we state a close result, proved in [21], involving our
weight functions.

Proposition 5.3. Let w : Fq[x, y] → S be a weight function on a semigroup S
such that S = S∆ for some δ-sequence ∆. Then, there exists a plane valuation at
infinity ν : Fq(x, y) → G such that −ν and w coincide on the ring Fq[x, y].

Next, we summarize the procedure to get (and some properties from) evaluation
codes given by plane valuations. Firstly, one has to construct a δ-sequence of type
C, D or E. Notice that those of type E have infinitely many elements but, for a
concrete family of codes, we only need finitely many of them. For that construction,
one needs a large enough δ-sequence in N>0. Notice that from a δ-sequence in N>0

D = {δ0, . . . , δg}, there exists an easy-to-apply algorithm that provides another
δ-sequences in N>0, D′ = {δ′0, δ′1, . . . , δ′g+1}, such that δi/δ

′
i = δ0/δ

′
0 for all i =
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1, 2, . . . , g. This means that the dual graph associated to D′ is an enlargement of
the one of D. Once one gets such a δ-sequence in N>0, D, with g+1 elements, there
exist also easy-to-apply algorithms to obtain either δ-sequences of type C with g+1
elements or of type D with g + 2 elements or pieces of one of type E. Recall that,
depending on the type of valuation, the corresponding semigroup will be in Z2, R
or Q. Details can be found in [21].

With a δ-sequence ∆ as above, following Theorem 5.2, one gets approximates

q0 := x, q1 := y, qi+1 := qni

i −∏i−1
j=0 q

aij

j and a weight function w∆ : Fq[x, y] → S∆

such that generators for the vector spaces Oα are easy to compute from those
approximates. In fact, they are monomials on the qi’s of suitable weights. Now, pick
an epimorphism of Fq-algebras ev : Fq[x, y] → Fn

q (usually, we get it by evaluating

n points pi, 1 ≤ i ≤ n, in F2
q). Then, the family of evaluation or primal codes given

by ∆ will be {Eα := ev(Oα)}α∈S∆
and the family of dual codes {Cα}α∈S∆

will be
named family of dual evaluation or dual codes given by ∆. Notice that depending
on n, there is a positive integer Ωn such that the vector spaces Cα vanish whenever
α ≥ Ωn.

As in the case of classical order functions, for β ∈ S∆ set

ωβ := card{(β1, β2) ∈ S2
∆ | β1 + β2 = β}.

This allows us to define the Feng-Rao (designed minimum) distances of Cα

d(α) := min{ωβ|α ≤ β ∈ S∆}
and

dev(α) := min{ωβ|α < β ∈ S∆ and Cβ 6= Cβ+ },
where β+ := min{γ ∈ S∆|γ > β}.

Then, it happens

Theorem 5.4. With the above notations and if we denote d(Cα) the minimum
distance of the dual code Cα, the following inequalities hold

d(Cα) ≥ dev(α) ≥ d(α).

It is worthwhile to add that Reed-Solomon codes are a particular case of codes
of the type just described. This can be done by considering δ-sequences of type C
with two elements [21, Proposition 5.6] and suitable evaluation maps. We conclude
this section with some examples showing some of the parameters of the attached
codes.

Example 5.5. In this example, we give codes over the field F7 of length n=12.
From the δ-sequence in N>0, ∆ = {11, 9} we construct ∆1 = {(5, 1), (4, 1)} which is

of type C. ∆2 = {11/9, 1, (19− 2
√
3+1

3
√
3+1

)/9} of type D and ∆3 = {11/9, 1, 3/2, 9/4, . . .}
of type E. Our map ev is given by evaluating at the following set of points:

{(1, 1), (2, 2), . . . , (6, 6), (1, 2), (1, 3), . . . , (1, 6), (2, 1)}.
Note that q0 = x, q1 = y are approximates for ∆1 and q0, q1 and q2 = y11−x9 for

∆2. Table 1 shows the parameters of the corresponding codes and the parameters
in the first 3 rows of the case given by ∆1 cannot be improved. Symbols α, α′

and α” correspond with suitable elements in the semigroups of the corresponding
weight functions.
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Table 1. Parameters for Example 5.5

k d∆1
(Cα) dev,∆1

(α) k d∆2
(Cα′ ) dev,∆2

(α′) k d∆3
(Cα”) dev,∆3

(α”)

10 2 2 10 2 2 10 2 2
9 3 3 9 3 2 9 3 2
8 4 3 8 4 2 8 4 2
7 4 3 7 4 3 7 4 2
6 4 4 6 4 3 6 4 2
5 5 5 5 4 4 5 4 4
4 5 5 4 6 4 4 5 4
3 6 6 3 6 4 3 5 5
2 6 6 2 6 4 2 7 4
1 10 10 1 6 5 1 6 7

Example 5.6. Our next families of codes are defined over the field F25 and their
length is n = 31. Set ξ a primitive element of the field and consider the following
δ-sequences of type C: ∆1 = {(21, 0), (15, 0), (35, 0), (39,−1)}, ∆2 = {(2, 1), (1, 1)}
and ∆3 = {(5, 5), (2, 2), (7, 8)}. For simplicity, we only give approximates for ∆1,
which are q0 = x, q1 = y, q2 = y7 + x5 and q3 = x15 + x10y7 + x15y14 + x5 + y21.
Finally, the mapping ev is given by evaluating at the points:

{(ξ, ξ), (ξ, ξ2), . . . , (ξ, ξ14),
(ξ2, ξ), (ξ2, ξ2), . . . , (ξ2, ξ14), (ξ3, ξ3), (ξ4, ξ4), (ξ5, ξ5)}.

Table 2 shows some parameters for the attached codes:

Table 2. Parameters for Example 5.6

α exp k d∆1
(Cα) dev,∆1

(α) d∆2
(Cα′ ) dev,∆2

(α′) d∆3
(Cα”) dev,∆3

(α”)

(15,0) 0100 29 2 2 2 2 2 2
(21,0) 1000 28 3 2 3 3 2 2
(30,0) 0200 27 3 2 3 3 3 2
(35,0) 0010 26 4 2 3 3 3 2
(36,0) 1100 25 4 2 4 4 3 2
(39,-1) 0001 24 4 3 5 5 5 3
(42,0) 2000 23 4 3 5 5 6 3
(45,0) 0300 22 5 3 5 5 6 3
(50,0) 0110 21 5 3 6 6 7 3

The columns α and exp correspond to the codes given by ∆1 and show the
elements in the semigroup S∆1

and the exponents of the approximates that give
the new generator we must add the previous ones for obtaining a basis of the vector
space Oα.

Example 5.7. We finish with another example of a larger code. The field
is the same as in Example 5.6, the length is n = 34 and it is given by the δ-
sequence type C, ∆ = {δ1,1 = (2, 1), δ2,1 = (1, 1)}. The corresponding map ev :
F25 [X1, X2] → F34

25 is defined by evaluating at the points {(ξi, ξi) | 1 ≤ 1 ≤ 30} ∪
{(0, 0), (1, ξ), (1, ξ2), (1, ξ3)}. A partial table of parameters is given in Table 3.

5.2. Codes given by finitely many valuations at infinity.
In the previous section we introduced a huge family of easy to construct and

decode codes. We developed a method for obtaining that family from the so-
called plane valuations at infinity. Examples within the mentioned family without
theoretic development were previously given in [48]. With this procedure and
working with a finite field Fq we can get codes of length at most q2 by evaluating at
points in the plane affine F2

q. We devote this section to explain how using several
plane valuations as above one can get larger codes. In fact, we can obtain families
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Table 3. Parameters for Example 5.7

k d dev
33 2 2
32 2 2
31 3 3
30 4 4
29 4 4
28 5 5
27 5 5
26 6 6
25 7 7

of codes of length qm, m ≥ 2, by considering m − 1 δ-sequences (and therefore
m− 1 plane valuations at infinity). Our families of codes are determined by weight
functions, so they are suitable for being decoded with the aid of the Berlekamp-
Massey-Sakata algorithm and admit Feng-Rao type bounds. Complete details can
be found in [22].

We start by introducing the concept of well-suited family of elements in a totally
ordered commutative group (G,≤). Consider families Γ = {γi,j}(i,j)∈I of elements
in G which can be written of the form

(5.1)

γ1,r1
γ2,1, γ2,2, . . . , γ2,r2
...

...
...

...
γm,1, γm,2, . . . , γm,rm ,

where r1 := 1 and ri ≤ ∞, for 2 ≤ i ≤ m, such that Γ generates a cancellative
well-ordered commutative with zero and with admissible ordering ≤ semigroup
SΓ, and γi,j is not in the semigroup spanned by {γl,s}(l,s)∈L(i,j), where L(i, j) :=

{(l, s) ∈ I|(l, s) <L (i, j)}, <L being the lexicographical ordering in Z2, defined as
(i1, j1) <L (i2, j2) if either i1 < i2 or i1 = i2 and j1 < j2.

Then we can state our definition:

Definition 5.8. A well-suited family of elements in G is a family Γ as above
such that, for each (i, j) ∈ I, j 6= ri, there exists ni,j ∈ N, ni,j > 1, satisfying the
following properties:

(1) ni,jγi,j > γi,j+1.
(2)

ni,j γi,j =
∑

(l,s)∈J(i,j)

ml,sγl,s,

for some finite subset of indices, J(i, j), of L(i, j), where the coefficients
ml,s are positive and ml,s < nl,s whenever s 6= rl.

(3) Any element γ ∈ SΓ can be expressed in a unique way in the form

γ =
∑

(i,j)∈I

mi,jγi,j ,

where I is a finite subset of I and 0 < mi,j < ni,j when j 6= ri.
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Bearing in mind the behavior of the families of approximates for valuations
at infinity, we note that well-suited sequences give rise to families of polynomials
which will be useful to provide weight functions. Next we define such polynomials.

Definition 5.9. Let Γ = {γi,j}(i,j)∈I be a well-suited family of elements
in a totally ordered commutative group G and consider the polynomial ring in
m indeterminates over the finite field of q elements expressed, for convenience,
Fq[X,m] := Fq[X1, X2, . . . , Xm]. Fix a set Λ = {λi,j}(i,j)∈I of nonzero elements in
Fq. We define the family of approximated polynomials attached to Γ and Λ as the
family of polynomials in Fq[X,m], PΓ,Λ := {qi,j}(i,j)∈I, given by qi,1 := Xi and, for
j 6= 1,

(5.2) qi,j := q
ni,j−1

i,j−1 − λi,j−1

∏

q
ml,s

l,s ,

where the values ni,j−1 and ml,s, (l, s) ∈ J(i, j− 1) correspond to the expression of
ni,j−1γi,j−1 given in item (2) of Definition 5.8.

Let us see an example to clarify our definitions.

Example 5.10. The following set

{γ1,1 = (120, 0, 0),
γ2,1 = (48, 0, 0), γ2,2 = (132, 0, 0), γ2,3 = (156,−12, 0),
γ3,1 = (26,−2, 0), γ3,2 = (26,−2,−1)}.

is a well-suited family of elements in the additive group Z3 lexicographically ordered.

Next result (see [22, Theorem 2.1] for a proof) shows why having a well-suited
family of elements is useful for our purposes.

Theorem 5.11. Let Γ = {γij}(i,j)∈I be a well-suited family of elements of
a totally ordered commutative group G, expressed as in (5.1), and let PΓ,Λ :=
{qi,j}(i,j)∈I be the family of approximated polynomials attached to Γ and a set Λ =
{λi,j}(i,j)∈I of nonzero elements in Fq. Then, there exists a weight function w :
Fq[X,m] → SΓ ∪ {−∞} such that w(qi,j) = γi,j.

This is not a theoretical result because the weight of a polynomial f ∈ Fq[X,m]
can be obtained by means of an algorithm, given in [22], that expresses f as a finite

sum of terms of the type α
∏

(i,j)∈I
q
ki,j

i,j , where α ∈ Fq, 0 ≤ ki,j < ni,j whenever

(i, j) ∈ I and j 6= ri, and ki,j = 0 except for finitely many indices. Then w(f)
will be the maximum of the weights of those terms (which are easily obtained from
the elements in Γ). We have given all the ingredients we need for stating our main
result in this section [22, Theorem 2.2].

Theorem 5.12. Let Γ = {γi,j}(i,j)∈I be a well-suited family and ev : Fq[X,m] →
Fn
q an epimorphism of Fq-algebras. Consider PΓ,Λ := {qi,j}(i,j)∈I a family of ap-

proximated polynomials attached to Γ. Then
(1) For each γ ∈ SΓ, the vector space Lγ := {f ∈ Fq[X,m]|w(f) ≤ γ} is

generated by the set of polynomials
∏

(i,j)∈I
q
mi,j

i,j such that I and mi,j run over

the indices and coefficients set corresponding to the unique expression (item (3) of
Definition 5.8) of the values η ∈ SΓ such that η ≤ γ.

(2) Let d(Cγ), with γ ∈ SΓ, denote the minimum distance of the dual code
Cγ := (ev(Lγ))

⊥ and consider the same definitions given before Theorem 5.4 for
the family of codes and its attached semigroups. Then d(Cγ) ≥ dev(γ) ≥ d(γ).
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(3) It happens that d(γ) ≤ min
[

∏

(i,j)∈I
(mi,j + 1)

]

≤ dev(γ), where I and mi,j

run over the indices and coefficients set of the above mentioned unique expression
of the values η ∈ SΓ such that γ ≤ η < Ωn.

We conclude this section and the whole paper by giving a procedure to get
well-suited families. We will obtain them from suitable families of δ-sequences. As
we have explained, one can compute from a δ-sequence a set of pairs that by means
of an Euclidean type algorithm provide the dual graph of the corresponding plane
valuation at infinity. Our procedure is supported on an extension of that algorithm
for values in the additive semigroup, Rn

+, of nonnegative elements in Rn, n ≥ 1,
under the lexicographical ordering. n-tuples (u1, u2, . . . , un) in Rn

+ will be usually
expressed as u and the following version of the Euclidean division holds.

Proposition 5.13. Let u ≥ v ∈ Rn
+ be such that there exists an index s

(1 ≤ s ≤ n) satisfying uj = vj = 0 for j < s and vs > 0, then there exists a unique
positive integer a such that u = av + w and (0, 0, . . . , 0) =: 0 ≤ w < v.

Thus, if u0 ≥ u1 are two elements in Rn
+, one can perform successively Euclidian

divisions:

(5.3)

u0 = a0u1 + u2; 0 < u2 < u1
u1 = a1u2 + u3; u1 < u3 < u2
...

...
...

...
ul−1 = al−1ul + ul+1; ul−1 < ul+1 < ul
...

...
...

... .

Then, the following possibilities for the algorithm can happen:

(1) It stops and for some index k, one gets uk = akuk+1 + 0.
(2) It never stops and we obtain an infinite sequence of natural numbers

al, l ≥ 0.
(3) It stops and, for some index k, one gets that there exists another index

s, 1 ≤ s ≤ n, such that the first s components uk+1,j , 1 ≤ j ≤ s, of uk+1

vanish, but uk,s 6= 0, being uk,1 = · · · = uk,s−1 = 0, that is, ak = ∞.

When the first item (1) happens, we say that uk+1 is the greatest common divisor
of u0 and u1. Moreover, for u, v ∈ Rn

+ we shall write a := u/v whenever there exists
a ∈ N>0 such that u = av, where we have considered the scalar multiplication. The
above procedure establishes an equivalence relation on the subset A of pairs (u, v)
of Rn

+ × Rn
+ such that u ≥ v which produces large equivalence classes.

Definition 5.14. Two pairs (u0, u1) and (v0, v1) in the above set A are
said to be equivalent (or related by the “Euclidean” relation RE) if the Euclidean
algorithm (5.3) applied to both of them provides the same case and the same values
〈a0; a1, . . . , al, . . .〉.

Example 5.15. Consider the set A in R2
+. Then, the pairs [(14, 9), (6, 4)] and

[(7, 9), (3, 6)] are in the same class represented by 〈2; 3,∞〉. The pairs [(14, 7), (6, 3)],
[(14, 0), (6, 0)], [(0, 7), (0, 3)] are in the same class 〈2; 3〉. And, [(π, 0), (e, 0)] and
[(π, 1), (e, 3)] are in the class 〈1; 6, 2, 2, 1, 2 . . .〉.

The mentioned equivalence relation allows us to provide the concept of δ-
sequence in Rn

+. First, we introduce the so-called canonical δ-sequences. Set
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∆ = {δi}ri=0, r ≤ ∞, a δ-sequence and for all i write δi := (δi, 0, . . . , 0) ∈ Rn
+,

where we add n− 1 zeroes except when the δ-sequence is of type C, in which case
we add only n − 2 zeroes. Obviously, n ≥ 2 for δ-sequences of type C. Then, the
set ∆ = {δi}ri=0 is called the canonical δ-sequence in Rn

+ corresponding to ∆.

Definition 5.16. A sequence ∆ = {δi}ri=0 of finitely or infinitely many ele-
ments in Rn

+ is called to be a δ-sequence in Rn
+ if, for 1 ≤ i ≤ r − 1, the value

di := gcd(δ0, δ1, . . . , δi−1) is defined and each pair of the sequence {(mi, ei)}, de-
fined as we did after (3.2), where ni := di/di+1, 1 ≤ i ≤ r− 1, belongs to the same
class with respect to the relation RE that the pairs attached to some canonical
δ-sequence in Rn

+.
This means that the set of δ-sequences in Rn

+ can be partitioned into equivalence
classes containing what we call equivalent δ-sequences represented by a canonical
δ-sequence.

Let us show a clearing example.

Example 5.17. Let ∆ = {δ0 = (5, 5), δ1 = (2, 2), δ2 = (7, 8)} be a δ-sequence
of type C. The attached canonical δ-sequence in R4

+ will be

∆ = {δ0 = (5, 5, 0, 0), δ1 = (2, 2, 0, 0), δ2 = (7, 8, 0, 0)}.
The sequence {(mi, ei)}i=0,1 is given by e0 = (3, 3, 0, 0), m0 = (5, 5, 0, 0), e1 =
(1, 1, 0, 0) because (5, 5, 0, 0) = 2(2, 2, 0, 0)+ (1, 1, 0, 0) and (2, 2, 0, 0) = 2(1, 1, 0, 0),
n1 = 5 andm1 = 5(2, 2, 0, 0)−(7, 8, 0, 0) = (3, 2, 0, 0). The pairs [(5, 5, 0, 0), (3, 3, 0, 0)]
and [(3, 2, 0, 0), (1, 1, 0, 0)] determine the classes given by 〈1; 1, 3〉 and 〈2; 1,∞〉.

An equivalent δ-sequence in R4
+ will be

∆′ = {δ′0 = (35, 15, 35, 15), δ′1 = (14, 6, 14, 6), δ′2 = (49, 22, 55, 19)}.
Indeed, e′0 = (21, 9, 21, 9), m′

0 = (35, 15, 35, 15) and the pair (m′
0, e

′
0) is in the

class 〈1; 1, 3〉. Moreover, d′2 = (7, 3, 7, 3) because (35, 15, 35, 15) = 2(14, 6, 14, 6) +
(7, 3, 7, 3) and (14, 6, 14, 6) = 2(7, 3, 7, 3), therefore n1 = 5 and so e′1 = (7, 3, 7, 3)
and m′

1 = (21, 8, 15, 11). Finally, we complete our explanation after checking that
(m′

1, e
′
1) is in the class represented by 〈2; 1,∞〉.

It is important to notice that the semigroups spanned by equivalent δ-sequences
in Rn

+, lexicographically ordered, are isomorphic ordered semigroups [22].
As we have said, our aim is to obtain codes from well-suited families. Next, we

define sum of δ-sequences and state a result which proves that they are families of
the desired type.

Definition 5.18. Let (∆i)
m
i=2 be an ordered set of δ-sequences, all of them

either of type C or D except the last one, ∆m, which is also allowed to be of type
E. A sum of these δ-sequences,

∑m
i=2 ∆i, is a family of elements in Rn

+ (for some
positive integer n) of the form

(5.4)

δ1,r1
δ2,1, δ2,2, . . . , δ2,r2
...

...
...

...
δm,1, δm,2, . . . , δm,rm

,

r1 := 1, rj <∞, 2 ≤ j < m and rm ≤ ∞, such that {δi−1,ri−1
, δi,1, . . . , δi,ri} is a δ-

sequence in Rn
+ in the same class as the canonical δ-sequence in Rn

+ corresponding to
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∆i, for 2 ≤ i ≤ m. We also require that, for each i, the intersection of the subgroups
spanned by {δl,s | (l, s) ∈ L(i, ri)\L(i−1, ri−1)} and by {δl,s | (l, s) ∈ L(i−1, ri−1)}
be trivial.

Theorem 5.19. (See [22, Theorem 3.4]). Let {νi}2≤i≤m be a family of m− 1
plane valuations at infinity as above whose semigroups at infinity are generated by
their corresponding δ-sequences, {∆i}2≤i≤m, which define weight functions denoted
by {w∆i

}2≤i≤m. Then any sum of δ-sequences Σ :=
∑m

i=2 ∆i is a well-suited family
of elements in the additive group Rn such that the values in Equality (2) of Def-
inition 5.8 depend only on one weight function w∆i

. Therefore, a sum Σ defines
a weight function wΣ with values in the semigroup generated by Σ defined on the
polynomial ring in m indeterminates Fq[X,m].

It is convenient to add that to perform a sum of δ-sequences can be done by
an algorithmic procedure (see Section 3.4 of [22]).

We finish this paper with an example that shows how a family of codes defined
over the field F3 can be constructed with a sum of two δ-sequences. Consider

∆ := { 20
8 , 1,

15
8 , ϑ := 1

8 (60 − 3+2
√
2

2+
√
2
)}, which is a δ-sequence of type D and the

δ-sequence of type C ∆′ := {(4, 0), (1, 0), (1,−1)}. ∆ comes from the δ-sequence in
N>0, {20, 8, 15}, after using the procedure given in [21, Section 4.3.3] and taking
the value

a = 1 +
1

1 + 1
1+

√
2

.

∆′ is constructed from the δ-sequence in N>0, {8, 2, 1}. A sum, ∆ +∆′, is

(5.5)
(20, 0)
(8, 0), (15, 0), (8ϑ, 0)
(2ϑ, 0), (2ϑ,−1).

Here, m− 1 = 2. The canonical δ-sequence relative to ∆ is

∆ = {(20/8, 0), (1, 0), (15/8, 0), (ϑ, 0)}
and ∆′ coincides with its associated canonical δ-sequence. The pairs (m0, e0) and
(m1, e1) corresponding to ∆′ are ((4, 0), (3, 0)) and ((3, 1), (1, 0)), and they define
the classes with respect to the relation RE given by 〈1; 3〉 and 〈3;∞〉. This is also
true in the sum as one can check.

The family of approximated polynomials has six polynomials in the indeter-
minates X1, X2, X3, being q1,1 = X1, q2,1 = X2 and q3,1 = X3. Moreover q2,2 =
−X2

1 +X5
2 , q2,3 = X8

1 −X6
1X

5
2 −X3

1 −X2
1X

15
2 +X20

2 and q3,2 = −X8
1 +X6

1X
5
2 +

X3
1 + X2

1X
15
2 − X20

2 + X4
3 . Indeed, n2,1 = 5, n2,2 = 4 and n3,1 = 4; q2,2 comes

from the fact that 5(8, 0) = 2(20, 0), q2,3 from the equality 4(15, 0) = 3(20, 0) and
finally q3,1 is deduced from the fact that 4(2ϑ, 0) = 8(ϑ, 0). The weight function
w∆+∆′ satisfies w∆+∆′(qi,j) = δi,j , where the values δi,j are those given in (5.5)
ordered as in (5.4) and, for instance, to compute w∆+∆′(−X2

1X3 + X5
2X3) one

must take into account that X1 = q1,1, X3 = q3,1 and X5
2 = q2,2 + q21,1, and then

w∆+∆′(−X2
1X3+X

5
2X3) = w∆+∆′(−q21,1q3,1+(q2,2+q

2
1,1)q3,1) = w∆+∆′(q2,2q3,1) =

(8 + 2ϑ, 0).
Consider the map ev given by evaluating the F3-algebra F3[X1, X2, X3] at the

following set of points in F3
3:

{(0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0), (2, 1, 0), (2, 1, 1),
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(2, 1, 2), (2, 0, 1), (2, 0, 0), (2, 0, 2)}.
Then, we get a family of codes of length 12 whose parameters are shown in Table 4.
As in Table 2, we also display the coefficients in the generating set ∆+∆′, expressed
as in (5.4), of the elements in the semigroup defining the code; these elements
are lexicographically ordered. That is, the coefficients 000000, 010000, 000001,
. . . correspond to the elements in the semigroup S∆+∆′ : (0, 0), (8, 0), (2ϑ,−1),
. . ., which appear in an increasing way according to the lexicographical ordering
and determine the polynomials 1, q1,1, q3,2, . . .. These monomials span the vector
space to be evaluated for obtaining the desired family of codes. We note that

Table 4. Parameters for the family given by ∆ +∆′

coef. k d dev
000000 11 2 2
010000 10 2 2
000001 9 2 2
000010 8 2 2
001000 7 3 2
020000 6 4 2
100000 5 4 4
010001 4 4 4
010010 3 6 4
011000 * 2 7 4
110000 1 12 4

the code given in * is the same as that given by the coefficients 030000, that is
C(23,0) = C(24,0).
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C. Galindo, Departamento de Matemáticas and IMAC, Univ. Jaume I, Spain

E-mail address: galindo@uji.es


