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Abstract We recall L-shapes, which are minimal distance diagrams, related to
weighted 2-Cayley digraphs, and we give the number and the relation between min-
imal distance diagrams related to the same digraph. On the other hand, we consider
some classes of numerical semigroups useful in the study of curve singularity. Then,
we associate L-shapes to each numerical 3-semigroup and we describe some main in-
variants of numerical 3-semigroups in terms of their associated L-shapes. Finally, we
give a characterization of the parameters of the L-shapes associated with a numer-
ical 3-semigroup in terms of its generators, and we use it to classify the numerical
3-semigroups of interest in curve singularity.

Keywords Numerical semigroup · Symmetric · Free · Curve plane semigroup ·
Cayley digraph · L-shape · Frobenius number

1 Introduction

We are interested in numerical semigroups useful in the study of curve singularity,
which receive the name of the corresponding classes of associated curves. Combi-
natorial objects, as simplicial complexes [3], have been introduced to study some
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geometrical properties of these numerical semigroups. But the particular numerical
semigroups dealt with here will be introduced arithmetically and they will be consid-
ered as pure arithmetical objects. From now on, a numerical n-semigroup denotes a
numerical semigroup generated by n generators.

The 2-Cayley digraphs have been widely used to study metrical applications of
local area networks. Their generalization to weighted 2-Cayley digraphs, adding
weights to the arcs, allows other applications to be studied. Looking for paths of
minimum length in these digraphs, periodical plane tessellations with L-shaped tiles
appear in the bibliography [5, 6]. Particular classes of L-shapes, the so called minimal
distance diagrams, have been used to study certain distance properties in 2-Cayley
digraphs, and have also been associated with numerical 3-semigroups [1, 9].

These particular L-shapes associated to a numerical 3-semigroup contain relevant
information about the semigroup and, in fact, some main invariants of the semigroup,
such as Apéry sets, Frobenius number, set of gaps, . . . can be described in terms of
the associated L-shapes.

Our goal in this work is to show the close relation between numerical 3-semi-
groups, which are interesting in the mentioned geometric context, and their associated
L-shapes, in such a way that we can describe problems in a numerical 3-semigroup
in terms of the associated L-shapes, and vice-versa.

Our last objective is to understand in depth the relations between semigroups and
L-shapes to try to understand some complex problems in geometry by means of these
combinatoric tools, which are not so complex as those used in geometry [3]. In partic-
ular, we try to understand complete intersection numerical n-semigroups [4, 8] which,
for n ≥ 4, are distinguished from symmetric semigroups. A thorough knowledge of
the case n = 3 will allow us to approach the case n = 4.

In Sect. 2, we introduce L-shapes related to weighted 2-Cayley digraphs and min-
imum distance diagrams in this context. In Sect. 3, we study the number and the rela-
tion between the minimum distance diagrams related to the same digraph. In Sect. 4,
we introduce numerical semigroups interesting in the study of curve singularity and
we describe some invariants of numerical 3-semigroups in terms of their associated
L-shapes. Finally, in Sect. 5 we characterize these numerical 3-semigroups in terms
of the number and the type of their associated L-shapes.

2 L-shaped minimum distance diagrams

In this section we introduce L-shapes related to certain weighted 2-Cayley digraphs
and particular cases of them which are also minimum distance diagrams. These geo-
metrical objects will be used to obtain the main information about their related semi-
groups.

For integers g,n ∈ N, let us denote the equivalence class of g modulo n by
[g]n. Given integers a, b, c ∈ N, 1 ≤ a < b < c, gcd(a, b, c) = 1 and weights Wa,

Wb ∈ R
+, a weighted 2-Cayley digraph G(c;a, b;Wa,Wb) = Cay(Zc;a, b;Wa,Wb)

is a directed graph with sets of vertices V (G) = Zc and arcs A(G) = {[g]c Wa−→
[g + a]c, [g]c Wb−→ [g + b]c : g = 0, . . . , c − 1}, where

Wa−→ and
Wb−→ stand for
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Fig. 1 L-shape L(l, h,w,y)

and the related plane tessellation

weighted arcs with related weights Wa and Wb, respectively. In this context, we con-
sider Zc generated by the set {a, b}. We denote the distance from vertex [g]c to vertex
[h]c in G by dG([g]c, [h]c) (the weight of a minimal weighted path from [g]c to [h]c).
From now on, we simplify “weighted 2-Cayley digraph G(c;a, b;Wa,Wb)” to “di-
graph G(c;a, b;Wa,Wb)”. Metrical properties of these digraphs have been widely
studied using minimum distance diagrams [5, 6, 10] that will be defined later.

Let us consider unit squares [[i, j ]] = [i, j ] × [i + 1, j + 1] ⊂ R
2 with integer

non negative coordinates (i, j) ∈ N
2. Each square [[i, j ]] is related to the equivalence

class [ia + jb]c, and we denote the weight of the unit square [[i, j ]] by δ(i, j) =
iWa + jWb. Given any integer 0 ≤ n < c, let us consider the set of unit squares in the
first quadrant related to [n]c

Qn = {[[i, j ]] : [ia + ib]c = [n]c,0 ≤ i, j
}
,

and the weight of [n]c
Mn = min

{
δ(i, j) : [[i, j ]] ∈ Qn

} = dG

([0]c, [n]c
)
.

As it is well known, an L-shape related to the digraph G(c;a, b;Wa,Wb) consists
of c unit squares related to the equivalence classes [n]c,0 ≤ n < c. L-shapes are
denoted by the lengths of their sides, L(l, h,w,y), with 0 ≤ w < l and 0 ≤ y < h as
in the left hand side of Fig. 1. Rectangles are considered degenerated L-shapes, i.e.,
L-shapes with wy = 0. Conditions

lh − wy = c and gcd(l, h,w,y) = 1 (1)

are necessary for an L-shape L(l, h,w,y) to be related to a given digraph G(c;a, b;
Wa,Wb). It is also well known that an L-shape L(l, h,w,y) periodically tessel-
lates the plane by translation through the vectors u = (l,−y) and v = (−w,h)

(right hand side of Fig. 1). In terms of equivalence classes, this fact results in
[ia + jb]c = [(i + l)a + (j − y)b]c and [ia + jb]c = [(i − w)a + (j + h)b]c , that is

la ≡ yb (mod c) and hb ≡ wa (mod c). (2)

Fiol et al. [6] showed that an L-shape L(l, h,w,y) is related to the digraph
G(c;a, b;Wa,Wb) if and only if (1) and (2) hold.
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Fig. 2 Regions AH , BH, CH
and some highlighted unit
squares

Let �(i, j) be the set of unit squares in the first quadrant dominated by [[i, j ]], i.e.

�(i, j) = {[[u,v]] : 0 ≤ u ≤ i,0 ≤ v ≤ j
}
.

Definition 1 An L-shape related to G(c;a, b;Wa,Wb), L, is a minimum distance
diagram (MDD for short) if it satisfies the following two properties:

(a) For each [[s, t]] ∈ L, identity δ(s, t) = Msa+tb holds.
(b) If [[s, t]] ∈ L then �(s, t) ⊂ L.

The following result is a geometrical characterization of minimum distance dia-
grams.

Theorem 1 ([2]) Let H = L(l, h,w,y) be an L-shape related to the digraph G =
G(c;a, b;Wa,Wb). Then H is an MDD related to G if and only if lWa ≥ yWb,
hWb ≥ wWa and both equalities do not hold at the same time.

3 Properties of MDDs related to a weighed 2-Cayley digraph

In this section we study geometrical properties of MDDs related to the same weighed
2-Cayley digraph. In particular, we give their cardinal and geometrical links between
them.

From now on, given an L-shape H = L(l, h,w,y), we assume the left lower
square of H is [[0,0]] by default. Set ∇(i, j) = {[[s, t]] : s ≥ i, t ≥ j}, AH =
∇(l − w,h − y), BH = ∇(l,0) \ ∇(l, h − y) and CH = ∇(0, h) \ ∇(l − w,h). Note
the disjoint union N

2 = H ∪ AH ∪ BH ∪ CH as it is depicted in Fig. 2.
We use the notation [[i, j ]] ∼ [[m,n]] whenever [ia + jb]c = [ma + nb]c.

Lemma 1 Let H = L(l, h,w,y) be an MDD related to a digraph G = G(c;a, b;
Wa,Wb). Then,
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(a) if [[i, j ]] ∼ [[s, t]] with [[i, j ]] ∈ H and δ(i, j) < δ(s, t), it follows that δ(m,n) >

dG([0]c, [ma + nb]c) for all unit squares [[m,n]] ∈ ∇(s, t),
(b) no other MDD related to G intersects region AH,
(c) if lWa > yWb , no other MDD related to G intersects region BH,
(d) if hWb > wWa , no other MDD related to G intersects region CH,
(e) if lWa = yWb , then hWb > wWa ,
(f) if hWb = wWa , then lWa > yWb.

Proof Item (a) is a consequence of the fact that any subpath of a minimum path in G

is also a minimum path.
Item (b) comes from the equivalence [[0,0]] ∼ [[l − w,h − y]], i.e. by condi-

tions (2). Thus, applying (a), no unit square [[s, t]] ∈ AH satisfies minimality con-
dition δ(i, j) = Msa+tb and so, it can not belong to any MDD related to G.

Consider the unit squares [[0, y]] ∈ H and [[l,0]] /∈ H. From the equivalence
[[0, y]] ∼ [[l,0]] (by (2)), we can apply again item (a) to prove (c). The same argu-
ment proves (d) by taking unit squares [[w,0]] ∈H and [[0, h]] /∈H.

For (e) and (f), we have hWb > yWb = lWa > wWa and lWa > wWa = hWb >

yWb .
Note that if w = 0, then hWb �= wWa , and if y = 0, then lWa �= yWb.
Given any MDD related to the digraph G(c;a, b;Wa,Wb), following Theorem 1

and items (e) and (f) of Lemma 1, we discuss the three possible cases: either lWa =
yWb or hWb = wWa or (lWa − yWb)(hWb − wWa) > 0.

Theorem 2 Let H = L(l, h,w,y) be an MDD related to a digraph G = G(c;a, b;
Wa,Wb). If (lWa − yWb)(hWb − wWa) > 0, then there is no other MDD related
to G.

Proof From Lemma 1(b), another MDD related to G, H′, only intersects region BH∪
CH ∪ H′. From Lemma 1(c) and (d), the MDD H′ only intersects H. As H and H′
have the same area, it follows that H = H′. �

Theorem 3 Let H = L(l, h,w,y) be an MDD related to a digraph G = G(c;a, b;
Wa,Wb). If hWb = wWa , then there is another MDD H′ related to G given by

H′ =
⎧
⎨

⎩

L(w,2h − y,2w − l, h) l < 2w,

L(w, (l/w� + 1)h − y,w − r, h) l > 2w > 0, l = l/w�w + r,0 < r < w,

L(w, lh/w − y,0, h) l ≥ 2w > 0, l = l/w�w.

Proof Equivalence between unit squares, defined by the compatibility equations (2),
leads to the idea of equivalence between regions of the plane (those regions contain-
ing clusters of equivalent unit squares). This idea allows us to think of the L-shaped
MDD H′ as a recomposition of pieces of H, like a puzzle.

If hWb = wWa , from Lemma 1, another MDD related to G, H′ =
L(l′, h′,w′, y′) �= H, intersects the region CH, that is H′ �⊂ H and H′ ⊂ H ∪ CH.

Note that w �= 0. We consider the two cases, either l < 2w or l ≥ 2w > 0.
Case l < 2w: Fig. 3 shows which piece of H has to be considered to obtain H′.

The two shaded pieces are equivalent regions, in the sense mentioned above, and they
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Fig. 3 Case l < 2w. Diagrams
H and H′, respectively

Fig. 4 Case l > 2w > 0 and 0 < r < w. H is divided into l/w� + 1 pieces

follow the distribution given by the vectors u = (l,−y) and v = (−w,h) from (2).
It follows that l′ = w, h′ = 2h − y, w′ = 2w − l and y′ = h. So H′ = L(w,2h −
y,2w − l, h).

We check now that H′ fulfills compatibility conditions (1) and (2), and Theorem 1.
Conditions (1): clearly l′h′ − w′y′ = c, and gcd(l′, h′,w′, y′) = gcd(w,−y,2w −
l, h) = gcd(w,y, l, h) = 1.

Conditions (2) are also clear since l′a ≡c y′b ⇐⇒ wa ≡c hb and w′a ≡c h′b ⇐⇒
(2w − l)a ≡c (2h − y)b ⇐⇒ la ≡c yb.

Theorem 1: the first inequality l′Wa ≥ y′Wb ⇐⇒ wWa ≥ hWb is true because
hWb = wWa ; the second one is also true because h′Wb ≥ w′Wa ⇐⇒ (2h − y)Wb ≥
(2w − l)Wa ⇐⇒ lWa ≥ yWb.

Case l ≥ 2w > 0: Set l = l/w�w + r , with 0 ≤ r < w.
In the case 0 < r < w, see Fig. 4, it follows that l′ = w, h′ = l/w�h + (h − y),

w′ = w − r and y′ = h. So H′ = L(w, (l/w� + 1)h − y,w − r, h).
Conditions (1):

l′h′ − w′y′ = w
[(l/w� + 1

)
h − y

] − (w − r)h

= (
wl/w� + r

)
h − wy = lh − wy = c,

gcd
(
l′, h′,w′, y′) = gcd

(
w,

(l/w� + 1
)
h − y,w − r, h

) = gcd(w,−y,−l, h) = 1.

Conditions (2): We have l′a ≡c y′b ⇐⇒ wa ≡c hb, and

w′a ≡c h′b ⇐⇒ (w − r)a ≡c

[(l/w� + 1
)
h − y

]
b ⇐⇒ yb ≡c l/w�hb + ra,

since wa ≡c hb
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Fig. 5 Case l ≥ 2w > 0 and r = 0. H is divided into l/w pieces

⇐⇒ wa ≡c hb, since yb ≡c la = (l/w�w + r
)
a

Theorem 1: We have l′Wa ≥ y′Wb ⇐⇒ wWa ≥ hWb . The second inequality is
also true because h′Wb ≥ w′Wa ⇐⇒ [(l/w� + 1)h − y]Wb ≥ (w − r)Wa ⇐⇒
(l/w�h − y)Wb + rWa ≥ 0, since l/w� ≥ 2.

In the case r = 0, see Fig. 5, we have l′ = w, h′ = (l/w − 1)h+ (h−y) = lh/w −
y, w′ = 0 and y′ = h. So, H′ = L(w, lh/w − y,0, h) (note the position of 0 in the
figure).

Conditions (1): l′h′ − w′y′ = w(lh/w − y) − 0 = lh − wy = c, and

gcd
(
l′, h′,w′, y′) = gcd(w, lh/w − y,0, h) = gcd(w,−y,h)

= gcd(w,−y,h, l) = 1,

Conditions (2): l′a ≡c y′b ⇐⇒ wa ≡c hb, and

w′a ≡c h′b ⇐⇒ 0 ≡c (lh/w − y)b ⇐⇒ yb ≡c (l/w)hb = la,

follows from hb ≡c wa and la ≡c yb.
Theorem 1: The first inequality, l′Wa ≥ y′Wb , is fulfilled by the same reasons as in

the previous case; for the second one, h′Wb ≥ w′Wa ⇐⇒ (lh/w − y)Wb ≥ 0, since
l/w ≥ 2. �

Theorem 4 Let H = L(l, h,w,y) be an MDD related to a digraph G = G(c;a, b;
Wa,Wb). If lWa = yWb, then there is another MDD H′ related to G given by

H′ =
⎧
⎨

⎩

L(2l − w,y, l,2y − h) h < 2y,

L((h/y� + 1)l − w,y, l, y − r) h > 2y > 0, h = h/y�y + r,0 < r < y,

L(lh/y − w,y, l,0) h ≥ 2y > 0, h = h/y�y.

Proof We can proceed analogously to the proof of Theorem 3. The MDD H′ is now
formed by unit squares from H and the region BH. Note that if lWa = yWb , then
y �= 0. �
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From now on, we denote the transformations given in Theorems 3 and 4 by
T1(H) = H′ and T2(H) = H′, respectively.

Theorem 2 shows that there is a unique MDD H = L(l, h,w,y) related to a di-
graph G = G(N;a, b;Wa,Wb) whenever (lWa − yWb)(hWb − wWa) > 0. On the
contrary, Theorems 3 and 4 show that if (lWa − yWb)(hWb − wWa) = 0, then G has
more than one related MDD. Moreover, in the latter case, we also see that an MDD
can be obtained from another one by applying a suitable transformation, T1 or T2,
given by either Theorems 3 or 4. The last results in this section show that no more
than two MDD are related to the same weighed 2-Cayley digraph.

Lemma 2 Let H = L(l, h,w,y) be an MDD related to a digraph G = G(c;a, b;
Wa,Wb) with (lWa − yWb)(hWb − wWa) = 0. If H′ = L(l′, h′,w′, y′) is the MDD
related to G obtained from H by the corresponding transformation T1 or T2, then

• lWa = yWb =⇒ l′Wa > y′Wb ,
• hWb = wWa =⇒ h′Wb > w′Wa .

Proof Let us assume hWb = wWa . From Lemma 1(f) it follows lWa > yWb . Then,

– If l < 2w, we have H′ = L(w,2h−y,2w− l, h) and so h′Wb > w′Wa ⇐⇒ lWa >

yWb.
– If l ≥ 2w > 0 with l = l/w�w + r and 0 < r < w, we have H′ =

L(w, (l/w� + 1)h − y,w − r, h). Therefore, h′Wb > w′Wa ⇐⇒ l/w�hWb +
rWa > yWb ⇐⇒ (l/w�w + r)Wa > yWb ⇐⇒ lWa > yWb .

– If l ≥ 2w > 0 with l = l/w�w, we obtain H′ = L(w, lh/w − y,0, h) and so

h′Wb > w′Wa ⇐⇒ (lh/w − y)Wb > 0 ⇐⇒ lWa − yWb > 0.

If lWa = yWb, the proof is analogous to the previous case, now using Lemma 1(e). �

By Lemma 2, transformations T1 and T2 can not be applied in any order. There
are only two allowed compositions, T2 ◦ T1 or T1 ◦ T2, and both result in the identity
transformation.

Theorem 5 Let H = L(l, h,w,y) be an MDD related to a digraph G = G(N;a, b;
Wa,Wb) with (lWa −yWb)(hWb −wWa) = 0. Then, there are just two MDD related
to G.

Proof We first prove that if H′ = L(l′, h′,w′, y′) is the MDD related to G obtained
from H by the corresponding transformation T1 or T2, then any other MDD re-
lated to G is contained in the region H ∪ H′. Let us assume hWb = wWa . Then,
from Lemma 1(f) we have lWa > yWb and, by Lemma 2, h′Wb > w′Wa . Hence, by
Lemma 1(a), the region ∇(0, h′) = ∇(0,2h − y) can not contain any piece of some
other MDD related to G. By items (b), (c) and (d) of Lemma 1, we also know that
none of the regions AH and BH can intersect any other MDD related to G. Thus, any
other MDD related to G is contained in N

2 \ (CH′ ∪ AH ∪ BH) = H ∪H′. The case
lWa = yWb can be proved by analogy.
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Now we prove that there are just two MDD related to G. If hWb = wWa , then
H′ = T1(H) follows from Theorem 3. Clearly H′ �= H. Analogously, if lWa = yWb

we have T2(H) �= H. Therefore, we have at least two MDD related to G. We have to
prove that there is no other MDD, H′′ �= H,H′, related to G.

Let us assume hWb = wWa (H′ = T1(H)) and the subcase l < 2w (see Fig. 3).
Denote the rectangle {[[m,n]] : i ≤ m ≤ s, j ≤ n ≤ t} by ρ[(i, j), (s, t)] whenever
i ≤ s and j ≤ t . Define the regions

E1 = ρ
[(

l′,0
)
, (l − 1, h − y − 1)

] = ρ
[
(w,0), (l − 1, h − y − 1)

]
,

E2 = ρ
[
(0, h),

(
l′ − w′ − 1, h′ − 1

)] = ρ
[
(0, h), (l − w − 1,2h − y − 1)

]
,

F = H \ E1 = �(w − 1, h − y − 1) ∪ �(l − w − 1, h − 1).

Regions E1 and E2 are the shadowed pieces appearing in Fig. 3, and the region F is
the lighter piece in the same figure.

Clearly CH = E2 ∪CH′ and E2 = E1 +v. So, when applying T1 to H to obtain H′,
region F remains fixed and region E1 is transformed into E2. Then, any other MDD
H′′ related to G, different from H and H′, is contained in the region R = H ∪H′ =
E1 ∪F ∪ E2.

Let us consider the unit squares [[w,0]] and [[0, h]] = [[w,0]] + v, which repre-
sent the same equivalence class [wa]c = [hb]c . The class [wa]c is only represented
by these two unit squares in the region R. Therefore, the MDD H′′ contains either
[[w,0]] or [[0, h]]. If [[w,0]] ∈ H′′, then ∇(0, h) ∩ H′′ = ∅ because H′′ is an MDD.
So, H′′ contains no unit square located in the region E2. Hence, H′′ = F ∪ E1 = H.
On the contrary, if [[0, h]] ∈ H′′, then H′′ = H′. In any case, we conclude that the
MDD H′′ is not different from either H or H′.

The other subcases, l > 2w > 0 with r > 0 and l ≥ 2w > 0 with r = 0, lead to the
same conclusion with similar arguments.

If lWa = yWb and H′ = T2(H), the statement can be proved by analogous reason-
ings. �

4 L-shapes associated with numerical 3-semigroups

In this section, we first introduce some general classes of numerical semigroups use-
ful in the study of curve singularities. Second, we associate L-shapes with numerical
3-semigroups and we describe how the main invariants of these semigroups are rec-
ognizable in their associated L-shapes.

4.1 Numerical semigroups

A numerical semigroup S is an additive subsemigroup of N with 0 ∈ S. We can
suppose that gcd(S) = 1, otherwise we would take the quotient S′ = S/gcd(S). This
condition is equivalent to the fact that the complementary of S in N is finite, and
we denote the set and the number of gaps in the semigroup S by S̄ = N − S and
|S̄|, respectively. They are also equivalent to the existence of a conductor element
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c(S) = min{x ∈ S : n ∈ Sfor anyn ≥ x} in S. The number f(S) = c(S) − 1 is called
the Frobenius number of S.

Numerical semigroups are finitely generated and any set of generators includes
the minimal set of generators S = 〈b0, . . . , bg〉, where b0 = min(S − {0}) and bi+1 =
min(S−〈b0, . . . , bi〉), i = 0, . . . , g−1. The Apéry set of S with respect to the element
m ∈ S is Ap(S,m) = {s ∈ S : s − m /∈ S}. Then we have max Ap(S,m) = f(S) − m.
For an up-to-date information about numerical semigroups see [11] and [8].

The classes of numerical semigroups that we will consider in what follows receive
the name of their corresponding classes of associated curves.

In general, any numerical semigroup S verifies that m ∈ S =⇒ c(S) − 1 − m /∈ S.
A numerical semigroup S is symmetric if it satisfies m ∈ S ⇐⇒ c(S)− 1 −m /∈ S. In
this case, the conductor verifies c(S) = 2|S̄| [7].

A numerical semigroup S = 〈b0, . . . , bg〉 is free if it satisfies

Nibi ∈ 〈b0, . . . , bi−1〉, for i = 1, . . . , g

where Ni = ei−1/ei with ei = gcd(b0, . . . , bi), i = 0,1, . . . , g.
A particular case of free semigroups are the so called plane curve semigroups

arising as semigroups of values of analytically irreducible plane curve singularities.
For the former, one has in addition

Nibi < bi+1, i = 1, . . . , g − 1.

In general, plane curve implies free and free implies symmetric.

Lemma 3 A numerical semigroup with two generators S = 〈a, b〉 is a plane curve
semigroup, it has the Apéry set Ap(S, a) = {0, b,2b, . . . , (a − 1)b} and conductor
c(S) = (a − 1)(b − 1).

A numerical semigroup with three generators S = 〈a, b, c〉 is a free semigroup
if and only if c gcd(a, b) ∈ 〈a, b〉 and it is a plane curve semigroup if furthermore
c > lcm(a, b).

Lemma 4 Let S = 〈a, b, c〉 be a minimally generated numerical semigroup with
1 < a < b < c and gcd(a, b) = p > 1. Considering Sp = 〈a/p,b/p〉 and S′ =
〈a/p,b/p, c〉 we have that:

(a) S is symmetric if and only if S′ is symmetric.
(b) S is free if and only if c ∈ Sp .
(c) S is plane curve if and only if c ∈ Sp and c > lcm(a, b).

Proof Item (a) is the Proposition 8 of [7], and (b) and (c) follow from Lemma 3. �

4.2 L-shapes associated with numerical 3-semigroups

The digraph G∗ = G(c;a, b;a, b) (i.e., the particular case Wa = a and Wb = b) is
closely related to the numerical 3-semigroup S = 〈a, b, c〉. Let L be an MDD related
to G∗ then, for each [[i, j ]] ∈ L, identity Mia+jb = ia + jb holds. In other words,
the value ia + jb is the minimum element of the equivalence class [ia + jb]c that



680 F. Aguiló, C. Marijuán

belongs to the semigroup S. That is ia + jb ∈ Ap(c, S). This observation leads to the
identity

{
dG∗

([0]c, [ia + jb]c
) : [[i, j ]] ∈ L

} = {
ia + jb : [[i, j ]] ∈ L

} = Ap(c, S). (3)

Definition 2 An L-shape L is associated with the numerical 3-semigroup 〈a, b, c〉 if
L is an MDD related to the digraph G(c;a, b;a, b).

Many properties of a numerical semigroup S = 〈a, b, c〉 can be derived from a re-
lated Apéry set. Note that, by (3), the set of unit squares gives the Apéry set Ap(c, S).
Thus, some computations can be efficiently done from the associated L-shape. See
[1] for how the sets of gaps of S can be obtained from an associated L-shape. The
following result gives the Frobenius number and the number of gaps of a numerical
3-semigroup from an associated L-shape.

Theorem 6 ([1]) Let S = 〈a, b, c〉 be a numerical semigroup and H = L(l, h,w,y)

an L-shape associated with S. Then

f(S) = max
{
(l − 1)a + (h − y − 1)b, (l − w − 1)a + (h − 1)b

} − c (4)

2|S̄| = l(h − y)

c

[
(l − 1)a + (h − y − 1)b

]

+ y(l − w)

c

[
(l − w − 1)a + (2h − y − 1)b

] − c + 1 (5)

Note that the numbers (l − 1)a + (h − y − 1)b and (l − w − 1)a + (h − 1)b are
the weights of the unit squares [[l − 1, h − y − 1]] and [[l − w − 1, h − 1]], i.e., the
“dominant right interior corners” of the L-shape H.

In the next section we will use the following result about the weight of the convex
corner, i.e., the unit square [[l − w,h − y]], of an L-shape L(l, h,w,y) associated to
a semigroup.

Lemma 5 Let H = L(l, h,w,y) be an L-shape associated with the numerical semi-
group S = 〈a, b, c〉, with 1 < a < b < c and gcd(a, b, c) = 1. Then, if hb = wa (or
la = yb), the weight of the convex corner of H is ac/h (or bc/h) and this weight
does not change with the transformation T1 (or T2).

Proof If hb = wa, the weight of the convex corner of H is (l − w)a + (h − y)b =
la − yb = ac/h. Now we compute the weight of the convex corner of T1(H) = H′
by cases.

• If l < 2w, the convex corner preserves its position and its weight, since H′ =
L(w,2h − y,2w − l, l) and its convex corner is [[w − (2w − l),2h − y − l]] =
[[l − w,h − y]].

• If l ≥ 2w and w divides l, we have H′ = L(w, lh/w − y,0, h) and its convex
corner is [[w, lh/w − y − h]] with weight wa + (lh/w − y − h)b = la − yb.
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• If l ≥ 2w and l = l/w�w+ r with 0 < r < w, we have H′ = L(w, (l/w�+1)h−
y,w − r, h) and its convex corner is [[w − (w − r), (l/w� + 1)h − y − h]] =
[[r, l/w�h − y]] with weight ra + (l/w�h − y)b = ra + l/w�wa − yb = la −
yb. �

Lemma 6 Let H = L(l, h,w,y) be an L-shape associated with the numerical semi-
group S = 〈a, b, c〉, with 1 < a < b < c and gcd(a, b, c) = 1. Consider m,n ∈ N

with gcd(m,n) = gcd(m, c) = 1, n|a, n|b and mb < nc. Then H is also related to the
3-numerical semigroup S′ = 〈a m

n
, bm

n
, c〉.

Proof Obviously, conditions (1) and Theorem 1, taking Wa = a and Wb = b, are
fulfilled by H and S′.

Consider the congruence la ≡ yb (mod c) in (2), then there is some λ ∈ Z with
la − yb = λc. From n|(la − yb) and gcd(n, c) = 1, we have n|λ and then m(l a

n
−

y b
n
) = mλ

n
c and so la m

n
≡ ybm

n
(mod c) holds. The second congruence hbm

n
≡ wa m

n
(mod c) follows from the same argument. Thus, conditions (2) hold for H and S′. �

5 Classification of numerical 3-semigroups by means of L-shapes

In this section, we characterize the numerical 3-semigroups considered in the previ-
ous section, in terms of the parameters of their associated L-shapes.

The next theorem gives a first characterization of symmetric 3-semigroups by
means of the parameters of an associated L-shape.

Theorem 7 Let S = 〈a, b, c〉 be a numerical semigroup and H = L(l, h,w,y) an L-
shape associated to S. Then, S is symmetric if and only if wy(la−yb)(wa−hb) = 0.

Proof We can write the expression (4) as

f(S) = (l − w − 1)a + (h − y − 1)b + max{wa,yb} − c (6)

Using (5), (6) and c = lh − wy we have

• If wa = yb, then [[w,0]] and [[0, y]] belong to H and have the same weight, so
w = y = 0.

• If wa > yb, then

S symmetric ⇐⇒ 2|S̄| = f(S) + 1

⇐⇒ (l − w)y(hb − wa) = 0

⇐⇒ y(hb − wa) = 0, since 0 < w < l.

• If wa < yb, in the same way, S is symmetric if and only if w(la − yb) = 0.

So, if S is symmetric, then wy(la −yb)(wa −hb) = 0. Reciprocally, note that w = 0
implies wa < yb and also la −yb = 0 implies wa < yb. Analogously, y(wa −hb) =
0 implies wa > yb. �
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As a consequence of this result, a symmetric 3-semigroup has associated either
an L-shape H = L(l, h,w,y) with wy = 0, in which case H is rectangular but not
unique, or (la − yb)(wa − hb) = 0, in which case S has associated two L-shapes,
where only one of them can be rectangular (Theorems 3 and 4).

Note that, in the characterization of symmetric 3-semigroups given in Theorem 7,
it is not required that {a, b, c} be a minimal system of generators for S. In this section,
we classify numerical semigroups introduced in Sect. 4 in the 3-generated case, S =
〈a, b, c〉. This classification is done with respect to the number and the degeneration
or not of their associated L-shapes. This classification basically depends on whether
{a, b, c} is a minimal system of generators for S or not, and on whether the terms a, b

and c are coprime or not.
First of all, we consider the case 1 < a < b < c with gcd(a, b, c) = 1 when

{a, b, c} is not a minimal system of generators of S. Thus, gcd(a, b) ∈ {1, a}.
If gcd(a, b) = 1, then c = λa + μb,λ,μ ∈ N and we have the following result

for S.

Theorem 8 Let S = 〈a, b, c〉 be a numerical semigroup with 1 < a < b < c,

gcd(a, b) = 1 and c = λa + μb with λ,μ ∈ N∪ {0}. We have:

(a.1) If c = λa with λ ≤ b, then S has associated a unique rectangular L-shape
H = L(λ,a,0,0) if λ divides b, and H = L(λ,a,λ − r,0), with λ − r ≡ b

(mod λ), if not.
(a.2) If c = λa with λ > b, then S has associated a rectangular L-shape H =

L(λ,a, b,0) and another, H′ = T1(H), that can be rectangular or not (also
H = T2(H′)).

(b.1) If c = μb with μ ≤ a, then S has associated a unique rectangular L-shape
H = L(b,μ,0,0) if μ divides a, and H = L(b,μ,0,μ − r), with μ − r ≡ a

(mod μ), if not.
(b.2) If c = μb with μ > a, then S has associated a rectangular L-shape H =

L(b,μ,0, a) and another, H′ = T2(H), that can be rectangular or not (also
H = T1(H′)).

(c) S has associated two rectangular L-shapes if and only if c = λa = μb > ab.
(d) If c = λa + μb such that a and b do not divide c, then S has associated two

non rectangular L-shapes H = L(λ′ + b, a, b, a − μ′), being c = λ′a + μ′b
with 1 ≤ μ′ < a, and H′ = T1(H) (also H = T2(H′)).

Proof In each case, we prove that the corresponding L-shapes verify the compatibil-
ity conditions (1) and (2), and Theorem 1.

(a.1) There exists r,0 ≤ r < λ, such that b + r ≡ 0 (mod λ) and so ab + ar ≡ 0
(mod λa) (see left hand side of Fig. 6). Note that r = 0 if and only if λ divides b.

For conditions (1), if gcd(λ, a,λ − r) = g > 1, then gcd(λ, a, r) = g and g di-
vides b, thus we obtain the contradiction gcd(a, b) ≥ g > 1.

For Theorem 1, we have la −yb = λa > 0 and hb−wa = a(b−λ+ r) > 0, since
0 < r < λ, which also proves the unicity of this L-shape. Only a simple inspection is
needed to verify the rest of the conditions.

(a.2) If λ > b, the situation is represented in the right hand side of Fig. 6, where the
zero [λa]λa in the unit square [[λ,0]] is also obtained in the unit square [[λ − b, a]].
Hence, an associated L-shape is H = L(λ,a, b,0).
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Fig. 6 Diagrams of
L(λ,a,λ − r,0) and
L(λ,a, b,0)

Conditions (1) and (2) are clear. Now we have la − yb = λa > 0 and hb − wa =
ab − ba = 0. Then the statement follows from Theorems 1 and 5.

In a similar way we can prove (b.1) and (b.2).
(d) We have c = λa + μb = (λ + kb)a + (μ − ka)b for any k ∈ Z. Since a does

not divide c, there exists k ∈N∪{0} such that 0 < μ−ka < a. Denoting μ′ = μ−ka

and λ′ = λ + kb, we can write c = λ′a + μ′b with 1 ≤ μ′ < a.
Let us see that H = L(λ′ + b, a, b, a − μ′) is a non rectangular (μ′ < a) L-shape

associated with S, as shown in Fig. 7. Conditions (1) are clear. From la − yb =
(λ′ + b)a − (a − μ′)b = λ′a + μ′b ≡ 0 (mod c) and hb − wa = ab − ba = 0 ≡ 0
(mod c) follow conditions (2). Since la −yb > 0, the L-shape H verifies Theorem 1,
and Theorem 3 gives the other L-shape H′ = L(b,μ′′ + a, b − λ′′, a), where c =
λ′′a + μ′′b with 1 ≤ λ′′ < b.

(c) As c = λa = μb > ab, by exclusion, we are simultaneously in the cases (a.2)
and (b.2). So S has associated the L-shapes H = L(λ,a, b,0) and H′ = L(b,μ,0, a).
Obviously T1(H) = H′ and T2(H′) = H. �

If gcd(a, b) = a, then b = ka, k ∈ N and gcd(a, c) = 1. In this case, we have the
following result for S.

Theorem 9 Let S = 〈a, b, c〉 be a numerical semigroup with 1 < a < b < c,

gcd(a, b, c) = 1 and b = ka. Then:

(a) S has associated two L-shapes and at least one of them is the rectangular L-shape
H = L(c,1, k,0).

(b) S has associated two rectangular L-shapes if and only if k divides c. The other
rectangular L-shape associated with S is T1(H) = L(k, c/k,0,1).
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Fig. 7 Diagram of H = L(λ′ + b, a, b, a − μ′)

(c) If k does not divide c, the other non rectangular L-shape associated with S is
L(k, c/k� + 1, k − r,1), with c = c/k�k + r and 0 < r < k.

Proof As gcd(a, c) = 1, the zero [ca]c is located at unit squares [[c,0]] and
[[c − k,1]]. So H = L(c,1, k,0), verifying conditions (1) and (2) and Theorem 1,
is an L-shape associated with S. Furthermore, hb − wa = 0 and Theorem 3 give the
other L-shape H′ = T1(H), which completes part (a).

If k divides c, then T1(H) = L(k, c/k,0,1). As c > 2k in H, the other unique
possible T1(H) corresponds to the case in which k does not divide c. If c = c/k�k +
r , with 0 < r < k, then T1(H) = L(k, c/k� + 1, k − r,1). This new L-shape is non
rectangular since 0 < r < k. This proves (b) and (c). �

Remark 1 The geometric classification of numerical 3-semigroups whose system of
generators is not minimal is irrelevant since, in fact, they are 2-generated semigroups
and, in particular, they are plane curve semigroups (Lemma 3). Theorems 8 and 9
can be used as a classification of numerical 2-semigroups in terms of their asso-
ciated L-shapes, and we next use them to classify minimally generated numerical
3-semigroups.

Now we consider numerical 3-semigroups S given by a minimal system of gener-
ators 〈a, b, c〉, and we discern the cases gcd(a, b) = 1 and gcd(a, b) > 1.

Remark 2 If S = 〈a, b, c〉 is a numerical semigroup with 1 < a < b < c, gcd(a, b) = 1
and c /∈ 〈a, b〉, then c can only take values in the set of gaps of the semigroup
S′ = 〈a, b〉. In particular b < c < (a − 1)(b − 1). Therefore, there are a finite number
of numerical semigroups S under these conditions. The following theorem character-
izes them in terms of their associated L-shapes.

Theorem 10 Let S = 〈a, b, c〉 be a numerical semigroup with 1 < a < b < c,
gcd(a, b) = 1 and c /∈ 〈a, b〉. Then,

(a) S is non symmetric if and only if S has associated a unique non rectangular
L-shape.
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Fig. 8 L(c/gcd(a, c),gcd(a, c), c/gcd(a, c) − k,0)

(b) S is symmetric if and only if S has associated a unique rectangular L-shape H
where:
(b.1) if gcd(a, c) = p > 1 and gcd(b, c) = 1, then H = L( c

p
,p,0,0) or H =

L( c
p
,p, c

p
− k,0) with 0 < k < c

p
and b + k a

p
≡ 0 (mod c

p
);

(b.2) if gcd(a, c) = 1 and gcd(b, c) = q > 1, then H = L(q, c
q
,0,0) or H =

L(q, c
q
,0, c

q
− k) with 0 < k < c

q
and a + k b

q
≡ 0 (mod c

q
);

(b.3) if gcd(a, c) = p > 1 and gcd(b, c) = q > 1, then H is as in (b.1) if aq < bp

or as in (b.2) if aq > bp.
(c) S is non free.

Proof

(a) Follows from Theorem 7.
(b) It is well known [7] that if S = 〈a, b, c〉 is a symmetric semigroup, then the

generators a, b and c can not have any coprime pairs, thus gcd(a, c) > 1 or
gcd(b, c) > 1.

If gcd(a, c) = p > 1, then a/p and c/p are coprime and so, there exists k with

0 ≤ k ≤ c

p
such that b + k

a

p
≡ 0

(
mod

c

p

)

and so pb + ka ≡ 0 (mod c). This means that we have a zero [0]c in the unit
square [[k,p]]. On the other hand, since lcm(a, c) = ac/p, there is another zero
[0]c in the unit square [[c/p,0]].

The rectangle L(l, h,w,0) of Fig. 8 with l = c/p,h = p y w = l − k is an
L-shape associated with S. This L-shape is unique because la − yb = la > 0 and
hb − wa = pb + ka − lcm(a, c) > 0 since pb + ka is the zero [0]c in the unit
square [[k,p]] and lcm(a, c) is the zero [0]c in the unit square [[c/p,0]], and both
have distinct weight.
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If gcd(b, c) = q > 1 we obtain analogously the unique L-shape L(l, h,0, y)

with l = q,h = c/q, y = h − k and

0 ≤ k ≤ c

q
such that a + k

b

q
≡ 0

(
mod

c

q

)
.

In the hypothesis (b.3) we have gcd(p, q) = 1 and aq �= bp, since if aq = bp

then identities gcd(a, b) = a/p = b/q = 1 imply a = p and b = q . Therefore we
have c ≥ pq , a contradiction with b < c < (a − 1)(b − 1) (Remark 2).

(c) Follows from Lemma 3 and the hypothesis c /∈ 〈a, b〉. �

We illustrate Theorems 8 and 10 in the following example.

Example 1 Let Sc = 〈6,7, c〉 with c > 7. Then, the term c takes values in the set
R ∪ T , where R = {8,9,10,11,15,16,17,22,23,29} is the set of gaps of the semi-
group 〈6,7〉 that are greater than 7, and T is the set of terms of the semigroup 〈6,7〉
greater than 7.

• If c ∈ T , then Sc is ruled by Theorem 8:

(a.1) If c = 6λ with λ ≤ 7, then Hc = L(λ,6, λ−r,0) with λ−r ≡ 7 (mod λ),0 ≤
r < λ.

(a.2) If c = 6λ with λ > 7 and λ = 7p + r,p ≥ 1,0 < r < 7, then Hc =
L(λ,6,7,0) and T1(Hc) = L(7,6(p + 1),7 − r,6).

(b.1) If c = 7μ with μ ≤ 6, then Hc = L(7,μ,0,7 − r) with μ − r ≡ 6 (mod μ),

0 ≤ r < μ.
(b.2) If c = 7μ with λ > 6 and μ = 6p + r,p ≥ 1,0 < r < 6, then Hc =

L(7,μ,0,6) and T2(Hc) = L(7(p + 1),6,7,6 − r).
(c) If c = 42k with k > 1, then Hc = L(7k,6,7,0) and H′

c = L(7,6k,0,6).
(d) If c = 6λ + 7μ with 1 ≤ μ < 6 and λ = 7k + r with 0 < r < 7, then Hc =

L(λ + 7,6,7,6 − μ) and T1(Hc) = L(7,6(k + 1) + μ,7 − r,6).

• If c ∈ R then Sc is ruled by Theorem 10: the semigroups 〈6,7,8〉, 〈6,7,9〉
and 〈6,7,15〉 have, respectively, a unique rectangular L-shape L(4,2,1,0),
L(3,3,2,0) and L(5,3,1,0) and, so, they are symmetric.

For the values c = 10,11,16,17,22,23 and 29 we have, respectively, unique
non rectangular L-shapes L(4,4,3,2), L(3,4,1,1), L(5,4,2,2), L(4,5,3,1),
L(6,4,1,2), L(5,5,2,1) and L(6,5,1,1) and, so, they are non symmetric.

Theorem 9 is illustrated in the following example.

Example 2 Each numerical semigroup Sc = 〈4,12, c〉, with gcd(4,12, c) = 1 and
c > 12, has associated a rectangular L-shape Hc = L(c,1,3,0). The other L-shape
depends on whether 3 divides c or not.

(b) If 3 divides c, then c = 3q with q ≥ 5 odd, i.e., c = 15,21,27, . . . , and the other
L-shape is T1(Hc) = L(3, q,0,1).
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(c) If 3 does not divide c, we discern the cases:
c = 3q + 1 with q ≥ 6 even, i.e., c = 19,25,31, . . . , and the other L-shape is

T1(Hc) = L(3, q + 1,2,1).
c = 3q + 2 with q ≥ 5 odd, i.e., c = 17,23,29, . . . , and the other L-shape is

T1(Hc) = L(3, q + 1,1,1).

Theorem 11 Let S = 〈a, b, c〉 be a minimally generated numerical semigroup with
1 < a < b < c and gcd(a, b) = p > 1. Considering Sp = 〈a/p,b/p〉 and S′ =
〈a/p,b/p, c〉 we have that:

(a) S is non symmetric if and only if S′ has associated a unique non rectangular
L-shape.

(b) S is symmetric but not free if and only if S′ has associated a unique rectangular
L-shape as described in Theorem 10(b).

(c) S is free if and only if the associated L-shapes to S′ are ruled by Theorem 8.
(d) S is plane curve if and only if S is free and the weight of the convex corner

(l − w,h − y) of any associated L-shape with S′ is greater than lcm(a, b).

Furthermore, in all cases, the semigroups S and S′ have associated the same
L-shapes. In each case, these L-shapes are given by the corresponding Theorems 10
and 8.

Proof Clearly 1 < a/p < b/p < c and gcd(a/p,b/p) = 1. If S is not free, then
c /∈ Sp and, so, S′ verifies the hypothesis of Theorem 10. It proves the parts (a)
and (b).

On the contrary, if S is free, then c ∈ Sp by Lemma 4, and hence S′ is described
by Theorem 8. Finally, note that the weight of the convex corners of the associated
L-shapes with the semigroups S and S′ are cp and c, respectively, and from Lemma 4
we conclude c > lcm(a, b).

That S and S′ have the same L-shapes follows from Lemma 6. �

Note that, from Theorems 10 and 11, all minimally generated numerical 3-
semigroups, excepting a finite number, are free.

The following example illustrates Theorem 11.

Example 3 Let Sc = 〈12,14, c〉, with c > 14 and gcd(12,14, c) = 1, and let S′
c =

〈6,7, c〉. The semigroup Sc is ruled by Theorem 11:

(a) Sc is non symmetric if and only if c = 17,23,29, with respective L-shapes
L(4,5,3,1), L(5,5,2,1), L(6,5,2,1).

(b) Sc is symmetric but not free if and only if c = 15, with L-shape L(5,3,1,0).
(c) Following Theorem 8 and Example 1, Sc is free:

(b1) if c = 21,35, with respective L-shapes L(7,3,0,7),L(7,5,0,1).
(b2) if c = 7μ with μ ≥ 7 odd and μ = 6p + r with p ≥ 1 and 0 < r < 6, with

two L-shapes Hc = L(7,μ,0,6) and T2(Hc) = L(7(p + 1),6,7,6 − r).
(d) if c = 6λ + 7μ with μ = 1,3,5 and λ = 7k + r with 0 < r < 7, with two

L-shapes Hc = L(λ + 7,6,7,6 − μ) and T1(Hc) = L(7,6(k + 1) + μ,7 −
r,6).

(d) The free semigroups of (c) are plane curve if and only if c ≥ 85.
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