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Abstract

The Real Nonnegative Inverse Eigenvalue Problem (RNIEP) is that of characterizing
all possible real spectra of nonnegative matrices. In this work we list some inclusion
relations between several sufficient conditions and we study the negativity and the
realizability margin of a spectrum with respect to these conditions.
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1 Preface

In the context of Spectral Graph Theory, we are interested in inverse spectral
problems about digraphs. In particular, we look for necessary and sufficient
conditions for a family of real numbers to be the spectrum of the adjacency
matrix of a weighted digraph. This problem is known in the context of nonneg-
ative matrices as the Real Nonnegative Inverse Eigenvalue Problem (RNIEP)
and it has only been solved for real spectra of sizes lower than or equal to 4.
If the family σ = {λ1, . . . , λn} ⊂ IR is the spectrum of a nonnegative matrix
(weighted digraph) of size n, we write σ ∈ Spec n, or simply σ ∈ Spec.
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In what follows we list some sufficient conditions (named after their au-
thors) so that σ will be the spectrum of a nonnegative matrix:

• Sulěımanova, 1949: If σ = {λ0, λ1, . . . , λn}:

λ0 ≥ |λ| , λ ∈ σ , and λ0 +
∑
λi<0

λi ≥ 0

}
⇒ σ ∈ Spec .

• Sulěımanova-Perfect, 1953: If σ = {λ0, λ01, . . . , λ0t0}∪{λ1, λ11, . . . , λ1t1}∪
. . . ∪ {λr, λr1, . . . , λrtr}:

λ0 ≥ |λ|, λ ∈ σ , and λj +
∑

λji<0

λji ≥ 0 , 0 ≤ j ≤ r
}

⇒ σ ∈ Spec .

• Perfect 1, 1953: If σ = {λ0}∪{λ1, λ11, . . . , λ1t1}∪ . . .∪{λr, λr1, . . . , λrtr}∪
{λn}, with λj ≥ 0 and λji ≤ 0 for j = 1, . . . , r e i = 1, . . . , tj and λn ≤ 0:

λ0 ≥ |λ|, λ ∈ σ ,
∑
λ∈σ

λ ≥ 0

λj + λn ≤ 0 and λj +
∑

1≤i≤tj

λji ≤ 0 , 1 ≤ j ≤ r

⎫⎪⎬
⎪⎭ ⇒ σ ∈ Spec .

• Perfect 2, 1955: If σ = {λ0, λ1, . . . , λr}∪{λ01, . . . , λ0t0}∪. . .∪{λr1, . . . , λrtr},
with {λ0, λ1, . . . , λr} the spectrum of a nonnegative matrix with diagonal
d0, d1, . . . , dr and λji ≤ 0 for j = 0, . . . , r and i = 1, . . . , tj :

λ0 ≥ |λ|, λ ∈ σ ,
∑
λ∈σ

λ ≥ 0, dj +
∑

1≤i≤tj

λji ≥ 0 , 0 ≤ j ≤ r

⎫⎬
⎭ ⇒ σ ∈ Spec .

When λj ≥ 0, for j = 0, . . . , r, we call it Perfect 2+ condition.
• Ciarlet, 1968: If σ = {λ0, λ1, . . . , λn}:

|λj| ≤
λ0

n
, j = 1, . . . , n

}
⇒ σ ∈ Spec .

• Kellogg, 1971: If σ = {λ0 ≥ λ1 ≥ . . . ≥ λn}, with λ0 ≥ |λ| for λ ∈ σ,
M = max{j ∈ {0, 1, . . . , n} : λj ≥ 0} and K = {i ∈ {1, . . . , �n/2	} :
λi ≥ 0, λi + λn+1−i < 0}:

λ0 +
∑

i∈K, i<s

(λi + λn+1−i) + λn+1−s ≥ 0 ∀s ∈ K

λ0 +
∑
i∈K

(λi + λn+1−i) +
n−M∑

j=M+1

λj ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ ⇒ σ ∈ Spec .

• Salzmann, 1972: If σ = {λ0 ≥ λ1 ≥ . . . ≥ λn}:∑
λ∈σ

λ ≥ 0 and
λi + λn−i

2
≤

1

n+ 1

∑
0≤j≤n

λj , 1 ≤ i ≤ �n/2	

}
⇒ σ ∈ Spec .

• Fiedler, 1974: If σ = {λ0 ≥ λ1 ≥ . . . ≥ λn}:

λ0 + λn +
∑
λ∈σ

λ ≥
1

2

∑
1≤i≤n−1

|λi + λn−i|

}
⇒ σ ∈ Spec .
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• Borobia, 1995: Let σ = {λ0 ≥ λ1 ≥ . . . ≥ λn} and M = max{j ∈
{0, . . . , n} : λj ≥ 0}. If there exists a partition J1∪. . .∪Jt of {λM+1, . . . , λn}
such that {λ0 ≥ . . . ≥ λM ≥

∑
λ∈J1

λ ≥ . . . ≥
∑

λ∈Jt
λ} satisfies the Kellogg

condition, then σ ∈ Spec.

• Soto 2, 2003: Let σ = {λ11 ≥ . . . ≥ λ1t1} ∪ . . . ∪ {λr1 ≥ . . . ≥ λrtr}, with
λ11 ≥ |λ| for λ ∈ σ and λi1 ≥ 0 for i = 1, . . . , r. Let Sij = λij + λi,ti−j+1

for j = 2, . . . , �ti/2	, S(ti+1)/2 = min{λ(ti+1)/2, 0} if ti is odd for i = 1, . . . , r,
and Ti = λi1 + λiti +

∑
Sij<0 Sij for i = 1, . . . , r :

λ11 ≥ max{−λ1t1 −
∑

S1j<0

S1j , max
2≤i≤r

{λi1}} −
∑

Ti<0, 2≤i≤r

Ti

}
⇒ σ ∈ Spec .

• Soto-Rojo, 2006: If σ = {λ11 ≥ . . . ≥ λ1t1}∪ . . .∪{λr1 ≥ . . . ≥ λrtr}, with
λ11 ≥ |λ| for λ ∈ σ, λi1 ≥ 0 for i = 1, . . . , r and {λ11, λ21, . . . , λr1} is the
spectrum of a nonnegative natrix with diagonal d1, . . . , dr, then

di ≥ λi2 and {di, λi2, . . . , λiti} ∈ Spec , 1 ≤ i ≤ r
}
⇒ σ ∈ Spec .

If σ satisfies a sufficient condition X we say that σ is X-realizable. For
example, if σ verifies the Fiedler condition we say that σ is Fiedler-realizable.
If σ is given by a partition, σi denotes the i-th element of the partition.

The following map shows the relations between the previous sufficient con-
ditions and appears in [3]. The dotted line on the map expresses the fact that
the authors did not know if Soto 2 implies (or not) Perfect 2+. Now we know
that Soto 2 implies Perfect 2+ (see Theorem 3.1).

Sulěımanova = Su
Sulěımanova-Perfect = SP
Perfect 1 = P1
Perfect 2+ = P2+

Ciarlet = C
Kellogg = K
Salzmann = Sa
Fiedler = F
Borobia = B
Soto 2 = So
(S2 in Section 3)

Soto-Rojo clearly extends Perfect 2+, so it contains all the sufficient con-
ditions in the previous map. In [3] we did not know if the inclusion of Perfect
2+ in Soto-Rojo is strict, but now we know it is (see Theorem 3.1).
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2 Negativity and Realizability Margin

Let X be a sufficient condition. Following [1], we define the X-negativity of
a family σ = {λ1, , . . . , λn} ⊂ R with λ1 ≥ λj for j = 2, . . . , n, as

NX(σ) = min{ε ≥ 0 : {λ1 + ε, λ2, . . . , λn} is X-realizable}

and as +∞ if {λ1 + ε, λ2, . . . , λn} is not X-realizable for any ε ≥ 0. If σ is
X-realizable, we define the X-margin of realizability of σ as

MX(σ) = max {ε ≥ 0 : {λ1 − ε, λ2, . . . , λn} X-realizable, λ1 − ε ≥ |λj|, j ≥ 2} .

Note that the X-negativity of a family σ measures how far the family
is from being X realizable. A similar interpretation can be given for the
realizability margin of an X-realizable list. The following properties hold:
� σ is X-realizable if and only if NX(σ) = 0.

� If X ⊂ Y , then NX(σ) ≥ NY (σ) and MX(σ) ≤ MY (σ).

� NX(σ) ≥ max{0,−
∑n

j=1 λj , |λ2| − λ1, . . . , |λn| − λ1}.

� MX(σ) ≤ min{
∑n

j=1 λj , λ1 − |λ2| , . . . , λ1 − |λn|}.

� If σ is X-realizable with trace zero, then MX(σ) = 0.

� If σ is X-realizable with multiple spectral radius, then MX(σ) = 0.

� If σ is X-realizable with cyclicity index 2, then MX(σ) = 0.
For a real spectrum σ, with the notations of the sufficient conditions and of
the map given in the previous section, we have:

NSu(σ) = max{0,−λ0 −
∑
λi<0

λi}, MSu(σ) = min{λ0 +
∑
λi<0

λi , λ0 − |λ1|, . . . , λ0 − |λn|},

NSP(σ) = min{NSu(σ0) : σ =
r⋃

i=0

σi}, MSP(σ) = min{
∑
λ∈σ

λ,min{λ0 − |λ| : λ ∈ σ − {λ0}}, a},

where a = max{MSu(σ0) : σ =
r⋃

i=0

σi is SP -realizable},

NP1(σ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞ if ∀partition of σ, ∃j ∈ {1, . . . , r} with

⎧⎪⎨
⎪⎩

λj + λn > 0 or

λj +
tj∑
i=1

λji > 0

max{0,−
∑
λ∈σ

λ,max{|λ| − λ0 : λ ∈ σ − {λ0}}} otherwise,

MP1(σ)=min{
∑
λ∈σ

λ ,min{λ0 − |λ| : λ ∈ σ − {λ0}}},

MP2(σ)

MP2+(σ)

}
≥ min

{
r∑

i=0

min{di +
ti∑

j=1

λij , mi},min{λ0 − |λ| : λ ∈ σ − {λ0}}

}
,

where mi, 0 ≤ i ≤ r, is the minimum element of the column i + 1 of the
considered nonnegative matrix with spectrum {λ0, . . . , λr} and arises from
the use of Brauer’s theorem.
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NC(σ) = nmax{|λ1|, . . . , |λn|} − λ0, MC(σ) = λ0 − nmax{|λ1|, . . . , |λn|},

NK(σ) = −min

{
0,min{λ0 +

∑
i∈K, i<s

(λi + λn+1−i) + λn+1−s : k ∈ K},

λ0 +
∑
i∈K

(λi + λn+1−i) +
n−M∑

j=M+1

λj

}
,

MK(σ) = min

{
λ0 − λ1, λ0 + λn,min{λ0 +

∑
i∈K, i<s

(λi + λn+1−i) + λn+1−s : k ∈ K},

λ0 +
∑
i∈K

(λi + λn+1−i) +
n−M∑

j=M+1

λj

}
,

NSa(σ) = −min{0,
n∑

j=0

λj, min
1≤i≤�n/2�

{
n∑

j=0

λj −
n + 1

2
(λi + λn−i)}},

MSa(σ) = min{λ0 − |λn|, λ0 − |λ1|,
n∑

j=0

λj, min
1≤i≤�n/2�

{
n∑

j=0

λj −
n+ 1

2
(λi + λn−i)}},

NF(σ) = max{0,−
∑
λ∈σ

λ,−
1

2
[λ0 + λn +

∑
λ∈σ

λ−
1

2

n−1∑
i=1

|λi + λn−i|]},

MF(σ) = min{
∑
λ∈σ

λ, λ0 − |λ1|, . . . , λ0 − |λn|,
1

2
[λ0 + λn +

∑
λ∈σ

λ−
1

2

n−1∑
i=1

|λi + λn−i|]}.

Note that the negativity of all the considered sufficient conditions is fi-
nite, except for Perfect 1. For Borobia and Soto 2 we only have brute force
procedures for the construction of all possible partitions of a spectrum under
the corresponding constraints. To obtain the negativity and the realizability
margin for Perfect 2 and Soto-Rojo implies, on the one hand, brute force for
the construction of the partitions and, on the other hand, the determination
of the diagonals and the minimum elements of the columns of the matrices
that realize them. In relation with these facts, we can consider the following
open problems:

Problem 1: Find the set of the diagonals of all nonnegative realizations of a
real spectrum.

Problem 2: Find the set of realizable spectra with given diagonal.

These two problems can be as complex as the RNIEP itself; in fact, the first
of them is solved for n ≤ 3, but for n > 3 we only know sufficient conditions.
If the diagonal is null, the problem 2 is the RNIEP with trace zero, only
solved for n ≤ 5. There are several other equally complex problems involved:
those related with the determination of the minimum elements of the columns
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realizing the spectra and their relation with the diagonal elements, and the
determination of the maximum diagonal element. See the following example.

Example 2.1 The spectrum σ = {18, 6,−6,−2,−2,−3,−3} is P2-realizable:
σ0 = {18, 6,−6} is the spectrum of

A =

⎛
⎜⎜⎜⎝

12 3 3

0 6 12

12 6 0

⎞
⎟⎟⎟⎠with

m0 = 0

m1 = 3

m2 = 0

or B =

⎛
⎜⎜⎜⎝

12 5 1

6 6 6

6 12 0

⎞
⎟⎟⎟⎠with

m0 = 6

m1 = 5

m2 = 0

and

d0 = 12

d1 = 6

d2 = 0

.

For {−2,−2,−3,−3} = σ1 ∪ σ2 ∪ σ3 we have several possible partitions

Partition σ1 ∪ σ2 ∪ σ3 bound MP2(σ) with A bound MP2(σ) with B

{−2,−2} ∪ {−3,−3} ∪ ∅ 0 6

{−3,−3} ∪ {−2,−2} ∪ ∅ 2 8

{−2,−2,−3} ∪ {−3} ∪ ∅ 3 8

{−2,−2,−3,−3} ∪ ∅ ∪ ∅ 3 7

The spectrum σ also is P2+-realizable: σ0 = {18, 6} is the spectrum of

Ca =

⎛
⎝ 18 0

a 6

⎞
⎠ , a ≥ 0, and D =

⎛
⎝ 12 6

6 12

⎞
⎠ .

Depending on the partitions of {−2,−2,−3,−3,−6} = σ1 ∪ σ2, we obtain
different bounds for MP2(σ). We have that MP2(σ) = MP2+(σ) = 8. Note
that the knowledge of the diagonal does not guarantee an optimum bound.

3 New Sufficient Conditions and New Relations

In [4] we prove that S2 is strictly contained in P2+ (see the dotted line in the
diagram of Section 1) and we consider the following new sufficient conditions
for σ = {λ1, . . . , λn} ⊂ R to be the spectrum of a nonnegative matrix:
• Game, 2008: If σ, with n elements, can be reached starting from the n
spectra {0}, . . . , {0} successively applying, in any order and any number
of times, either Rule 1, Rule 2 or Rule 3, then σ ∈ Spec, where
Rule 1: If σ = {λ1, . . . , λn} ∈ Spec with λ1 ≥ |λ| for λ ∈ σ, then {λ1 +
ε, λ2 − ε, λ3, . . . , λn} ∈ Spec , ∀ε > 0.
Rule 2: If σ = {λ1, . . . , λn} ∈ Spec with λ1 ≥ |λ| for λ ∈ σ, then {λ1 +
ε, λ2, . . . , λn} ∈ Spec , ∀ε > 0.
Rule 3: If σ1, σ2 ∈ Spec, then σ1 ∪ σ2 ∈ Spec.
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Note that the game-realizabiliy of a spectrum is not changed by the in-
clusion or exclusion of 0’s in it.
In [2] this sufficient condition is given as the concept of C-realizability. To

avoid misunderstandings with the notation and confusions with the names
of other sufficient conditions, we have called it the game condition.

• Soto 3 = S3, 2013: If σ = {λ11 ≥ . . . ≥ λ1t1} ∪ . . . ∪ {λr1 ≥ . . . ≥ λrtr},
with λ11 ≥ |λ| for λ ∈ σ, λi1 ≥ 0, for i = 1, . . . , r, and {λ11, . . . , λ1t1} is
Soto 2 realizable:

λ11 ≥ max{λ11 −MS2(σ1), max
2≤i≤r

{λi1}}+
r∑

i=2

NS2(σi)

}
⇒ σ ∈ Spec .

• Soto p = Sp, 2013: If σ = {λ11 ≥ . . . ≥ λ1t1} ∪ . . . ∪ {λr1 ≥ . . . ≥ λrtr},
with λ11 ≥ |λ| for λ ∈ σ, λi1 ≥ 0, for i = 1, . . . , r, and {λ11, . . . , λ1t1} is
Soto p− 1 realizable with p ≥ 3:

λ11 ≥ max{λ11 −MSp−1(σ1), max
2≤i≤r

{λi1}}+
r∑

i=2

NSp−1(σi)

}
⇒ σ ∈ Spec .

In practice, it is not necessary to know MSp−1(σ1) to use the Soto p condi-
tion. It is enough to know a nonnegative lower bound of it, see [4,5].

The next results appear in [4] and we give them without proof. After we
summarize the theorem in a map and give examples to explain it.

Theorem 3.1 (i) Game implies Perfect 2+ and the inclusion is strict.

(ii) The inclusion of Perfect 2+ in Soto-Rojo is strict.

(iii) Soto p is strictly contained in Soto p+ 1, for p ≥ 3.

(iv) Kellogg and Borobia are independent of Soto p, for p ≥ 3.

(v) Soto p implies game, for p ≥ 3, and the inclusion is strict.

(vi) If σ is Borobia realizable, then σ is Soto p realizable for some p.

Borobia

Sotos

game
Perfect 2+ Sotos =

⋃
p≥2

Soto p

X = Condition X is not satisfied

Sotos ∩ Borobia : {3, 3, 1, 1,−2,−2,−2,−2}

game ∩ Sotos : ?

Perfect 2+ ∩ game : {6, 1, 1,−4,−4}

The sufficient condition game is hardly algorithmizable and we do not have
explicit expressions for Ngame(σ) and Mgame(σ). A necessary condition for
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game is that, in the ordered spectrum, the positive elements weakly majorize
the negative elements. This fact provides a lower bound for the margin of
realizability of a spectrum σ game-realizable that, without loss of generality,
can assume the form σ = {λ1 ≥ . . . ≥ λq ≥ 0 ≥ −μq ≥ . . . ≥ −μ1}:

Mgame(σ) ≥ min{λ1 − λ2,
∑
λ∈σ

λ , min
1≤k≤q

{
k∑

i=1

(λi − μi)}}.

To calculate the negativity and the realizabilily margin with respect to
Soto p, again, we only have brute force to construct all the possible partitions.

Example 3.2 The spectrum σ = {6, 3, 3,−5,−5} is only realizable by Perfect
2+ (so also by Perfect 2 and Soto-Rojo) and not by any of the other sufficient
conditions included in Perfect 2+. For this spectrum we have

NSu(σ) = 4 , NSP(σ) = 4 , NP1(σ) = +∞ , NC(σ) = 14 ,

NSa(σ) = 13 , NF(σ) = 1 , Ngame(σ) = 1 , MP2+(σ) = 0 .

Since Kellogg, Borobia and Soto p are between Fiedler and game, we have
that all the negativities with respect to them are 1.

Example 3.3 Let σ = {12, 6, 1, 1, 1, 1,−2,−3,−3,−4,−4}. We obtain

NC(σ) = 48 , NSu(σ) = 4 , NP1(σ) = +∞ , NSa(σ) = 5 ,

MSP(σ) = 2 , MF(σ) = 3 , MK(σ) = 3 , MB(σ) = 4 ,

MSp(σ) = 5 , p ≥ 2 , Mgame(σ) = 5 , MP2+(σ) = 6 .
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