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This work furthers ideas initiated in [2] by giving explicit conditions for a certain 
preorder defined there.

In general, it is difficult to compare the Perron roots of two given n-by-n nonnegative 
matrices G and H. Here, we study a special case in which G and H differ only in a 
certain principal submatrix, which, without loss of generality, we take to be the upper 
left k-by-k principal submatrix. Let A be k-by-k and

G(A) =
(

A G12
G21 G22

)

be n-by-n, 0 < k ≤ n, in which G12, G21 and G22 are given nonnegative matrices. 
Define ρG(A) = ρ(G(A)), the spectral radius of G(A). When G(A) ≥ 0, so that ρG(A)
is the Perron root of G(A), we want to compare ρG(A) and ρG(B), and, in particular, 
to describe the set of A ≥ 0 such that ρG(A) < ρG(B) for a fixed B ≥ 0. In this event, 
we write that A ≺G B. Obviously, ≺G is a preorder on nonnegative k-by-k matrices. We 
write that A �G B if ρG(A) ≤ ρG(B). Of course, if k = 1, by monotonicity of the Perron 
root, this partial order is just the total order on R+

0 . In general, if, say A and B are 
nonnegative and A ≤ B in the entry-wise partial order, then A �G B, but not generally 
conversely.

If G ≥ 0 is n-by-n, and ρ > 0 is given, by M -matrix theory [1,3], ρ(G) < ρ if and only 
if ρI −G is an M -matrix. (When we say M -matrix, we mean a nonsingular M -matrix, 
otherwise we explicitly refer to a singular M -matrix.) Now, because of the determinantal 
characterization of M -matrices among the Z-matrices (nonpositive off-diagonal entries), 
ρ(G) < ρ if and only if any nested sequence of n principal minors (PM’s) of ρI − G is 
positive. And, if G is irreducible, ρ(G) = ρ if and only if any nested sequence of n PM’s 
of ρI−G has sign sequence +, +, . . . , +, 0. Thus, given a fixed nonnegative k-by-k matrix 
B with G(B) irreducible (a slightly weaker assumption could be made), the inequality 
ρG(A) < ρG(B) may be checked via k polynomial inequalities in the entries of the k-by-k
matrix A ≥ 0. The polynomials may be taken to be the last k trailing PM’s of ρI−G(A), 
for ρ = ρG(B), as the first n − k trailing PM’s of ρI − G(A) are the same as those of 
ρI −G(B), which are positive. Thus, the set of nonnegative A’s for which A ≺G B is a 
semi-algebraic set. However, according to the result of [2], A �G B for all nonnegative 
G if and only if A ≤ B in the entry-wise partial order, i.e., the intersection of these 
complicated preorders is a simple one.

We may record these observations as one solution to our problem. We denote by qi(A)
the (n − k + i)th trailing PM of ρG(B)I −G(A), viewed as a polynomial in the entries 
of A ≥ 0.

Theorem 1. Let A and B be k-by-k nonnegative matrices. Assume that G(B) is irre-
ducible. Then

i) A ≺G B if and only if qi(A) > 0, for i = 1, . . . , k;
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ii) B �G A if and only if there is i ∈ {1, . . . , k} such that qi(A) ≤ 0;
iii) for irreducible G(A), we have ρG(A) = ρG(B) if and only if qi(A) > 0, for i =

1, . . . , k − 1, and qk(A) = 0.

We note that the assumption in iii) that G(A) is irreducible is necessary and is not 
implied by the irreducibility of G(B), as the next example shows.

Example 2. Let A = (aij) be a 2-by-2 matrix and

G(A) =

⎛
⎜⎝ a11 a12 3

a21 a22 0
1 1 1

⎞
⎟⎠ .

For

A =
(

0 0
0 3

)
and B =

(
0 0
3 0

)
,

the matrix G(A) is reducible and the matrix G(B) is irreducible. We have ρG(A) =
ρG(B) = 3. However,

q1(A) = det
(

0 0
−1 3 − 1

)
= 0.

If G(0) is irreducible, so is G(A) for any k-by-k matrix A. We then have Corollary 3
as a consequence of Theorem 1.

Corollary 3. Suppose G(0) ≥ 0 is irreducible and A, B ≥ 0 are k-by-k. Then

i) A ≺G B if and only if qi(A) > 0, for i = 1, . . . , k;
ii) B �G A if and only if there is i ∈ {1, . . . , k} such that qi(A) ≤ 0;
iii) ρG(A) = ρG(B) if and only if qi(A) > 0, for i = 1, . . . , k − 1, and qk(A) = 0.

The next example illustrates this result.

Example 4. Consider the 3-by-3 matrix

G(A) =

⎛
⎜⎝ a11 a12 1

a21 a22 1
1 1 1

⎞
⎟⎠ ,

in which A = (aij) ≥ 0 is a 2-by-2 matrix. Note that G(0) is irreducible. Let
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B =
(

1 1
1 1

)
. (1)

Then, ρG(B) = 3. By Corollary 3, ρG(A) < 3 if and only if

det
(

3 − a22 −1
−1 2

)
> 0 and det

(
3I −G(A)

)
> 0,

that is,

a22 <
5
2 (2)

and

5a11 + a12 + a21 + 5a22 − 2a11a22 + 2a12a21 < 12. (3)

Note that condition (2) is not implied by condition (3).

We now turn to an alternate approach to the problem.

Theorem 5. Let A and B be k-by-k nonnegative matrices. Assume that ρ = ρG(B). Then 
the following statements are equivalent:

i) A ≺G B,
ii) ρI −G(A) is an M -matrix,
iii) det(ρI −G22) �= 0 and ρI − (A + G12(ρI −G22)−1G21) is an M -matrix, and
iv) det(ρI −G22) �= 0 and ρ(A + G12(ρI −G22)−1G21) < ρ.

Proof. Since G22 is a principal submatrix of G(B), ρ(G22) ≤ ρ(G(B)) = ρ; so, when 
ρI − G22 is nonsingular, it is an M -matrix. The equivalence of conditions i) and ii), 
and of conditions iii) and iv), follows from the comments before Theorem 1, given that 
(ρI −G22)−1 ≥ 0 because ρI −G22 is an M -matrix.

First, we show that condition ii) implies condition iii). Suppose that condition ii)
holds. Then, since ρI − G(A) is an M -matrix, ρI − G22 (a principal submatrix) is an 
M -matrix and, so, its Schur complement in ρI −G(A) is also an M -matrix [4]. But this 
Schur complement is just

ρI −
(
A + G12(ρI −G22)−1G21

)
. (4)

Since ρI −G22 is an M -matrix, it is invertible, so that iii) (and iv)) is proven.
Finally, we show that condition iii) implies condition ii). Suppose that condition iii)

holds. Since ρI −G22 is invertible, it is an M -matrix as mentioned. So, in the Z-matrix
ρI − G(A), we have that both ρI − G22 and its Schur complement (by condition iii)) 
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are M -matrices. But, again using [4], a Z-matrix is an M -matrix if both a principal 
submatrix and its Schur complement are M -matrices, completing the proof of condition 
ii) and the theorem. �

We now need a purely algebraic observation.

Lemma 6. Let

G =
(
g11 g12
g21 G22

)

be an n-by-n matrix, in which g11 is a scalar, g12 is a row-vector and g21 is a column-
vector. Then λ ∈ σ(G) if and only if

g11 det(G22 − λI) = − det
(
−λ g12
g21 G22 − λI

)
.

So, if λ /∈ σ(G22), then λ ∈ σ(G) if and only if

g11 = −
det

(−λ g12
g21 G22−λI

)
det(G22 − λI) .

Proof. The claim follows from the fact that λ ∈ σ(G) if and only if det(G − λI) = 0, 
and

det(G− λI) = det
(
g11 0
g21 G22 − λI

)
+ det

(
−λ g12
g21 G22 − λI

)

= g11 det(G22 − λI) + det
(
−λ g12
g21 G22 − λI

)
. �

We may now characterize A ≥ 0 such that ρG(B) = ρG(A) for a fixed B, when G(A)
is irreducible.

In what follows H(1) denotes the matrix obtained from H by deleting the first row 
and the first column. Also, E11 denotes the matrix of appropriate size with all entries 
equal to 0 except the one in position (1, 1), which is 1.

Theorem 7. Let A = (aij) and B be k-by-k matrices. Suppose that B is nonnegative and 
G(A) is irreducible. Let ρ = ρG(B), H = G(A) and H ′ = H − a11E11. Then H is a 
nonnegative matrix with ρ(H) = ρ if and only if

i) aij ≥ 0, for i, j = 1, . . . , k and (i, j) �= (1, 1),
ii) ρ(H ′) ≤ ρ, and
iii) det(H(1) − ρI) �= 0 and a11 = − det(H′−ρI) .
det(H(1)−ρI)
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Proof. (⇒) Suppose that H = G(A) is a nonnegative matrix with ρ(H) = ρ. Condition i)
is obvious. Condition ii) holds because the Perron-root is a nondecreasing function of any 
entry of the matrix and a11 ≥ 0. Condition iii) follows from Lemma 6, taking into account 
that ρ is an eigenvalue of H. Note that det(H(1) − ρI) �= 0 as ρ(H(1)) < ρ(H) = ρ, 
where the inequality follows because H is irreducible [1, Chapter 2, Corollary 1.5]. Thus, 
ρ is not an eigenvalue of H(1).

(⇐) Suppose that conditions i), ii) and iii) are satisfied. Because of condition i), H is 
nonnegative if and only if a11 ≥ 0. We have ρ(H(1)) < ρ(H ′) ≤ ρ. Thus, ρI −H(1) and 
ρI −H ′ are M -matrices (possibly, the latter is singular) of sizes (n − 1)-by-(n − 1) and 
n-by-n, respectively. Thus, either a11 = 0 or the signs of det(H ′−ρI) and det(H(1) −ρI)
are the signs of (−1)n and (−1)n−1, respectively. In any case, we get a11 ≥ 0. By 
condition iii) and Lemma 6, ρ is an eigenvalue of G(A). Thus, B �G A. Suppose that 
B ≺G A. Then, by decreasing the entry in position (1, 1) in G(A), we would get a matrix 
G(A′) with an eigenvalue equal to ρ, a contradiction as, by Lemma 6, ρ is an eigenvalue of 
G(A′) if and only if the entry in position (1, 1) is the right hand side of condition iii). �

The next example illustrates the result for the same matrices used in Example 4. Note 
the differences in the conditions.

Example 8. Consider the 3-by-3 matrix

H = G(A) =

⎛
⎜⎝ a11 a12 1

a21 a22 1
1 1 1

⎞
⎟⎠ ,

in which A = (aij) is a 2-by-2 matrix, and let B be as in (1). Then, ρ = ρG(B) = 3. Let 
H ′ = H − a11E11. By Theorem 7, H is a nonnegative matrix such that ρ(H) = 3 if and 
only if a12, a21, a22 ≥ 0,

ρ
(
H ′) ≤ 3 (5)

and

a11 = − det(H ′ − 3I)
det(H(1) − 3I) . (6)

A calculation shows that (6) is equivalent to

a11 = −a12 + a21 + 5a22 + 2a12a21 − 12
5 − 2a22

. (7)

We now show that inequality (5) is equivalent to det(3I −H ′) ≥ 0, or, equivalently,

a12 + a21 + 5a22 + 2a12a21 ≤ 12. (8)
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If inequality (5) holds then 3I − H ′ is a possibly singular M -matrix and, therefore, 
det(3I −H ′) ≥ 0. Conversely, if det(3I −H ′) ≥ 0, from (8) we have a22 < 3. Therefore, 
3I−H ′ is a 3-by-3 Z+-matrix with nonnegative determinant, which implies that 3I−H ′ is 
a possibly singular M -matrix. Then, (5) holds. Thus, we conclude that H is a nonnegative 
matrix such that ρ(H) = 3 if and only if a12, a21, a22 ≥ 0 and conditions (7) and (8)
hold.

We may now characterize the A ≥ 0 such that ρG(A) ≥ ρG(B) for a fixed B, when 
G(A) is irreducible.

Corollary 9. Let A = (aij) and B be k-by-k matrices. Suppose that B is nonnegative and 
G(A) is irreducible. Let ρ = ρG(B), H = G(A) and H ′ = H − a11E11. Then H is a 
nonnegative matrix such that ρ(H) ≥ ρ if and only if

i) aij ≥ 0, for i, j = 1, . . . , k and (i, j) �= (1, 1), and either
ii’) ρ(H ′) > ρ and
iii’) a11 ≥ 0

or

ii”) ρ(H ′) ≤ ρ and
iii”) det(H(1) − ρI) �= 0 and a11 ≥ − det(H′−ρI)

det(H(1)−ρI) .

Proof. (⇒) Suppose that H is a nonnegative matrix such that ρ(H) ≥ ρ. Conditions i)
and iii’) are obvious. Suppose that condition ii’) does not hold. Then we want to show 
that condition iii”) holds. By Theorem 7, ρG(A′) = ρ, in which A′ is obtained from A
by replacing the entry in position (1, 1) by a′11, the right hand side of the inequality 
in condition iii”). Note that, since H is irreducible, so is G(A′). Then, by the strict 
monotonicity of the Perron-root, for a11 < a′11 we have ρ(H) < ρ.

(⇐) Suppose that conditions i), ii’) and iii’) hold. Clearly, H ≥ 0. By monotonicity, 
ρ(H) ≥ ρ(H ′) > ρ. Now suppose that conditions i), ii”) and iii”) hold. By monotonicity, 
we have ρ(H) ≥ ρG(A′), in which A′ is obtained from A by replacing the entry in position 
(1, 1) by the right hand side of condition iii”). By Theorem 7, G(A′) ≥ 0 and ρG(A′) = ρ. 
Thus, H ≥ 0 and ρ(H) ≥ ρ. �

We close by noting that our approach also solves problems that are more general in 
terms of the placement of fixed entries. The entries in which the two n-by-n matrices 
F, H ≥ 0 are allowed to differ may be assumed to be in any scattering of positions that 
avoid an (n −k)-by-(n −k) principal submatrix. In fact, if F and H differ only in positions 
contained in a certain p-by-� submatrix, not necessarily square, then, by permutation 
similarity, we can assume that, for k = min{p, �}, F and H are matrices with the lower 
right (n − k)-by-(n − k) principal submatrix in common.
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The results given when A is k-by-k and principal remain valid in the general situation 
mentioned above, with obvious adaptations. The number of polynomials qi that are 
necessary is n, less the size of the largest principal submatrix in which F and H are 
the same. They are polynomials whose variables are the entries in which F and H are 
allowed to differ, and the coefficients are polynomials in the common entries of F and H.

Example 10. Consider the 3-by-3 matrices

G(A) =

⎛
⎜⎝ a11 a12 g13

g21 g22 g23
a21 a22 g33

⎞
⎟⎠ and G(B) =

⎛
⎜⎝ b11 b12 g13

g21 g22 g23
b21 b22 g33

⎞
⎟⎠

with ρ = ρ(G(B)). Then, we have the polynomials

q1(A) = det
(
ρ− g22 −g23
−a22 ρ− g33

)
= −g23a22 + (ρ− g22)(ρ− g33)

and

q2(A) = det
(
ρI −G(A)

)
= g23a11a22 − g23a12a21 − (ρ− g22)(ρ− g33)a11

− g21(ρ− g33)a12 − g13(ρ− g22)a21 − (ρg23 + g13g21)a22 + ρ(ρ− g22)(ρ− g33).

Note that q1(A) and q2(A) are polynomials in a11, a12, a21 and a22, i.e., in the entries 
in which G(A) and G(B) are allowed to differ. Note also that the coefficients of q1(A)
and q2(A), as polynomials in the entries of A, are themselves polynomials in g13, g21, 
g22, g23 and g33, i.e., in the common entries of G(A) and G(B).

In particular, for

G(A) =

⎛
⎜⎝ a11 a12 1

1 1 1
a21 a22 1

⎞
⎟⎠ and B =

(
1 1
1 1

)
,

we have ρ = ρ(G(B)) = 3,

q1(A) = det
(

2 −1
−a22 2

)
= −a22 + 4

and

q2(A) = det
(
3I −G(A)

)
= a11a22 − a12a21 − 4a11 − 2a12 − 2a21 − 4a22 + 12.

We have ρ(G(A)) < ρ if and only if
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a22 < 4

and

−a11a22 + a12a21 + 4a11 + 2a12 + 2a21 + 4a22 < 12.

Note that these conditions are different from the conditions (2) and (3) obtained in 
Example 4.

In the next example the entries in which the matrices are allowed to differ do not form 
a submatrix.

Example 11. Consider the 3-by-3 matrices

Ga =

⎛
⎜⎝ a11 g12 g13

g21 g22 g23
g31 g32 a33

⎞
⎟⎠ and Gb =

⎛
⎜⎝ b11 g12 g13

g21 g22 g23
g31 g32 b33

⎞
⎟⎠

with ρ = ρ(Gb). The matrices Ga and Gb are simultaneously permutation similar to

G′
a =

⎛
⎜⎝ a11 g13 g12

g31 a33 g32
g21 g23 g22

⎞
⎟⎠ and G′

b =

⎛
⎜⎝ b11 g13 g12

g31 b33 g32
g21 g23 g22

⎞
⎟⎠ .

Then, we have the polynomials

qa1 = det
(
ρ− a33 −g32
−g23 ρ− g22

)
= −g23g32 + (ρ− a33)(ρ− g22)

and

qa2 = det(ρI −Ga) = (ρ− a11)(ρ− a33)(ρ− g22) − g32g23(ρ− a11)

− g31g13(ρ− g22) − g31g12g23 − g21g13g32 − g21g12(ρ− a33).

In particular, for

Ga =

⎛
⎜⎝ a11 1 1

1 1 1
1 1 a33

⎞
⎟⎠ and b11 = b33 = 1,

we have ρ = ρ(Gb) = 3,

qa1 = det
(

3 − a33 −1
−1 2

)
= −2a33 + 5
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and

qa2 = det(3I −Ga) = 2a11a33 − 5a33 − 5a11 + 8.

We have ρ(Ga) < ρ if and only if

a33 < 5/2

and

5a33 + 5a11 − 2a11a33 < 8.

We note that our results may be interpreted as comparing ρG(A) to a reference value ρ, 
irrespective of B.
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