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1. Introduction

The formal definition of valuation was firstly given by the Hungarian mathe-
matician J. Kürschák in 1912 supported with ideas of Hensel. Valuation theory,
based on this concept, has been developed by a large number of contributors (some
of them distinguished mathematicians as Krull or Zariski) and it has a wide range
of applications in different context and research areas as, for instance, algebraic
number theory or commutative algebra and its application to algebraic geometry
or theory of diophantine equations.

In this paper, we are interested in some applications of valuation theory to
algebraic geometry and, particularly, to singularity theory. Valuation theory was
one of the main tools used by Zariski when he attempted to give a proof of resolution
of singularities for algebraic schemes. In characteristic zero, resolution was proved
by Hironaka without using that tool; however there is no general proof for positive
characteristic and valuations seem to be suitable algebraic objects for this purpose.
Valuations associated with irreducible curve singularities are one of the best known
classes of valuations, especially the case corresponding to plane branches where
valuations and desingularization process are very related. Germs of plane curves can
contain several branches and, for this reason, it is useful to study their corresponding
valuations, not only in an independent manner but as a whole [6, 7, 8]. Valuations
of the fraction field of some 2-dimensional local regular Noetherian ring R centered
at R, that we call plane valuations, are a very interesting class of valuations which
includes the above mentioned family related with branches. These valuations were
studied by Zariski and their study was revitalized by the paper [46]. Very little is
known about valuations in higher dimension.

The aim of this paper is to provide a concise survey of some aspects of the
theory of plane valuations, adding some comments upon more general valuations
when it is possible. For those valuations, we describe value semigroup, graded
algebra and Poincaré series emphasizing on the recent study of the same algebraic
objects for finite families of valuations and their relation with the corresponding
ones for reduced germs of plane curves.
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Section 2 of the paper recalls the general notion of valuation and compiles the
main known facts with respect to the value group and semigroup of a valuation.
We show a new condition, Proposition 2.2, given in [14], that has to do with
the number of generators of the value semigroups of Noetherian local domains
(see [17] for a more general result). We also give in Proposition 2.4 a numerical
condition, called combinatorially finiteness, that those value semigroups satisfy.
The graded algebra of a valuation ν, grνR, is introduced in Section 3. There,
we explain how to construct a minimal free resolution of grνR as a module over
a polynomial ring and, in Proposition 3.2, how to compute the dimension of its
ith syzygy module. This graded algebra is the main ingredient in the Teissier’s
idea to prove resolution of singularities. When ν is plane grνR is Noetherian,
notwithstanding this is not true for higher dimension (see Proposition 3.4). Section
4 is devoted to introduce plane valuations, their main invariants and to classify
them by means of an algebraic device that allows us to get parametric equations of
the valuations. The introduction and computation of the Poincaré series of plane
valuations (with particular attention to the divisorial case) is given in Section 5.

Finite families of valuations whose value group is that of integer numbers, Z,
are considered in Section 6. For them we define the concepts of graded algebra,
generating sequence and Poincaré series, explaining that this series is a rational
function whenever one considers certain families of valuations which include the
divisorial ones in the plane and those associated with a rational surface singularity.
Following [19], and also in this section, semigroup of values, generating sequences
and Poincaré series for finite families of plane divisorial valuations are explicitly
computed. We also add some information given in [10] corresponding to families of
any type of plane valuations. Finally, in Section 7 we provide an specific calculation
of the Poincaré series of multiplier ideals of a plane divisorial valuation ν, Theorem
7.5. That series gathers information on the multiplier ideals and jumping numbers
corresponding to the singularity that ν encodes and the proof of Theorem 7.5 uses
techniques and results involving the family of plane divisorial valuations given by
the exceptional divisors appearing in the blowing-up sequence determined by ν.

2. Valuations

2.1. Definition and a bit of history. Between 1940 and 1960, Zariski [51,
52] and Abhyankar [2, 3] developed the theory of valuations in the context of the
theory of singularities with the aim of proving resolution for algebraic schemes.
The concept of valuation is analogue to that of place. Places were introduced by
Dedekind and Weber in the nineteenth century [21] with the purpose of constructing
the Riemann surface associated with an affine curve from the field of functions
of the curve. Also in that century, to study diophantine equations by using the
Hensel’s Lemma and solutions of the equations in the completions Qp, Hensel [31]
considered p-adic valuations on the field of rational numbers, Q, defined as νp(q) :=
α, whenever Q \ {0} 3 q = pα(r/s) and gcd(r, p) = gcd(s, p) = 1. The properties
of νp give rise to the definition of valuation and its definition has to do with that
of valuations centered at the completion of the local ring of a branch of a plane
curve. In 1964, Hironaka [34] proved resolution of singularities in characteristic
zero (some more recent references are [49, 22]) and valuations were forgotten for a
large period. However, activity in valuation theory has been increased in the last
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two decades, probably due to the lack of success in proving resolution in positive
characteristic. Next we define the concept of valuation and some related objects.

Definition 2.1. A valuation of a commutative field K is a surjective map
ν : K∗(:= K \ {0}) → G, where G is a totally ordered commutative group, such
that for f, g ∈ K∗

• ν(fg) = ν(f) + ν(g).
• ν(f + g) ≥ min{ν(f), ν(g)} and the equality holds whenever ν(f) 6= ν(g).

G is usually named the value group of ν and the set Rν := {f ∈ K∗|ν(f) ≥
0} ∪ {0} is a local ring, called the valuation ring of ν, whose maximal ideal is
mν := {f ∈ K∗|ν(f) > 0} ∪ {0}. The rank of ν (rk(ν)) is the Krull dimension of
the ring Rν and the dimension of the Q-vector space G ⊗Z Q is the rational rank
of ν (r.rk(ν)).

2.2. Value group and value semigroup. Along this paper we shall con-
sider a Noetherian local domain (R,m) whose field of fractions is K and we shall
assume that each valuation ν dominates R, that is R ⊂ Rν and R ∩mν = m. In
this case, in addition to the two previous numerical invariants associated with ν, we
can consider the so-called transcendence degree of ν (tr.deg(ν)), which is the tran-
scendence degree of the field kν over k, where kν := Rν/mν and k := R/m. Unless
otherwise stated, we shall assume that k is algebraically closed. The mentioned
invariants are useful to classify valuations when dimR = 2. The value groups G of
valuations ν as above have been studied and classified [41, 42, 52, 38]. G can be
embedded in Rn with lexicographical ordering, n being the dimension of R and R
the real numbers.

An interesting object which is not well-understood in general is the value semi-
group of a valuation ν associated with R. This one is defined as

S := {ν(f)|f ∈ R \ {0}} .

Interesting data concerning ideal theory, singularities and topology are encoded by
this semigroup. The two main facts which are known about it are:

1) The Abhyankar inequalities:

rk(ν) + tr.deg(ν) ≤ r.rk(ν) + tr.deg(ν) ≤ dim(R).

Moreover, if rk(ν) + tr.deg(ν) = dimR, then G is isomorphic to Zrk(ν) with lexico-
graphical ordering and whenever r.rk(ν) + tr.deg(ν) = dimR, then G is isomorphic
to Zr.rk(ν).

2) S is a well-ordered subset of the positive part of the value group G of ordinal
type at most ωrk(ν), ω being the ordinal type of the set N of non-negative integers.

When R is regular and dimR = 1, the semigroups S are isomorphic to the
natural numbers. The case dimR = 2 is also known; later we shall give more infor-
mation about it. For higher dimension, very little is known. The second inequality
in condition 1) gives a constraint on the value semigroup and recently, Cutkosky
[14] has proved that the mentioned inequality and condition 2) do not character-
ize value semigroups on equicharacteristic Noetherian local domains. To do it he
proves the forthcoming Proposition 2.2, which gives a new necessary condition for
a semigroup to be a value semigroup. This allows him to provide an example of a
well ordered sub-semigroup of the positive rational numbers Q+ of ordinal type ω
which is not a value semigroup of some equicharacteristic local domain.
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Proposition 2.2. With the above notations, let assume that R is an equichar-
acteristic local domain and ν a valuation of K that dominates R. Set s0 :=
min{ν(f)|f ∈ m \ {0}}, n := dimkm/m

2 and SΨ := ν(m \ {0}) ∩ Ψ, Ψ being
the convex subgroup of real rank 1 of G. Then,

card (SΨ ∩ [0, (d+ 1)s0)) <
(
n+ d
n

)
,

for all nonnegative integer d, where we have set [a, b) := {c ∈ Ψ|a ≤ c < b},
a, b ∈ Ψ.

Ideals in R which are contraction of ideals in the valuation ring Rν are named
valuation ideals or ν-ideals. The following result collects basic results on value
semigroups and ν-ideals. Recall that an order ≤ in a semigroup is called cancellative
if α+β = α+ γ implies β = γ and it is admissible if α+ γ ≤ β+ γ whenever γ ≥ 0
and α ≤ β.

Proposition 2.3. The value semigroup S of a valuation ν of a field K, centered
at R, is a cancellative, commutative, free of torsion, well-ordered semigroup with
zero, where the associated order is admissible. Moreover, F = {Pα}α∈S, where

Pα := {f ∈ R \ {0} | ν(f) ≥ α} ∪ {0}

is the family of ν-ideals (in R) of the valuation ν.

Proof. We shall prove that S is free of torsion, F is the family of ν-ideals
and, finally, that S is well-ordered. The remaining properties are clear. Assume
that ν(u) 6= 0, u ∈ K \ {0}, then either ν(u) > 0 or ν(u−1) > 0, so either u ∈ mν

or u−1 ∈ mν and therefore either up ∈ mν or u−p ∈ mν , p being a positive integer.
Thus ν(up) 6= 0 and the group spanned by S, G(S) (which is G) is free of torsion.
This proves that S is also. R is a Noetherian ring and then rk(ν) < ∞, so each
ν-ideal I is finitely generated. Consider a finite set of generators for I and set α
the minimum of the values (by ν) of these generators, then it is straightforward
that I = Pα and so I ∈ F . Finally, S is well-ordered because the family of ν-ideals
F is also [52, App. 3]. �

Let S be the value semigroup of a valuation ν. S satisfies that (−S)∩S = {0}.
This means that

∑m
i=1 αi = 0, αi ∈ S, implies αi = 0 for every index i. The length

function of a semigroup S, l : S → N ∪ {∞}, is defined as l(0) = 0 and, for α 6= 0,

l(α) := sup{m ∈ N|α =
m∑
i=1

αi, where αi ∈ S \ {0} }.

In our case l(α) <∞ and therefore S is generated by its irreducible elements, that
is those elements in S whose length is one. This is a consequence of the following
result which can be deduced from the mentioned fact that G can be embedded in
Rn with the lexicographical ordering, n being the dimension of R.

Proposition 2.4. [11] Let ν be a valuation and S its value semigroup. Then,
for each α ∈ S, it happens that t(α) <∞, where

t(α) := card {{αi}mi=1 finite subset of S \ {0}|α =
∑m
i=1 αi } .

Generally speaking, the semigroups S such that t(α) < ∞ for all α ∈ S are
called combinatorially finite.
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3. Graded algebra of a valuation

3.1. Graded algebra and generators. Let ν be a valuation of the field K
centered at the ring R. For each element α in the value semigroup S, consider the
ν-ideals Pα and P+

α = {f ∈ R|ν(f) > α} ∪ {0}. The graded algebra of R relative
to ν is defined to be as the graded k-algebra

grνR :=
⊕
α∈S

Pα

P+
α
,

where the product of homogeneous elements is defined as follows: for f ∈ Pα and
g ∈ Pβ , f modulo P+

α times g modulo P+
β is the class fg modulo P+

α+β .
The field kν is an extension of the residue field of R, k. There is a canonical

field embedding of k into kν and when this embedding is an isomorphism, one gets
dimk Pα/P

+
α = 1 for each α ∈ S. In this case, if one fixes a nonzero element [fβ ] ∈

Pβ/P
+
β for each β ∈ Λ, Λ being the set of irreducible elements in S, and consider

the S-graded k-algebra, kΛ[S] := K[{Xβ}β∈Λ], where the Xβ are indeterminates of
degree β, then there exists an epimorphism of graded k-algebras ψ : kΛ[S]→ grνR,
given by Ψ(Xβ) = [fβ ], which is homogeneous of degree zero and allows us to regard
grνR as kΛ[S]-module, kerψ being an ideal of kΛ[S] spanned by binomials.

Generally speaking k is not isomorphic to kν . In any case, the following prop-
erty happens.

Proposition 3.1. For every α ∈ S, Pα/P+
α is a finite dimensional k-vector

space.

Proof. The inclusion mPα ⊂ P+
α holds because s0 (:= min{ν(f)|f ∈ m}) > 0

and therefore Pα/P+
α is a k-homomorphic image of Pα/mPα which is a k-vector

space of finite dimension because R is a Noetherian ring. �

This result allows us to get by a recursive procedure a minimal system of
generators of grνR, M = {[fγ ]}γ∈Γ, and attach to it an S-graded polynomial algebra
A[ν] := k[{Xγ}γ∈Γ] that substitutes the former kΛ[S] for the general case. The
procedure to obtain M works by recurrence on the length of the elements in S and
it is based on the computation of certain bases of the vector spaces Pα/P+

α with
l(α) = n from the knowledge of the vector spaces Pα/P+

α such that l(α) < n. When
n = 1, we pick an arbitrary basis of Pα/P+

α . Otherwise set

Ωα :=

{
{α1, α2, . . . , αr} ⊆ S \ {0}, r ≥ 2 | α =

r∑
i=1

αi

}
and since, by recurrence, we know a basis of each vector space Pαi/P

+
αi , we are able

to compute the following vector subspace of Pα/P+
α :

Wα =
∑

{α1,α2,...,αr}∈Ωα

Pα1

P+
α1

· Pα2

P+
α2

· · · Pαr
P+
αr

,

where the products of elements are in the algebra grνR. Now take an arbitrary
linearly independent set of Pα/P+

α whose classes are a basis of the vector space
Pα
P+
α
/Wα. This set extends any basis of Wα to a basis of Pα/P+

α . The set M is
obtained joining the bases of the vector spaces Pα/P+

α such that l(α) = 1 with
the described sets extending bases of the spaces Wα such that l(α) > 1. As a
consequence, it holds that the elements γ ∈ Γ are of the form γ = (β, iβ) with
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β ∈ S and 1 ≤ iβ ≤ dim
(
Pβ

P+
β

/Wβ

)
, where we have set Wβ = 0 when l(β) = 1,

and A[ν] is S-graded by setting deg(Xγ) = deg(γ) = β ∈ S, [11].

3.2. Minimal free resolution of grνR. Denote by A[ν]α the homogeneous
component of degree α of the ring A[ν] and consider the map

φ0 : A[ν] =
⊕
α∈S

A[ν]α −→ grνR

which maps Xγ to [fγ ]; it is a homogeneous k-algebra epimorphism. Also con-
sider the graded ideals m[ν] :=

⊕
0 6=α∈S A[ν]α and I0 := ker(φ0), and a minimal

homogeneous generating set of I0, B = ∪α∈SBα, Bα being the set of elements in
B of degree α. By Nakayama’s graded Lemma, the set of classes [Bα] of Bα in
I0/m[ν]I0 is a basis of the homogeneous component of degree α of I0/m[ν]I0 and
thus [Bα] and therefore Bα is finite since A[ν]α is a finite-dimensional vector space
because S is a combinatorially finite semigroup. This allows us to provide a degree
0 homogeneous homomorphism φ1 : L1 := ⊕α∈S(A[ν])l(α) → A[ν], l(α) being the
cardinality of Bα and recursively a minimal free resolution of grνR as S-graded
A[ν]-module:

(A.) : · · · → Li
φi→ Li−1 → · · · → L1

φ1→ A[ν]→ grνR→ 0.

Write Ni := ker(φi), then the following result holds:

Proposition 3.2. [11]
(1) For every i ≥ 0, there exists a homogeneous of degree 0 isomorphism

of graded A[ν]-modules between the ith Tor module TorA[ν]
i (grνR, k) and

Li
⊗

A[ν] k.
(2) For each α ∈ S, let denote the homogeneous component of degree α with

the subindex α, then

dimk

(
TorA[ν]

i+1 (grνR, k)
)
α

= dimk
(Ni)α

(m[ν]Ni)α
.

(3) There exists an isomorphism of S-graded modules between TorA[ν]
i (k, grνR)

and the ith homology Hi(G[ν]) of an augmented Koszul complex of grνR-
modules.

As a consequence of the commutative property of the Tor functor and from item
(2), the number of homogeneous elements of degree α in a minimal set of homoge-
neous generators of the ith syzygy module of grνR as A[ν]-module is dimk(Hi(G[ν])α.

The graded algebra relative to a valuation seems to be a useful tool to study
the local uniformization problem. This consists of, given the local ring of an alge-
braic variety (assuming that it is an integral domain), finding, for each valuation
ν centered at R, a regular local R-algebra R′ essentially of finite type over R and
contained in Rν . In [47], Teissier proposes that R′ might be obtained from an affine
chart of a proper algebraic map Z → SpecR which would be described as a proper
and birational toric map with respect to some system of generators of the maximal
ideal of R. An idea to do this would be to view R as a deformation of the graded
ring grνR with respect to the filtration associated with the valuation and to obtain
the uniformization of the valuation ν as a deformation of the valuation induced by
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ν on grνR; the motivating example is the case of complex plane branches which
has been studied by Goldin and Teissier as deformations of monomial curves.

Without doubt, the most interesting valuations from a geometric point of view
are the so-called divisorial valuations because they are attached to irreducible ex-
ceptional divisors of some birational map. Next we state the definition.

Definition 3.3. Let us assume that dimR = n. A valuation ν of K centered
at R is called to be divisorial whenever its rank is 1 and its transcendence degree
is n− 1.

When n = 2, the graded algebra grνR of a divisorial valuation is Noetherian.
Notwithstanding, this does not happen in higher dimension. For instance, let R be
a 3-dimensional local regular ring and blow-up X0 = SpecR at its maximal ideal m0.
Let X1 be the obtained variety. Consider the cubic with equation x2z+xy2+y3 = 0
on the obtained exceptional divisor E1 := Proj(k[x, y, z]) and a sequence of n ≥ 10
point blowing-upsXn → · · · → X0 centered atm0 and at pointsmi inXi, 1 ≤ i ≤ n,
on the last obtained exceptional divisor Ei and on the strict transform of the cubic.
Denote by ν the divisorial valuation given by the divisor En and set Ri := OXi,mi .
It is not difficult to prove that R1 = k[a1, b1, c1](a1,b1,c1), where a1 = x, b1 = y/x

and c1 = (x/z) + (y/x)2 + (y/x)3. If A1, B1, C1 are, respectively, the initial forms
of a1, b1, c1 on grνR1 = k[A1, B1, C1], then we can state

Proposition 3.4. [13] The family A1, A1B1, A3
1C1, A1B

2
1 , A2

1B
5
1 , A3

1B
8
1 , . . . ,

Ai1B
3i−1
1 , . . . is a minimal system of generators of grνR ⊂ grνR1. As a consequence

grνR is not Noetherian.

An interesting number associated with a divisorial valuation ν is the volume.
In this case Z is the value group of ν and by definition, the volume of ν is

vol(ν) := lim sup
α∈N

length(R/Pα)
αn/n!

.

This definition corresponds to the analogue of the Samuel multiplicity for an m-
primary ideal p ⊆ R:

e(p) := lim sup
α∈N

length(R/pα)
αn/n!

.

It is known that the multiplicity is always an integer number and also [23] that

vol(ν) = lim
α→∞

(e(Pα)/αn).

However the volume of a divisorial valuation is not always an integer number al-
though it is rational when its graded algebra is Noetherian. As a consequence
valuations with irrational volume provide non-finitely generated attached graded
algebras. For an example, see [37].

4. Plane valuations

4.1. Definition and geometric sense. From this section on we shall con-
sider plane valuations, notwithstanding from time to time we shall speak about
other types of valuations. We start this section with the definition.

Definition 4.1. A plane valuation is a valuation of a field K which is the
fraction field of a two-dimensional Noetherian local regular ring R and is centered
at R.
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Zariski in [51] classified plane valuations by attending invariants as the rank
and the rational rank. By using previous results by Zariski, Spivakovsky [46] gives
the following geometric view of plane valuations.

Theorem 4.2. There is a one to one correspondence between the set of plane
valuations (of K centered at R) and the set of simple sequences of point blowing-ups
of the scheme Spec R.

The correspondence in Theorem 4.2 works as follows: each valuation ν is asso-
ciated with the sequence

(4.1) π : · · · −→ XN+1
πN+1−→ XN −→ · · · −→ X1

π1−→ X0 = X = Spec R,

where πi+1 is the blowing-up of Xi at the unique closed point pi of the exceptional
divisor obtained after the blowing-up πi, Ei, which satisfies that ν is centered at
the local ring OXi,pi (:= Ri).

Theorem 4.2 allows Spivakovsky to give a classification of plane valuations
which improves the Zariski’s one and it is based in the form of the so-called dual
graph of the sequence π. This graph is a (in general, infinite) tree whose vertices
represent the strict transforms in Xl, l large enough, of the divisors Ei (also named
Ei) and two vertices are joined by an edge whenever these strict transforms inter-
sect. Set Cν = {pi}i≥0 the configuration of infinitely near points determined by
ν. We say that pi is proximate to pj (denoted by pi → pj) whenever i > j and pi
belongs either to Ej+1 or to the strict transform of Ej+1 at Xi and pi is said to be
satellite if there exists j < i − 1 such that pi → pj . Valuations whose associated
sequence (4.1) is finite are exactly the divisorial ones. The dual graph shape of a
divisorial (plane) valuation is that of Figure 1.

p p pr r r r r r re
r r

r

r

r
r

r

r r r r r r r rrrr
r
r

r
1=ρ0

ρ1

Γ1

ρ2

Γ2

ρg

Γg

st1 st2 stg

Γg+1

Figure 1. The dual graph of a divisorial valuation

The dual graph is not suitable when we desire to get parametric equations
for computing valuations. Furthermore, the classical theory for curves uses, for
this purpose, Puiseux exponents that only work for zero characteristic. Next, we
recall the Spivakovsky’s classification in terms of the so-called Hamburger-Noether
expansions of valuations. These expansions provide parametric equations for plane
valuations [27] and have been used in [18] to study saturation with respect to this
type of valuations.

4.2. Hamburger-Noether expansions and classification of plane val-
uations. Let ν be a plane valuation and take {u, v} a regular system of param-
eters for the ring R. Assume that ν(u) ≤ ν(v). This means that there exists
an element a01 ∈ k such that the set {u1 = u, v1 = (v/u) − a01} constitutes a
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regular system of parameters for the ring R1. If, now, ν(u) ≤ ν(v1) holds, then
we repeat the above operation and we keep doing the same thing until we get
v = a01u+ a02u

2 + · · ·+ a0hu
h + uhvh, where either ν(u) > ν(vh) or ν(vh) = 0, or

v = a01u + a02u
2 + · · · + a0hu

h + · · · , with infinitely many steps. In the last two
cases, we have got the Hamburger-Noether expansion for ν, obtaining Rν = Rh
when ν(vh) = 0. Otherwise, set w1 := vh and reproduce the above procedure
for the regular system of parameters {w1, u} of Rh. The procedure can continue
indefinitely or we can obtain a last equality. In any case, we attach to ν a set
of expressions called the Hamburger-Noether expansion of the valuation ν in the
regular system of parameters {u, v} of the ring R which provides a regular system
of parameters for each local ring Ri given by the sequence π described in (4.1) and
it has the form given in Figure 2.

v = a01u+ a02u
2 + · · ·+ a0h0u

h0 + uh0w1

u = wh1
1 w2

...
...

ws1−2 = w
hs1−1

s1−1 ws1
ws1−1 = as1k1w

k1
s1 + · · ·+ as1hs1w

hs1
s1 + w

hs1
s1 ws1+1

...
...

wsg−1 = asgkgw
kg
sg + · · ·+ asghsgw

hsg
sg + w

hsg
sg wsg+1

...
...

wi−1 = whii wi+1

...
...

(wz−1 = w∞z ).

Figure 2. Hamburger-Noether expansion of a plane valuation

The nonnegative integers {sj}gj=0 correspond to rows with some nonzero asj l
(called free ones and that are those associated with the non-satellite blowing-up
points), g ∈ N ∪ {∞} and kj = min{n ∈ N | asj ,n 6= 0}. Thus, plane valuations can
be classified in the following five types which we name with a letter or as in [24].

– Type A or divisorial valuations. Their Hamburger-Noether expansion is finite
and their last row has the following shape

(4.2) wsg−1 = asgkgw
kg
sg + · · ·+ asghsgw

hsg
sg + w

hsg
sg wsg+1,

where g <∞, hsg <∞, wsg+1 ∈ Rν and ν(wsg+1) = 0.
– Type B or curve valuations. Their Hamburger-Noether expansion has a last

equality associated with an infinite sum like this wsg−1 =
∑∞
i=kg

asgiw
i
sg . Here

g <∞ and there exists a positive integer i0 such that pi is free for all i > i0.
– Type C or exceptional curve valuations. Their Hamburger-Noether expansion

has a last free row like (4.2) and, after, finitely many non-free rows with the shape

wsg = w
hsg+1

sg+1 wsg+2

...
...

wz−1 = w∞z .
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type subtype rk r.rk tr.deg
A — 1 1 1
B I 1 1 0

II 2 2 0
C — 2 2 0
D — 1 2 0
E — 1 1 0

Table 1

In this case, g <∞, sg <∞ and there exists a positive integer i0 such that pi → pi0
for all i > i0.

– Type D or irrational valuations. A plane valuation will be called of type D,
whenever its Hamburger-Noether expansion has a last free row like (4.2) followed
by infinitely many rows with the shape wi−1 = whii wi+1 (i > sg). Now g <∞ and
there exists a positive integer i0 such that pi is a satellite point for all i ≥ i0 but ν
is not a type C valuation.

– Type E or infinitely singular valuations. When the Hamburger-Noether ex-
pansion of a plane valuation repeats indefinitely the basic structure, then the val-
uation is called to be of type E. This means that the sequence Cν alternates
indefinitely blocks of 1 free and (1 ≤) l (<∞) non-free rows. Here g = z =∞.

This classification does not depend on the regular system of parameters we
choose on R. Table 1 relates our classification with the invariants of ν above
defined. Notice that classical invariants provide a refinement of type B valuations.
We also add that in [24] the real-valued class of plane valuations is interpreted in
a rooted metric tree in such a way that the valuations are partially ordered and
there is a unique path from any valuation to any other, being this path isometric
to a real interval.

4.3. Other invariants of plane valuations. Let ν be a plane valuation and
{mi}i≥0 the family of maximal ideals of the rings Ri of the sequence (4.1). We
attach to ν the following data:

– The sequence {min{ν(f)|f ∈ mi \ {0}}i≥0, that we call sequence of values of
ν.

– The sequence {β′j}0≤j<g+2 that we name Puiseux exponents of ν and, with
the convention 1/∞ = 0, it is defined as β′0 := 1 and

β′j+1 := hsj − kj + 1 +
1

hsj+1 + 1

. . .

.

– Set β′j = pj/nj with gcd(pj , nj) = 1 and ri = ν(wi) and ej = ν(wsj ) for
0 ≤ j < g + 1 and i ≥ 0. Define

βj+1 := βj + (hsj − kj)ej + rsj+1

and
β̄j+1 := nj β̄j + (hsj − kj)ej + rsj+1.

Then the sequence {βj}g+1
j=0 is called to be the characteristic sequence and the se-

quence {β̄j}g+1
j=0 the sequence of maximal contact values both of ν.
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Last three sequences are infinite in case E, and in case B we only consider
sub-indices from j = 0 to j = g although in case B-II we add to {β̄j}gj=0 the
minimum element in the value semigroup S with non-zero first coordinate, denoted
by β̄g+1. The main result concerning maximal contact values is that they are a set
of generators of S. Moreover, if we delete the last one β̄g+1 in type A valuations, we
get a minimal set of generators for S. We can determine the type of a valuation if
we know either its sequence of values or its characteristic exponents or its maximal
contact values, but this does not happen with the Puiseux exponents or with the
semigroup. When one knows the type of the valuation, the following result holds.

Proposition 4.3. [18] Assume that ν is a plane valuation and that we know
which is its type. Then any of the following invariants can be computed from
whichever of the others: sequence of values, Puiseux exponents, maximal con-
tact values, characteristic exponents, and semigroup S of the valuation (or pair
(S, β̄g+1)).

5. Poincaré series of the graded algebra

5.1. General case. For a while, we consider a non-necessarily plane valuation
ν. The Poincaré series (of the graded algebra) of ν is the formal power series in
the indeterminate t:

HgrνR(t) :=
∑
α∈S

dimk
Pα

P+
α
tα,

which, according Proposition 3.1, belongs to the power series ring on S.
Let us assume that the value group of ν is isomorphic to the integer numbers.

This is equivalent to say that the ring Rν is Noetherian [52], however the algebra
grνR may be non-Noetherian and its Poincaré series a non-rational function, even
grνR might be non-Noetherian but HgrνR(t) a rational function. When the ring
R is 2-dimensional and normal and ν is a divisorial valuation, this series is the
generating function of a sequence of integers which is residually equal to the sum of
a polynomial with a periodic function (see [16] and [13]). An explicit computation
for the plane divisorial case can be found in [25]; as we shall see, the Poincaré series
is very close to that attached to the semigroup of the valuation or to the Poincaré
series of the analytically irreducible germ of curve provided by a general element
of the valuation [30]. One can found many papers studying Poincaré series for
singularities (which need not to correspond to the irreducible case), some of them
are [8, 9, 15, 28, 40, 45].

5.2. The plane case. An important concept for studying plane valuations
is that of generating sequence. This concept was introduced in [46] and the ex-
istence of those sequences is discussed in [29]. Notice that the hypothesis of 2-
dimensionality of R is not necessary to define this concept.

Definition 5.1. A sequence {rj}j∈J of elements in the maximal ideal m of
R is called to be a generating sequence (relative to R) of a valuation ν if, for any
element α ∈ S, Pα is spanned by the set

(5.1)

 ∏
j∈J0⊆J ,J0 finite

r
aj
j | aj ∈ N, aj > 0 and

∑
j∈J0

ajν(rj) ≥ α

 .
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Assume that the Hamburger-Noether expansion of ν is that given in Figure
2. Set q0 = u, q1 = v and, for 1 < j < g + 2, let qj be the defining equation of
some analytically irreducible germ of curve on Spec R whose Hamburger-Noether
expansion in the basis {ū = u+(qj), v̄ = v+(qj)} of R̂/(qj) [5], R̂ being the m-adic
completion of R, is

v̄ = a01ū+ a02ū
2 + · · ·+ a0h0 ū

h0 + ūh0w̄1

ū = w̄h1
1 w̄2

...
...

w̄sj−1−1 = asj−1kj−1w̄
kj−1
sj−1 + · · ·+ asj−1hsj−1

w̄
hsj−1
sj−1 + · · · .

In [46] it is proved that any generating sequence of a divisorial valuation con-
tains a subsequence {qj}gj=0. Moreover, this set is a minimal generating sequence
(no subset of it is a generating sequence) whenever the dual graph of ν (Figure 1)
contains no subgraph Γg+1 (or equivalently hsg − kg = 0); otherwise, {qj}g+1

j=0 is a
minimal generating sequence. Now, let ν be a valuation of type C or D. In both
cases a minimal generating sequence of ν is of the form {qj}g+1

j=0 . In the first type
of valuations ν(qj) (0 ≤ j < g + 1) are data lying on the line that joins the origin
to ν(q0), but ν(qg+1) does not satisfy this property. With respect to the second
type, ν(qj) ∈ Q whenever 0 ≤ j < g+ 1, but ν(qg+1) ∈ R \Q. Whenever ν is a type
E valuation, a minimal generating sequence of ν is an infinite sequence of the form
{qj}0≤j . However neither all valuations have minimal generating sequences nor
every element in a minimal generating sequence must be analytically irreducible.
Valuations of type B-II which admit minimal generating sequences with this last
condition are called of type B-II-a and the remaining ones will be of type B-II-b.
Type B-I valuations do not admit minimal generating sequences. To understand
this fact, we have to consider an element qg+1 which, in general, will be in R̂. qg+1

will be the defining equation of ν. If qg+1, up to multiplication by an unit, belongs
to R, then we are speaking about a valuation of type B-II-a and {qj}g+1

j=0 is a mini-
mal generating sequence of ν. When there exists an element in R which factorizes
in R̂ as a product which contains qg+1 as a non-trivial factor, ν is of type B-II-b
and otherwise it is of type B-I [46, Section 9, case 4].

One important property for the generating sequences is given in the next

Theorem 5.2. [25, 27] Let ν be a type A, B-II-a, C or D plane valuation. Then
a set {rj}j∈J of elements in the maximal ideal m of R is a generating sequence of ν
if, and only if, the k-algebra grνR is spanned by the classes defined by the elements
rj in grνR. In addition, when ν is of type E, it is also true that the classes defined
by the elements rj in grνR span that algebra whenever {rj}j∈J is a generating
sequence.

5.2.1. The divisorial case. Assume that ν is a divisorial plane valuation and
pick a generating sequence of r+ 1 elements. Recalling Section 3, consider the ring
A[ν] = k[X0, . . . , Xr] and the exact sequence of graded algebras 0→ I0 → A[ν]

φ0→
grνR → 0 which gives rise to the following equality of Poincaré series of graded
algebras HgrνR(t) = HA[ν](t) − HI0(t). With the help of generating sequences
and making use of the Hamburger-Noether expansion properties, one can get the
following result proved in [25].
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Theorem 5.3. Let ν be a plane divisorial valuation, {β̄j}g+1
j=0 its maximal

contact values, ej = gcd(β̄0, β̄1, . . . , β̄j) and nj = ej−1/ej. Then, HgrνR(t) =
HS(t)H ′(t), where

HS(t) :=
∑
α∈S

tα =
1

1− tβ̄0

g∏
j=1

1− tnj β̄j

1− tβ̄j

is the Poincaré series of the value semigroup of the valuation and H ′(t) = 1

1−tβ̄g+1
.

As a consequence the Poincaré series and the dual graph of a plane divisorial
valuation are equivalent data.

The case when k is infinite but it needs not to be algebraically closed has been
recently treated in [36] where it is also introduced a motivic Poincaré series.

5.2.2. The remaining plane cases. Assume now that ν is a non-divisorial plane
valuation. Then, dimPα/P

+
α = 1 for any α ∈ S and then grνR is a k-algebra

isomorphic to the algebra of the semigroup S. Thus the Poincaré series for S (that
is, the series HS(t) defined in Theorem 5.3) and for grνR coincide. With notations
as in Section 4, from [18, 1.10.5] it is not difficult to prove that

HgrνR(t) =
1

1− tβ̄0

g∏
j=1

1− tnj β̄j

1− tβ̄j
1

1− tβ̄g+1
,

except in cases B-I and E. In these cases

HgrνR(t) =
1

1− tβ̄0

g∏
j=1

1− tnj β̄j

1− tβ̄j
,

and g =∞ whenever ν is of type E.

6. Graded algebra and Poincaré series of finite families valuations

6.1. Families of valuations whose value group is Z. Throughout this
sub-section, we consider a family V = {νi}mi=1 of valuations of the quotient field K
of a Noetherian local domain (R,m) centered at R such that Z is the value group of
each νi, i ≤ i ≤ m. It is known that these valuations are of rank 1. For α, β ∈ Nm,
we say α ≥ β whenever α − β ∈ Nm. Write ν(f) = (ν1(f), ν2(f), . . . , νm(f)) for
f ∈ K and define the ideal in R,

PVα := {f ∈ R|ν(f) ≥ α} ∪ {0}.

Now we introduce the concepts of graded algebra and Poincaré series for our
family V of valuations. Set ei ∈ Nm, the m-tuple such that all its coordinates are
zero but the ith one which is 1, furthermore e≤i :=

∑i
j=0 ej , e≤0 := 0 ∈ Nm and

e := e≤m.

Definition 6.1. We define the graded algebra associated with the family V as
the graded k-algebra

grVR =:=
⊕
α∈Nm

PVα

PVα+e

.
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Since
PVα
PVα+e

· PVα
PVβ+e

⊆
PVα+β

PVα+β+e
when α, β ∈ Nm, grVR is a well-defined Nm-

graded algebra. On the other hand, Nakayama’s Lemma proves that, for each

α ∈ Nm,
PVα
PVα+e

is a finite dimensional k-vector space. Denote t = (t1, t2, . . . , tm)

and tα = tα1
1 tα2

2 · · · tαmm .

Definition 6.2. The multi-graded (or multi-index) Poincaré series of the graded
algebra grVR is defined to be

HgrV R(t1, t2, . . . , tm) = HgrV R(t) :=
∑
α∈Nm

dimk(Pα/Pα+e)tα ∈ Z[[t1, . . . , tm]],

where dimk means dimension as k-vector space.

Definition 5.1 can be extended by stating that a family Λ = {rj}j∈J of elements
in m is a generating sequence (or a generating set) of V whenever PVα is spanned
by the set given in (5.1) but replacing ν with ν and α with α. This allows us to
give the following definition for families of valuations V = {νi}mi=1 as above.

Definition 6.3. A finite family of valuations V is said to be monomial with
respect to some system of generators Λ = {rj}j∈J of the maximal ideal m of R if
Λ is a generating set of V .

In these conditions, we have the following extended version of Theorem 5.2:

Proposition 6.4. Let V = {νi}mi=1 be a family of valuations of K centered at
R whose value group is Z. Assume that there exists a finite generating sequence for
some valuation of V . Then, a system of generators Λ = {rj}j∈J of the maximal
ideal m is a generating set of the family V if, and only if, the k-algebra grVR is
generated by the set {[rj ]}j∈J , where [rj ] denotes the coset that rj defines in grVR
and the meaning of the expression “coset defined by rj” is clarified in the remark
after the proof.

Proof. [12] Along this proof, we set P instead PV , γ will denote elements in
Ns, s ≥ 0, whose jth component is γj , rγ will stand for

∏s
j=1 r

γj
j and [r]γ will be∏s

j=1[rj ]γj . Assume that Λ is a generating set for V . Let f + Pα+e be a nonzero
element in grVR, then f ∈ Pα and so f is in the ideal generated by the set given
in (5.1) –with α and ν instead of α and ν– which we denote by P ′α . Therefore,

(6.1) f =
∑

γ∈Q0⊆Qα,Q0 finite
aγr

γ ,

where aγ ∈ k and Qα = {γ|s ∈ N, ν(rγ) ≥ α}. As a consequence, f + Pα+e =∑
γ∈Q′0

aγ [r]γ , where Q′0 = {γ ∈ Q0|ν(rγ) ≥ α and the equality holds for some
component}.

Conversely, consider α ∈ Nm. We only need to prove that Pα ⊆ P ′α. Let f ∈ Pα
be such that ν(f) = β0 ≥ α. {[rj ]}j∈J generates grVR, therefore f + Pβ0+e =∑
γ∈Q′ aγ [r]γ . Thus f −

∑
γ∈Q′ aγr

γ ∈ Pβ0+e and as a consequence, f +f0 ∈ Pβ0+e

for some f0 ∈ P ′β0 . Analogously, we can get β1 ∈ Nm, such that β1 > β0 and
f + f0 ∈ P ′β1 + Pβ1+e. Iterating, it holds that

f ∈
∞⋂
j=0

(
P ′β0 + Pβj+e

)
,
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where β0 < β1 < · · · < βi < · · · are elements in Nm. Assume that there exists
a finite generating sequence for the valuation ν1. Then, the equality (6.1) for the
set {ν1} proves that P {ν1}

α1 ⊆ mµα and that α′ > α implies µα′ > µα, whenever

µα := min
{∑s

j=1 γj |γ ∈ Qα
}

. Thus, Pβj+e ⊆ P
{ν1}
βj1+1

⊆ m
µ
β
j
1 . So

∞⋂
j=0

(
P ′β0 + Pβj+e

)
⊆
∞⋂
j=0

(
P ′β0 +mj

)
.

Furthermore, the opposite inclusion also happens because R is a Noetherian domain
and Pβ an m-primary ideal. Finally considering the ideal of the quotient ring
R/P ′β0 , m+ P ′β0 = m̄, one gets

∞⋂
j=0

(
P ′β0 + Pβj+e

)
=
∞⋂
j=0

m̄j = P ′β0 .

Hence f ∈ P ′α because f ∈ P ′β0 . �

Remark 6.5. Notice that if r ∈ m and α = ν(r), then r ∈ PVβ for any β ≤ α.
Denote [r]β := r + Pβ+e. So, [r]β 6= 0 if, and only if, β + e 6≤ α. That is [r] in
Proposition 6.4 means [r] := {[r]β | β ≤ α and β+e 6≤ α}, although for simplicity’s
sake, in the above proof, it means [r]β for suitable β.

The main result for the Poincaré series of these families V is the following (see
[12]).

Theorem 6.6. Let V = {vi}mi=1 be a family of monomial valuations (of K
centered at R) with respect to a finite system Λ = {rj}nj=1 of generators of m.
Then, the multi-graded Poincaré series of grVR, HgrV R(t), is a rational function.
Moreover, a denominator of HgrV R(t) is given by∏(

1− (tδ11 )αj1(tδ22 )αj2 · · · (tδmm )αjm
)
,

where we have written νi(rj) = αji, (1 ≤ i ≤ m; 1 ≤ j ≤ n) and the product runs
over all expressions (1 − (tδ11 )αj1(tδ22 )αj2 · · · (tδmm )αjm) with 1 ≤ j ≤ n, δi ∈ {0, 1}
(1 ≤ i ≤ m) and not all the δi’s are equal to 0.

Theorem 6.6 can be proved taking into account that HgrV R(t) =
∑m−1
i=0 hi,

where
hi =

∑
α∈Nm

dimk

(
PVα+e≤i

/PVα+e≤i+1

)
tα

is the Poincaré series of the graded algebra ⊕α∈NmP
V
α+e≤i

/PVα+e≤i+1
. Interesting

families of valuations satisfy the requirements of Theorem 6.6 as one can see in the
following result.

Theorem 6.7. [12] Let R be either a two-dimensional regular local ring or the
local ring of a rational surface singularity. Let V = {νi}mi=1 be a family of divisorial
valuations of K centered at R. Then V has a finite generating set.

Proof. Let π : Y → SpecR = X be a resolution of singularities of X such that
if {Ej}qj=1 are the irreducible components of the exceptional divisor of π, then the
center of each valuation νi, i ≤ i ≤ m, is some of the Ej ’ that we denote by Ei and
π is minimal with that property. Let E� := ⊕qj=1ZEj be the group of the divisors
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{Ej}qj=1 and T the set of m-primary complete ideals I ⊂ R such that IOY is an
invertible sheaf. For those ideals I, denote by DI ∈ E� the unique exceptional
divisor such that IOY = OY (−DI). T is a finitely generated semigroup because T
is isomorphic to the sub-semigroup of E� of lattice points D which are inside the
rational polyhedral in E� ⊗Z Q given by the constrains (−D)Ej ≥ 0 for all j.

Consider generators {Il}tl=1 of the semigroup T . For each l, pick a set of
generators of Il and denote by Λ = {rs}ns=1 the set union of the above chosen sets
of generators for all integers l. Λ is a generating set of the set V and to prove it
we only need to check that every ideal PVα is generated by the monomials in the
rs’s. Consider the divisor D′α =

∑m
i=1 αiEi and apply the Laufer algorithm to find

another divisor Dα ∈ E� with (−Dα)Ej ≥ 0 for all j and such that

PVα = π∗

(
OY (−D′α)

)
= π∗

(
OY (−Dα)

)
.

As a consequence, for suitable nonnegative integers al, PVα =
∏t
l=1 I

al
l and since

each ideal Ij is spanned by monomials in the set {rs}ns=1, PVα is also generated by
monomials in the rs’s. �

6.2. Families of plane divisorial valuations.
6.2.1. Semigroup of values and graded algebra. Along this section V = {νi}mi=1

will be a finite family of plane divisorial valuations and we shall assume that R is
complete; we know that its Poincaré series is a rational function and our goal is to
compute this series and to give more information about its value semigroup. We
also relate these data with the corresponding data for the close and rather studied
families of valuations attached to plane curve singularities [6, 8].

The semigroup of values of V is defined to be the additive sub-semigroup SV
of Zm given by

SV = {ν(f) := (ν1(f), . . . , νm(f) | f ∈ R \ {0}}.

We also need to consider the minimal resolution of V , which is a modification
π : X → SpecR such that νi is the Ea(i)-valuation for an irreducible component
of the exceptional divisor E given by π, 1 ≤ i ≤ m, and π is minimal with this
property.

On the other hand, let C =
⋃m
i=1 Ci be a reduced germ of curve, with irreducible

components C1, . . . , Cm, defined by an element f ∈ R, and denote by R/(f)∗ the
set of nonzero divisors of the ring OC := R/(f). The semigroup of values SC of C
is the additive sub-semigroup of Zm given by

SC := {v(g) = (v1(g), . . . , vm(g)) | g ∈ R/(f)∗},

where each vi is the valuation corresponding to Ci. The dual graph of C, denoted
by G, is the dual graph of its minimal embedded resolution, attaching an arrow, for
each irreducible component Ci of C, to the vertex corresponding to the exceptional
component which meets the strict transform on X of Ci. Here, we can also consider
the valuation ideals PCα := {g ∈ OC |v(g) ≥ α} ∪ {0} and the corresponding graded
algebra

grOC :=
⊕

α∈(Z≥0)m

PCα

PCα+e

,
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and we shall say that Λ ⊂ m is a generating sequence of C whenever the ideals PCα
are generated by the images in OC of the monomials in Λ. For convenience, we set

C(α) :=
PCα
PCα+e

and c(α) := dimk C(α).

Let G denote the dual graph (defined as in the case of a unique valuation)
attached to V . For each vertex a ∈ G, Qa denotes some irreducible element of m
such that the strict transform of the associated germ of curve CQa on X is smooth
and meets Ea transversely. A general curve C of V is a reduced plane curve with
m branches defined by m different equations given by general elements of each
valuation νi. An element α ∈ SV is said to be indecomposable if we cannot write
α = β + γ with β, γ ∈ SV \ {0}. In both cases (V and C) G is a tree, 1 denotes the
vertex corresponding to the first exceptional divisor, E the set of dead ends (those
which have only one adjacent vertex, where, to count adjacency, arrows must also
be taken into account) and [a, b] the path joining the vertices a and b in G. In the
case of plane valuations, for 1 ≤ i ≤ m, a(i) denotes the vertex of G corresponding
to the defining divisor of νi and otherwise the a(i)’s are the vertices with arrow of
the dual graph of C; finally, for each vertex r ∈ E , denote by br the nearest vertex
to r in Ω =

⋃m
i=1[1, a(i)]. Define

H := {1} ∪ E ∪ (Ω \ {Γ ∪ {br | r ∈ E}}) ,

where Γ =
r⋂
i=1

[1, α(i)]. The following result, which holds for a a reduced germ of

curve C as above, is proved in [6].

Theorem 6.8. The set of indecomposable elements of the semigroup SC is

{v(Qa) | a ∈ H} ∪ {v(Qa(i)) + (0, . . . , 0, l, 0, . . . , 0) | i = 1, . . . ,m l ≥ 1}.

This theorem allows us to prove the following one concerning the set V [19].

Theorem 6.9. The set of indecomposable elements of the semigroup of values
SV is the set {ν(Qa) | a ∈ H}. In particular, SV is finitely generated.

Proof. If C =
m⋃
i=1

Ci is any general curve of V , then SV ⊆ SC , therefore,

by Theorem 6.8, the elements in the set {ν(Qa)|a ∈ H} are indecomposable. Con-
versely, given h ∈ R such that ν(h) is indecomposable in SV , choose a general curve
C of V such that the strict transforms of C and Ch by the minimal resolution of
V do not intersect. Consider the map v given by the valuations associated with C,
then ν(h) = v(h) and ν(Qa) = v(Qa) for any vertex a. h must be irreducible and
by the proof of Theorem 6.8, v(h) decomposes in SC as sum of elements v(Qb) with
b ∈ H, which proves that ν(h) = ν(Qa) for some a ∈ H. �

Now we can say that the semigroup SV has no conductor whenever m > 1, that
is, there is no element δ ∈ SV such that δ + Zm≥0 ⊆ SV . However, the semigroup of
values of a curve with m branches does have a conductor δ and thus, it cannot be
finitely generated if m > 1. In particular, if C is any general curve of V , SV 6= SC
when m > 1 (recall that SV = SC when m = 1).

In the sequel, we shall use the following notations: for J ⊂ I := {1, 2, . . . ,m},
eJ is the element of Zm whose jth component is 1 whenever j ∈ J and 0 otherwise,
D(α) = PVα /P

V
α+e, Di(α) = PVα /P

V
α+ei

, d(α) = dimkD(α) and di(α) = dimkDi(α)
when 1 ≤ i ≤ m. Also, we shall write Bi = ν(Qa(i)). We summarize in the
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following propositions some results concerning those vector spaces and dimensions.
As we shall see, interesting results can be deduced from them. Firstly, we shall
give a theorem containing an explicit description of the semigroup SV (see [19] for
proofs).

Proposition 6.10. With the above notations assume i ∈ I and α ∈ Zm, then
the following properties hold:

(1) The natural homomorphism D(Bi)→ Di(Bi) is an isomorphism.
(2) di(α) ≥ 2 if and only if di(α−Bi) ≥ 1.
(3) Assume that di(α) 6= 0 then di(α+Bi) = 1 + di(α).

Proposition 6.11. In this proposition, we assume i ∈ I and α ∈ SV , then
(1) di(α) ≥ 2 if and only if α−Bi ∈ SV .
(2) If I 3 j 6= i, then di(α+Bj) = di(α).

Theorem 6.12. Let α ∈ SV , then there exist unique nonnegative integers zi,
1 ≤ i ≤ m, and a unique value β ∈ SV such that

• α = β +
∑m
i=1 ziB

i.
• di(β) = 1 for every i.

Each value zi satisfies the following equality zi = max{l ∈ Z, l ≥ 0 | α − lBi ∈
SV } = di(α)− 1.

Proof. First, let us prove that there exist the values zi and β. Indeed, define
zi = max{l ∈ Z, l ≥ 0 | α − lBi ∈ SV } and β = α −

∑m
i=1 ziB

i. It suffices to
show that α − Bi ∈ SV and α − Bj ∈ SV imply α − Bi − Bj ∈ SV . Indeed,
propositions 6.10 and 6.11 allows us to state that dj(α − Bi) = dj(α) ≥ 2 and
hence that α − Bi − Bj ∈ SV . To finish we prove uniqueness: Proposition 6.11
proves 1 = di(β) = di(α− ziBi) = di(α)− zi, and by Proposition 6.11 it holds that
β −Bi /∈ SV , thus zi = max{l ∈ Z, l ≥ 0 | α− lBi ∈ SV } = di(α)− 1. �

Proposition 6.4 proves that V has a finite minimal generating sequence. Next
result, proved in [19], shows how minimal generating sequences for V and for general
curves C of V are. As above G denotes the dual graph attached either to V or to
C, consider fi ∈ R which gives an equation for Ci and fix an element Qr ∈ R for
each r ∈ E . Set

ΛE := {Qr | r ∈ E} and ΛE := {Qr | r ∈ E} ∪ {fi}mi=1,

where we do not include f = f1 whenever m = 1, then,

Theorem 6.13. The set ΛE (ΛE , respectively) is a minimal generating sequence
of V (C, respectively). Moreover, any minimal generating sequence for V and C is
of the described form.

6.2.2. Poincaré series. In this subsection, we shall introduce a Poincaré series
for finite families V of plane divisorial valuations (and also for general elements
attached to those families) that contains the same information provided for the
Poincaré series attached to their corresponding graded algebras. In this form it is
easier to compute those series. Assume m > 1 and set L := Z[[t1, t−1

1 , . . . , tm, t
−1
m ]].

As above t = (t1, . . . , tm) and tα := tα1
1 · · · tαmm , for α = (α1, . . . , αm) ∈ Zm. Clearly

L is a Z[t1, . . . , tr]–module and a Z[t1, t−1
1 , . . . , tr, t

−1
r ]–module.
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For a reduced plane curve C with m branches, the formal Laurent series
LC(t) :=

∑
α∈Zm c(α)tα ∈ L was introduced in [8]. There, the authors showed

that P ′C(t) = LC(t)
∏m
i=1(ti − 1) is a polynomial that is divisible by t1 · · · tm − 1.

The Poincaré series for the curve C is defined as the polynomial with integer coeffi-
cients PC(t) = P ′C(t)/(t1 · · · tm−1). In our case, a finite family V of plane divisorial
valuations, we define

LV (t1, . . . , tm) =
∑
α∈Zm

d(α)tα ∈ L.

The series LV is a Laurent series, but, since d(α) can be positive even if α have
some negative component αi, it is not a power series. It can be proved [19] that
P ′V (t) := LV (t)

∏m
i=1(ti − 1) ∈ Z [[t1, . . . , tm]] . We define the Poincaré series of

V as

PV (t1 . . . , tm) =
P ′V (t1, . . . , tm)
t1 · · · tm − 1

,

which is also a formal power series. Write P̃ ′V (t) = HgrV R(t)
∏m
i=1(ti − 1), then

P̃ ′V (t1, . . . , tm) =
∑
J⊂I

(−1)card(J) P ′V (t)|{ti=1 for i∈J}.

So one can compute HgrV R(t) from P ′V (t). HgrV R(t) determines the series LV (t)
since d(α) = d(max(α1, 0), . . . ,max(αm, 0)) for α 6≤ −1 = (−1, . . . ,−1) and d(α) =
0 for α ≤ −1. The next result shows the relation between the Poincaré series of V
and a general curve for it.

Theorem 6.14. [19] Let V = {νi}mi=1 be a finite family of plane divisorial
valuations and C a general curve for V , then the following equality holds.

PV (t1, . . . , tm) =
PC(t1, . . . , tm)∏r
i=1(1− tBi)

.

For a vertex a of the dual graph G of a set of valuations V as above, we
denote by

•
Ea = Ea \ (E − Ea) the smooth part of an irreducible component Ea in

the exceptional divisor E of the minimal resolution of V and by χ(
•
Ea) its Euler

characteristic. In addition, set νa := ν(Qa). When the field k is the field of complex
numbers and R = OC2,O is the local ring of germs of holomorphic functions at the
origin of the complex plane, the following formula of A’Campo’s type [1] holds.
(See [19, 20]).

Theorem 6.15.

PV (t1, . . . , tm) =
∏
Ea⊂E

(
1− tν

a
)−χ(

•
Ea)

.

6.2.3. Families of plane valuations. The Poincaré series for families of plane
valuations of the fraction field of R = OC2,O, centered at R, has been treated in
[10]. Consider a finite family V = {ν1, . . . , νm} of plane valuations, denote by Si
the value semigroup of νi, set S := S1 × · · · × Sm and, for any α ∈ S, define PVα as
above and PVα+ := {f ∈ R|ν(f) > α}. The usual definition of Poincaré series has
no sense for any type of family V , so the authors define the Poincaré series of V ,
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PV , by means of the following expression that coincides with the usual definition
whenever the valuations are integer valuated:

PV (t1, . . . , tm) =
∑
α∈S

∑
J⊆I

(−1)card(J) dim
PVα ∩ P

VJ
αJ+

PVα+

 tα,

where for J ⊆ I we have written VJ := {νj |j ∈ J} and αJ is the projection of α
preserving only the coordinates corresponding to J . With the help of projective
limits and as in the case of a unique valuation, it is possible to introduce a notion of
resolution π : X → C2 of V . Assuming that the valuations of type B-II are exactly
νi, 1 ≤ i ≤ r, and denoting by fi the last element of a generating sequence of each
one of these valuations νi, it happens the following result, proved in [10] with the
help of integration with respect to the Euler characteristic over the projectivization
PR of R.

Proposition 6.16. Let V = {νi}mi=1 be a finite family of plane valuations or-
dered as we have said. Then the Poincaré series PV (t) determines the types of
the involved valuations, the dual graph of its minimal resolution up to combinato-
rial equivalence and divisors and sequences of divisors corresponding to valuations.
Furthermore, a formula of A’Campo’s type for PV (t) is

PV (t) =
∏
Ea⊂E

(
1− tν

a
)−χ(

•
Ea)

×
r∏
i=1

1− t(1,0)
i

∏
j 6=i

t
νj(fi)
j

−1

.

7. An application: Poincaré series of multiplier ideals of a plane
divisorial valuation

An important tool in singularity theory and birational geometry is the concept
of multiplier ideal. Multiplier ideals provide information on the type of singularity
attached to an ideal, divisor or metric, see for instance [39]. Although this tool is
very useful, explicit computations are hard (see [4, 32, 33, 43]). In this section,
we summarize the results in [26] that provide an specific calculation of a Poincaré
series containing the essential information corresponding to jumping numbers and
dimensions of quotients of consecutive multiplier ideals of the primary simple com-
plete ideal attached to a plane valuation in the complex case. So, with the above
notation, assume that k = C, C being the field of complex numbers, and let ν
be a plane divisorial valuation of K centered at R. It is known [46] that ν de-
termines (and it is determined by) a simple complete m-primary ideal of R, Iν ,
and we define jumping numbers and multiplier ideals attached to ν as the same
objects corresponding to Iν . Consider the blowing-up sequence (4.1) given by ν,
being πN : X = XN → XN−1 the last blowing-up, and set D =

∑N
i=1 aiEi the

effective divisor such that IνOX = OX(−D), then for any positive rational num-
ber ι, the multiplier ideal of ν and ι is defined as J (νι) := π∗OX(KX|X0 − bιDc),
where KX|X0 is the relative canonical divisor and b·c represents the round-down
or the integral part of the corresponding divisor. The family of multiplier ideals is
totally ordered by inclusion and parameterized by non-negative rational numbers.
Furthermore, there is an increasing sequence ι0 < ι1 < · · · of positive rational
numbers, called jumping numbers, such that J (νι) = J (νιl) for ιl ≤ ι < ιl+1 and
J (νιl+1) ⊂ J (νιl) for each l ≥ 0; ι0, usually named the log-canonical threshold of
Iν , is the least positive rational number such that J (νι0) 6= R.
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The star vertices of the dual graph (labelled with the symbols stj in Figure 1)
will be those whose associated exceptional divisors Estj meet three distinct prime
exceptional divisors. From now on, we shall denote by g∗ the number of star
vertices. Write

Hj :=
{
ι(j, p, q, r) :=

p

ej−1
+

q

β̄j
+

r

ej
| p

ej−1
+

q

β̄j
≤ 1
ej

; p, q ≥ 1, r ≥ 0
}

whenever 1 ≤ j ≤ g∗, and

Hg∗+1 :=
{
ι(g∗ + 1, p, q) :=

p

eg∗
+

q

β̄g∗+1
| p, q ≥ 1

}
,

p, q and r being integer numbers. In [35], it is proved that the set H of jumping
numbers of ν can be computed as H = ∪g

∗+1
i=j Hj .

Assume ι ∈ H and ι 6= ι0 = minH. We denote by ι< the largest jumping
number which is less than ι. By convention we set J (νι

<
0 ) = R. Nakayama’s

Lemma proves that, for any ι ∈ H, J (νι
<

)/J (νι) is a finitely generated C-vector
space. Thus, the Poincaré series we referred to will be defined as follows.

Definition 7.1. Let ν be a plane divisorial valuation. The Poincaré series of
multiplier ideals of ν is defined to be the following fractional power series:

PJ ,ν(t) :=
∑
ι∈H

dimC

(
J (νι

<

)
J (νι)

)
tι,

t being an indeterminate.

The main result of this section is to give an explicit computation of the series
PJ ,ν which also proves that it is a rational function in certain sense that we shall
clarify. The proof is supported in three interesting facts. On the one hand, results
and proofs of propositions 6.10 and 6.11, where the family V of involved plane
divisorial valuations is given by the N exceptional divisors Ei appearing in (4.1),
and, on the other hand, the next two propositions. To state the first one, we
need the concept introduced in Definition 7.2, where π and D =

∑N
i=1 aiEi are,

respectively, the sequence of point blowing-ups and the divisor attached to ν.

Definition 7.2. A candidate jumping number from a prime exceptional divisor
Ei given by π is a positive rational number ι such that ιai is an integer number.
We shall say that Ei contributes ι whenever ι is a candidate jumping number from
Ei and J (νι) ⊂ π∗OX(−bιDc+KX|X0 + Ei).

Proposition 7.3. A jumping number ι of a plane divisorial valuation ν belongs
to the set Hj (1 ≤ j ≤ g∗ + 1) if and only if the prime exceptional divisor Fj
contributes ι, where Fj is defined to be Estj if 1 ≤ j ≤ g∗ and EN (the last obtained
exceptional divisor) whenever j = g∗ + 1.

Jumping numbers and multiplier ideals can also be introduced for analytically
irreducible plane curves and for them a similar result to Proposition 7.3 is proved
in [48] and [44]. Our proof [26] and the previous ones are independent and use
different arguments. Now, we state the second result.
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Proposition 7.4. Let ι be a jumping number of a plane divisorial valuation
ν. Then

π∗OX

(
−bιDc+KX|X0 +

s∑
l=1

Fjl

)
= J

(
νι
<
)
,

where {j1, j2, . . . , js} is the set of indexes j, 1 ≤ j ≤ g∗ + 1, such that ι ∈ Hj.

We end this paper by stating the mentioned main result.

Theorem 7.5. The Poincaré series PJ ,ν(t) can be expressed as

PJ ,ν(t) =
1

1− t

g∗∑
j=1

∑
ι∈Hj ,ι<1

tι +
1

(1− t)2

∑
ι∈Ω

tι,

where
Ω := {ι ∈ Hg∗+1 | ι ≤ 2 and ι− 1 6∈ Hg∗+1}.

Notice that if one considers the indeterminates zj = t
1

ej−1β̄j , then PJ ,ν(t)
belongs to the field of rational functions C(z1, z2, . . . , zg∗+1).
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