
Monomial Inequalities for Newton Coefficients
and Determinantal Inequalities for p-Newton
Matrices

C.R. Johnson, C. Marijuán, M. Pisonero and O. Walch

In memory of Julius Borcea

Abstract. We consider Newton matrices for which the Newton coefficients are
positive. We show that one monomial in these coefficients dominates another
for all such Newton matrices if and only if a certain generalized form of
majorization occurs. As the Newton coefficients may be viewed as average
values of principal minors of a given size, these monomial inequalities may
be interpreted as determinantal inequalities in such familiar classes as the
positive definite, totally positive, and M-matrices, etc.
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1. Introduction

Let A be an n-by-n real matrix with eigenvalues λ1, λ2, . . . , λn. Denote the prin-
cipal submatrix of A lying in rows and columns given by the index set α ⊆ N =
{1, 2, . . . , n} by A[α]. Define the k-elementary symmetric function

Sk = Sk(A) =
∑

i1<...<ik

λi1λi2 · · ·λik

and the k-Newton coefficient

ck = ck(A) =
1(
n
k

)Sk,
k = 1, . . . , n, with c0 ≡ 1. Of course, since Sk(A) =

∑
|α|=k detA[α], as well,

ck(A) may be viewed as the average value of the k-by-k principal minors of A.
The matrix A (or its spectrum λ1, . . . , λn) is called Newton if
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ck−1ck+1 ≤ c2k, k = 1, . . . , n− 1,
and these inequalities are referred to as the Newton inequalities. If, further, ck > 0,
k = 1, . . . , n, A is called p-Newton and the sequence c0, c1, . . . , cn is called p-
Newton. It is known that if the eigenvalues are positive reals, if A is an M-matrix,
or under further circumstances [2, 3, 4, 5, 8] that A is p-Newton.

The two sides of the Newton inequalities are particular monomials in the New-
ton coefficients c0, c1, . . . , cn. We henceforth assume that our matrix A is p-Newton
and, implicitly, that A is n-by-n. For any nonnegative exponents a0, a1, a2, . . . , an,
by a monomial in the ci’s, we mean an expression of the general form

ca = ca0
0 c

a1
1 . . . can

n .

The general question that we wish to address here is for which pairs of monomials
ca and cb do we have

ca ≤ cb

for all p-Newton sequences

c : c0, c1, . . . , cn ?
In this event, we say that the monomial cb dominates the monomial ca (with respect
to p-Newton sequences). Since the ck’s may be viewed as average values of principal
minors of a given size, we are motivated, in part, by the study of determinantal
inequalities in p-Newton matrices. Since positive definite matrices, totally positive
matrices, and M-matrices are p-Newton, as well as their inverse classes, this general
class of determinantal inequalities includes inequalities common to these special
classes.

Already in [4] and partly in [2] it was shown that in any p-Newton matrix,
the inequalities

crcs ≤ cpcq
hold when r < p ≤ q < s and p + q = r + s. Of course, also the product of
several such inequalities will give an inequality. Now, the special, 2-term mono-
mial inequality above is the special case in which the subscripts appearing in the
dominant monomial strictly majorize those appearing in the smaller, i. e.

r < p

and
p+ q = r + s.

This led us to conjecture that, at least for monomials with positive integer ex-
ponents, majorization in the subscripts implies a monomial inequality for all p-
Newton matrices. In fact, we will see that majorization in the subscripts is equiv-
alent to a general inequality, in this case.
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What, then, if the exponents are not integers? Clearly, there can still be
monomial inequalities, but conventional majorization no longer makes sense. So,
for this event, we define a more continuous version of majorization and show that
it is equivalent to a general inequality. For sufficiency of generalized majorization,
we note that it is the same as ordinary majorization in the integer case and then
show that majorization is sufficient in the integer case by a known process called
“pinching” [7], based upon the 2-term monomial inequalities above. The integer
case is expanded to the rational exponent case by powering, and then the rational
case to the general real case by a density argument based upon the fact that the
relevant exponent vector pairs form a cone in the appropriate real space and thus
that the rational points therein are dense. For necessity, we show that if ca ≤ cb

for all p-Newton sequences, then
n∑
j=0

jaj =
n∑
j=0

jbj

and that we may assume
n∑
j=0

aj =
n∑
j=0

bj ≡ L .

Then, we show that if cb dominates ca, we must have that a is majorized by b in
our generalized sense.

2. Majorization and Main Result

One list of integers i1 < i2 < . . . < ik is said to be majorized by another list
ji < j2 < . . . < jk if

i1 ≤ j1
i1 + i2 ≤ j1 + j2

...

i1 + i2 + . . .+ ik−1 ≤ j1 + j2 + . . .+ jk−1

and
i1 + i2 + . . .+ ik = j1 + j2 + . . .+ jk .

Note that this definition is the same for lists of real numbers, but only the integer
case interests us from classical majorization. In our setting, the i’s and j’s are
subscripts that appear on the Newton coefficients in two monomials, and each
exponent of a c that appears is 1, with repeats allowed.

What is the appropriate analog if the exponents are not integers? For the
monomial ca, we define a step function Fa as follows. For 0 ≤ z <

∑n
j=0 aj = L,

Fa(z) = i
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if and only if ai > 0 and
∑
j<i aj ≤ z <

∑
j≤i ai. For z ≥ L, Fa(z) = 0. Now,

for the two exponent sequences in ca and cb, a and b, we may define (generalized)
majorization as follows. We say a � b if∫ x

0

Fa(z) dz ≤
∫ x

0

Fb(z) dz

for 0 ≤ x <
∑n
j=0 aj =

∑n
j=0 bj = L, with equality for x ≥ L. We note that∫ L

0
Fa(z) dz =

∑n
j=0 jaj , and that when the aj ’s and bj ’s are integers, the new

notion of majorization coincides with the classical one.
With this definition of majorization in hand, our main result is then the

following.

Theorem 1. The monomial cb dominates ca with respect to p-Newton sequences if
and only if a � b.

In the next section, we show the necessity of our notion of majorization by
using carefully chosen p-Newton sequences and that, without loss of generality,
we may assume that

∑n
j=0 aj =

∑n
j=0 bj . Then, in the following section, we show

sufficiency by first considering the integer exponent case and then extending it to
the rational case and then the general real case.

We close this section by noting that we might as well more generally consider
monomials in which negative exponents appear or pairs of monomials in which the
same term ck appears in both with positive exponent. However, for convenience
in our setting we may assume without loss of generality (by simple algebra) that
all exponents are nonnegative and that a ck appears with positive exponent in at
most one of ca and cb.

3. The Necessity of Majorization

Here we show the necessity of majorization for monomial domination by designing
appropiate p-Newton sequences. For a positive parameter r, define the sequence
Qn,i(r) as

1, r, r2, . . . , ri, ri, . . . , ri,

i. e. this sequence of n + 1 terms, beginning with term 0, starts as a geometric
sequence with base r and then becomes constant starting with term i.

Proposition 3.1. The sequence Qn,n(r) is p-Newton for any r > 0, while Qn,i(r)
is p-Newton, 0 < i < n, for any r ≥ 1.

Now, we establish the necessity of majorization by the following sequence of
lemmas and a convention that they allow.
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Lemma 1. If cb dominates ca, then
n∑
j=0

jaj =
n∑
j=0

jbj .

Proof: From the previous proposition we know that Qn,n(r) is p-Newton for any
r > 0, but cb dominates ca, so that

ca(Qn,n(r)) = r
Pn

j=1 jaj = r
Pn

j=0 jaj ≤ cb(Qn,n(r)) = r
Pn

j=0 jbj .

This inequality gives us
n∑
j=0

jaj ≤
n∑
j=0

jbj

when r > 1 and the reverse inequality when r < 1. This proves the lemma.

Lemma 2. If cb dominates ca, then
n∑
j=1

aj ≤
n∑
j=1

bj .

Proof: Because cb dominates ca and Qn,1(r) is p-Newton for any r ≥ 1 (Proposition
3.1), then

ca(Qn,1(r)) = r
Pn

j=1 aj ≤ cb(Qn,1(r)) = r
Pn

j=1 bj .

But r may be chosen greater than 1, so the exponents must obey the inequality
n∑
j=1

aj ≤
n∑
j=1

bj .

Since changing the value of a0 does not change the evaluation of the monomial
ca at any sequence, we may suppose, and henceforth do, that a consequence of
domination is that

n∑
j=0

aj =
n∑
j=0

bj ≡ L.

Lemma 3. If cb dominates ca, then a � b.

Proof: The proof is by contradiction. Suppose that cb ≥ ca, but there is a real
value x, with 0 < x < L, such that

∫ x
0
Fa >

∫ x
0
Fb . We can choose x so that

max
{ ∫ t

0

Fa −
∫ t

0

Fb | 0 < t < L

}
=
∫ x

0

Fa −
∫ x

0

Fb .

Observe that the maximizing x must occur in an interval in which Fa(t) > Fb(t)
and must furthermore be the last point in that interval, corresponding to a step
in Fb.



6 C.R. Johnson, C. Marijuán, M. Pisonero and O. Walch

Let Fa(x) = i. Then

x =
i∑

j=0

bj .

Because cb ≥ ca, we know by Lemma 1
n∑
j=0

jaj =
n∑
j=0

jbj

and by convention we know
n∑
j=0

aj =
n∑
j=0

bj = L.

So
∫ L
0
Fa =

∫ L
0
Fb . We split these integrals as follows:∫ L

0

Fb =
∫ x

0

Fb +
∫ L

x

i+
∫ L

x

(Fb − i) =
i∑

j=0

jbj +
n∑

j=i+1

ibj +
∫ L

x

(Fb − i) =

= logr(c
b(Qn,i(r))) +

∫ L

x

(Fb − i)

Observe that if
i−1∑
j=0

aj ≤ m ≤
i∑

j=0

aj then

∫ m

0

Fa +
∫ L

m

i =
i−1∑
j=0

jaj + i

m− i−1∑
j=0

aj

+ i

 n∑
j=0

aj −m

 =
i∑

j=0

jaj +
n∑

j=i+1

iaj = logr(c
a(Qn,i(r))).

By definition, x falls within this range so∫ L

0

Fa =
∫ x

0

Fa +
∫ L

x

i+
∫ L

x

(Fa − i) = logr(c
a(Qn,i(r))) +

∫ L

x

(Fa − i).

Since
∫ L
0
Fa =

∫ L
0
Fb we know∫ x

0

Fa +
∫ L

x

i+
∫ L

x

(Fa − i) =
∫ x

0

Fb +
∫ L

x

i+
∫ L

x

(Fb − i).

Furthermore, since ∫ x

0

Fa >

∫ x

0

Fb

we find ∫ L

x

(Fa − i) <
∫ L

x

(Fb − i).
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Substituting into the logarithms of the two monomials yields

logr(c
a(Qn,i(r))) +

∫ L

x

(Fa − i) = logr(c
b(Qn,i(r))) +

∫ L

x

(Fb − i).

So

logr(c
a(Qn,i(r))) > logr(c

b(Qn,i(r))).

So ca > cb at Qn,i(r), which contradicts domination. Thus if cb ≥ ca then
∫ x
0
Fa ≤∫ x

0
Fb for all x.

4. Sufficiency

Our purpose here is to show that (generalized) majorization is sufficient for mono-
mial domination, completing a proof of our main result. Again this proceeds in
several steps. First we assume that the a’s and b’s are integers, so that majorization
may be viewed in the classical sense.

Lemma 4. Suppose that the exponents a0, a1, . . . , an and b0, b1, . . . , bn are (non-
negative) integers and that a � b. Then the monomial cb dominates the monomial
ca.

Proof: Our assumption is the same as that the sequence a′ with a0 0’s, a1 1’s, ...,
and an n’s is majorized in the classical sense by the sequence b′ with b0 0’s, b1
1’s, ..., and bn n’s. Because of this, we may transform a′ into b′ by a sequence of
”pinches” [7]: replacements of two a′ components r < s by p and q with r < p ≤
q < s and p+ q = r + s. In the monomial this amounts to replacing crcs by cpcq.
Since it is known that crcs is dominated by cpcq [4], the monomial resulting from
this replacement can be no smaller on any p-Newton sequence. Since from a′ we
may arrive at b′ by a finite sequence of pinches, it follows that the monomial cb

dominates ca.

Lemma 5. If the exponents a0, a1, . . . , an and b0, b1, . . . , bn are (nonnegative) ra-
tional numbers and a � b, then the monomial cb dominates ca.

Proof: Because we only evaluate at p-Newton sequences, we have that cb domi-
nates ca if and only if (cb)m dominates (ca)m for any positive number m. Choose
m to be the least common multiple of all the denominators in the fractions
a0, a1, . . . , an, b0, b1, . . . , bn. Then (ca)m and (cb)m may be rearranged to be mono-
mials with integer exponents. Since a � b if and only if ma � mb, we may apply
the result of the prior lemma to ma and mb to conclude that (ca)m is dominated
by (cb)m and then conclude that ca is dominated by cb.

Lemma 6. For nonnegative real exponents a0, a1, . . . , an and b0, b1, . . . , bn, if a � b,
the monomial cb dominates ca.
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Proof: The set of vectors (a, b) ∈ IR2n+2 for which a � b forms a cone of dimension
2n, as it is orthogonal to both

(0, 1, 2, . . . , n, 0,−1,−2, . . . ,−n)T

and

(1, 1, . . . , 1,−1,−1, . . . ,−1)T .

It is easily checked that the set is closed under addition and positive scalar multi-
plication. By the prior lemma, for all rational points in this cone, we have that cb

dominates ca. In addition, the rational points of such a finitely generated cone are
dense in the cone. Now, suppose that there is a non-rational point in the cone for
which ca > cb on some p-Newton sequence. By density, and continuity of the values
of the monomials, there would be a nearby rational point of the cone (a′, b′) for
which ca

′
> cb

′
on the same p-Newton sequence. But this contradiction completes

the proof.

We very much thank the referee for pointing out to us references [1] and [6]
and the connection between them and our work. We would also like to mention
that this work was done independently of prior work, with a different approach
and a different proof. It takes some effort to deduce our results from the prior
work.
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